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Abstract—Model predictive control (MPC) is a very pop-
ular controller design method in the process industry. Usu-
ally MPC uses linear discrete-time models. In this paper we
extend MPC to a class of discrete-event systems with both
hard and soft synchronization constraints. Typical examples
of such systems are railway networks, subway networks, and
other logistic operations. In general the MPC control design
problem for these systems leads to a nonlinear non-convex
optimization problem. We also show that the optimal MPC
strategy can be computed using an extended linear comple-
mentarity problem.

I. Introduction

We present a model predictive control (MPC) framework
for a special class of discrete event systems, namely railway
and subway networks.

MPC [1], [2], [3] is a very popular control design tech-
nique in the process industry. An important advantage of
MPC is that it allows the inclusion of constraints on the
inputs and outputs, and that it can handle changes in the
system parameters by using a moving horizon approach,
in which the model and the control strategy are continu-
ously updated. Conventional MPC uses discrete-time mod-
els (i.e., models consisting of a system of difference equa-
tions). In [4] we have extended MPC to a special class of
discrete event systems.

Typical examples of discrete event systems are flexible
manufacturing systems, telecommunication networks, par-
allel processing systems, traffic control systems, and logis-
tic systems. The class of discrete event systems essentially
consists of man-made systems that contain a finite number
of resources (such as machines, communications channels,
or processors) that are shared by several users (such as
product types, information packets, or jobs) all of which
contribute to the achievement of some common goal (the
assembly of products, the end-to-end transmission of a set
of information packets, or a parallel computation) [5]. In
general, models that describe the behavior of a discrete
event system are nonlinear in conventional algebra. How-
ever, there is a class of discrete event systems – the max-
plus-linear discrete event systems – that can be described
by a model that is “linear” in the max-plus algebra [5],
[6], which has maximization and addition as its basic op-
erations. The max-plus-linear discrete event systems can
be characterized as the class of discrete event systems in
which only synchronization and no concurrency or choice
occurs. So typical examples are serial production lines, pro-
duction systems with a fixed routing schedule, and railway

networks with rigid connection constraints.

In [4] we have extended MPC to the class of max-
plus-linear discrete event systems. The synchronization
constraints for max-plus-linear discrete event systems are
“hard”, i.e., the constraints should always be met. In this
paper we further extend the MPC framework to a class of
discrete event systems with both soft and hard synchro-
nization constraints, i.e., in some cases we allow an event
to start although not all pre-scheduled predecessor events
have been completed, but at a cost. This could occur in
a logistics context or a railway operations context, where
a train should give pre-defined connections to other trains.
However, if some of these trains have a too large delay,
then it is sometimes better — from a global performance
viewpoint — to let the train depart anyway in order to pre-
vent an accumulation of delays in the network. Of course,
missed connections lead to a penalty due to dissatisfied pas-
sengers. Note that in [4] we have only considered hard syn-
chronization constraints. Other work in connection with
the modeling and control of railway networks (mainly in
a discrete event context) can be found in [7], [8], [9], [10],
[11], [12].

In this paper we will first derive a model for a railway sys-
tem with hard and soft synchronization constraints. Next,
we will define a control design problem for such a system
where we can break a connection if delays occur and if
this leads to a better global performance. We use an MPC
approach (which has the following ingredients: a predic-
tion horizon, a receding horizon procedure, and a regular
update of the model and re-computation of the optimal
control). In general this will lead to a hard non-convex
nonlinear optimization problem. However, we will show
that the trajectories of the system can be described by an
extended linear complementarity problem (ELCP) [13], for
which we can compute a parameterized solution [13]. Af-
terwards, we can then compute the optimal control over
this solution set. The advantage is that we now have to
solve a sequence of optimization problems with a convex
feasible set (although the objective function is still non-
linear and non-convex). Computational experiments show
that (for small sized problems or for a small control hori-
zon) the ELCP approach is much faster and yields a better
minimum than the straightforward nonlinear optimization
approach.
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Fig. 1. A part of a railway network.

II. Model

Consider a railway operations system. The nominal op-
eration of the system follows a time schedule with a period
T . We assume that all the trains follow a pre-scheduled
route. Let n be the number of tracks in the network. Each
track of the railway network has a number and a virtual
train allocated to it. For the sake of simplicity we will say
“(virtual) train j” to denote the (physical) train on track
j, and “station j” to denote the station at the beginning
of track j (cf. Figure 1). Let xj(k) be the time instant at
which train j departs from station j for the kth time. Let
dj(k) be the departure time for this train according to the
time schedule.

Let Cj(k) be the set of trains to which the kth train
on track j gives a connection. This set can be divided
in a set of hard connections Chard

j (k) (e.g., if the train on
track i and the train on track j are physically the same
train, or if it is a very important connection that should
be guaranteed at all cost) and a set of soft connections
Csoft
j (k) (e.g., local trains to which the train j should give

connection, but if the local train i ∈ Csoft
j (k) has a too

large delay, then the connection may be broken; however,
in that case a cost cbrokenij (k) is associated with the broken
connection (see (2) and Remark 1 for a refinement)). We
have Chard

j (k)∩Csoft
j (k) = ∅ and Chard

j (k)∪Csoft
j (k) = Cj(k).

Let aij(k) be the travel time from station i to station j
for each train i ∈ Cj(k). Furthermore, we define a minimum
connection time tmin

ij (k) for passengers to get from train i
to train j for each train i ∈ Cj(k) (if virtual trains i and j
are physically the same train, then this time corresponds
to the minimum stopping time of train j at station j to
allow passenger to get off or on the train).

Now we have the following constraints for the kth depar-
ture time xj(k) of train j:

• the time schedule constraint:

xj(k) > dj(k) .

• hard synchronization constraint:

xj(k) > xi(k − 1∗ij) + aij(k) + tmin
ij (k)

for each i ∈ Chard
j (k),

where the notation 1∗ij is used to denote 1 if the kth train
j gives connection to the (k− 1)th train i, and 0 if the kth
train j gives connection to the kth train i (and if some trips
last longer than the twice the cycle time T of the schedule,
1∗ij might be equal to 2, and so on — see also the example
in Section V). Note that in general 1∗ij might even also be
a function of k. However, for the sake of simplicity, we will
only consider constant 1∗ij ’s in this paper.

• soft synchronization constraint:
For each train i ∈ Csoft

j (k) we have

xj(k) > xi(k − 1∗ij) + aij(k) + tmin
ij (k)

if the connection takes place,

xj(k) < xi(k − 1∗ij) + aij(k) + tmin
ij (k)

if the connection is broken.

If we introduce a control variable uij(k) > 0, then we can
combine these equations into

xj(k) > xi(k − 1∗ij) + aij(k) + tmin
ij (k)− uij(k)

where uij(k) can be used to guarantee or to break a con-
nection.

Since we let a train depart as soon as all connection
conditions are satisfied, we have

xj(k) = max
(

dj(k),

max
i∈Chard

j
(k)

(xi(k − 1∗ij) + aij(k) + tmin
ij (k)),

max
i∈Csoft

j
(k)

(xi(k − 1∗ij) + aij(k) + tmin
ij (k)− uij(k))

)

(1)

Note that in a nominal, well-defined time schedule the term
dj(k) in (1) will be the largest. However, if due to un-
foreseen circumstances (an incident, a late departure, etc.)
train i has a delay the corresponding term can become
larger than the others.

Define tslackij (k) as the slack time1 of the arrival of train

i ∈ Csoft
j (k) at station j (transit time tmin

ij (k) included)
w.r.t. the actual kth departure time of train j:

tslackij (k) = xi(k − 1∗ij) + aij(k) + tmin
ij (k)− xj(k) .

If tslackij (k) 6 0 then the connection is completely guaran-
teed (with enough time for the passengers to change trains).
If tslackij (k) > tmin

ij (k) then train j leaves the station before

the arrival of train i. If 0 < tslackij (k) 6 tmin
ij (k) then the

connection is guaranteed partly (i.e., fast-running passen-
gers can get the connection, but slower ones may lose it).
Therefore, we define the cost of a broken connection as the

1Note that this slack time is a function of the control variable uij(k)
via xj(k).



piecewise-linear function

Jbroken(t
slack, tmin, cbroken) =


















0 if tslack 6 0,

cbroken

tmin
tslack if 0 < tslack 6 tmin,

cbroken if tslack > tmin.

(2)

III. The railway MPC problem

We define the following cost function over a given pre-
diction horizon Np:

Jcost(k) =

Np−1
∑

l=0

n
∑

j=1

|xj(k + l)− dj(k + l)|+

λ

Np−1
∑

l=0

n
∑

j=1

∑

i∈Csoft
j

(k+l)

Jbroken(t
slack
ij (k + l),

tmin
ij (k + l), cbrokenij (k + l))

where λ > 0 is a weighting factor. This cost function has
two components: the first tries to keep the trains running
on schedule, whereas the second penalizes broken connec-
tions. The factor λ determines the trade-off or relative
weight of the two components of the MPC cost function.

Now we consider the following controller design problem
— which will be called the railway MPC problem at cycle
k:

min
uij(k),...,uij(k+Np−1)

Jcost(k)

subject to (1) and uij(k + l) > 0 for all i, j

and l = 0, . . . , Np − 1.

In addition, to reduce the number of control variables we
can — just as in conventional MPC — introduce a control
horizon Nc (6 Np) and set

uij(k + l) = uij(k +Nc − 1) for l = Nc, . . . , Np − 1 . (3)

This condition can be interpreted as follows: if after Nc

steps the delays have died out (i.e., it is not necessary to
break connections anymore or equivalently, uij(k+Nc) = 0
for all i, j), then we do not break any connections in the
subsequent steps either. On the other hand, if the delays
are still such that a connection should be broken in step
k + Nc, then we will also break these connections in the
subsequent steps2.

Just like in conventional MPC we use a moving horizon
approach, i.e., the railway MPC problem is solved for each
cycle, then the computed controls for that cycle are applied,
and meanwhile the model is updated, and the computation
is performed again for the next cycle. This implies that we

2We can even take the decrease or growth of the delays into ac-
count by using a constant growth/decrease rate condition of the form
∆uij(k+ l) = ∆uij(k+Nc − 1) for l = Nc, . . . , Np − 1 instead of (3)
where ∆s(k) = s(k)− s(k − 1).

can also include predictable future delays (due to incidents,
broken power lines, works, . . . ) into our prediction model.
Note that the parameter Np should be chosen such that

it covers the (expected) period over which the delays will
die out. The choice of Nc mainly depends on the computa-
tional complexity of the problem. For small-sized networks
we can take Nc rather large, whereas for large networks a
small Nc will be necessary to be able to compute the MPC
solution sufficiently fast (i.e., before the start of the next
cycle of the railway network).
In general each step of the railway MPC problem leads to

a non-convex nonlinear optimization problem. This prob-
lem can be solved using, e.g., a multi-start local optimiza-
tion method such as multi-start sequential quadratic pro-
gramming. Also note that the feasible set of the railway
MPC problem is non-convex since (1) is non-convex. In
the next section we will present an alternative approach to
compute the optimal MPC control input which is based on
a mathematical programming problem called the extended
linear complementarity problem.

IV. Link with the ELCP

The Extended Linear Complementarity Problem (ELCP)
is defined as follows [13]:
Given A ∈ R

p×n, B ∈ R
q×n, c ∈ R

p, d ∈ R
q and m subsets

φ1, . . . , φm of {1, . . . , p}, find z ∈ R
n such that

∏

i∈φj

(Az − c)i = 0 for j = 1, . . . ,m, (4)

subject to

Az > c (5)

Bz = d . (6)

Equation (4) represents the complementarity condition of
the ELCP. One possible interpretation of this condition is
the following: each set φj corresponds to a group of inequal-
ities of Az > c and in each group at least one inequality
should hold with equality, i.e., the corresponding residue
should be equal to 0. So for each j there should exist an
index i ∈ φj such that (Az − c)i = 0.

The formulation of the ELCP arose from our research on
nonlinear resistive networks, discrete event systems (max-
plus-linear systems, applications in max-plus algebra, and
min-max-plus systems) and hybrid systems (traffic signal
control, and first-order hybrid systems with saturation).
Let us now show that the evolution equations and the

constraints of the MPC optimization problem considered in
the previous section can be recast as an ELCP. Clearly, the
non-negativity constraint on uij(k) and the control hori-
zon constraint fit the ELCP framework. Now we show
that (1) can also be written as an ELCP. This will be
done by showing that an expression of the form xj(k) =
max(dj(k), ej(k), fj(k)) is an ELCP. If we then add the
conditions that ej(k) and fj(k) should be equal to the sec-
ond term and the third term of the right-hand side of (1)
and if we take into account that the merge of two ELCPs is



also an ELCP, we have recursively shown that (1) can also
be written as an ELCP. The condition3 xj = max(dj , ej , fj)
can be rewritten as xj − dj > 0, xj − ej > 0, xj − fj > 0,
with xj = dj or xj = ej or xj = fj . The latter condi-
tion can be rewritten as (xj − dj)(xj − ej)(xj − fj) = 0.
Hence, we have obtained an ELCP. As a consequence, the
trajectories of the railway system can be described by an
ELCP.

The solution set of an ELCP is the union of a subset of
faces of the polyhedron defined by Az 6 c, Bz = d. So
it is the union of convex sets. In [13] we have developed
an algorithm that yields a parametric description of the
solution set of an ELCP in which each face is presented by
its vertices. More specifically, the solution set of the ELCP
(4)–(6) is characterized by a set of vectors V =

{

zi
∣

∣ i =

1, . . . , r
}

and a set of index sets Λ = {ψj | j = 1, . . . , s}
such that for any j any convex combination of the form

∑

i∈ψj

νiz
i with νi > 0 and

∑

i∈φj

νi = 1

is a solution of (4)–(6). The vectors of V correspond to
vertices of the polyhedron defined by the system (5)–(6)
and each index set ψj corresponds to a face of this poly-
hedron. The optimal MPC strategy can now be obtained
by determining for each index set ψj the combination of
the νi’s for which the objective function Jcost(k) reaches a
global minimum (note that this is an optimization over a
convex set) and afterwards selecting the overall minimum.

The advantage of this approach compared to straight-
forward nonlinear constrained optimization of the railway
MPC problem is that in the ELCP approach we have to
solve a sequence of optimization problems with a convex
feasible set instead of one big problem with a non-convex
feasible set. Optimization problems with a convex feasible
set (albeit with a non-convex objective function) are eas-
ier to solve numerically than problems with a non-convex
feasible set. Note however that the algorithm of [13] to
compute the solution set of a general ELCP requires expo-
nential execution times, which that the ELCP approach is
not feasible if Nc is large.

Our computational experiments have shown that in most
cases the determination of the minimum value of the objec-
tive functions given above is a well-behaved problem in the
sense that using a local minimization routine (that uses,
e.g., sequential quadratic programming) starting from dif-
ferent initial points almost always yields the same numer-
ical result (within a certain tolerance). So (for small sized
problems or for a small control horizon) the ELCP ap-
proach is much faster and yields a better minimum than
the straightforward nonlinear optimization approach.

Remark 1 To get a smoother optimization problem we

3For ease of notation we drop the index k.
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Fig. 2. The piecewise-linear cost function Jbroken (dashed line) and
the smoother cost function J∗

broken
(full line) (with α = 4, β =

0.05 and γ = 0.75).

can introduce another, smoother cost function such as, e.g.,

J∗
broken(t

slack, tmin, cbroken) =






































































0 if tslack 6 0

cbroken

2γ

(

1 + tanh
(

α
( tslack

tmin
− γ

)))

·
tslack

tmin

if 0 <
tslack

tmin
6 γ,

cbroken

2γ

(

1 + tanh
(

α
( tslack

tmin
− γ

)))

·

(

γ + β
( tslack

tmin
− γ

))

if
tslack

tmin
> γ.

(7)

The graph of this function is given in Figure 2. The cost
function J∗

broken also better corresponds to what we ex-
pect in reality instead of the piecewise-linear cost function
Jbroken defined by (2).
Furthermore, if tslackij (k) is nonpositive (or if there is an-

other index i′ such that tslackij (k) > tslacki′j (k)), then uij(k)
does not influence the value of the objective function any-
more. Therefore, we add an extra term of the form

η

Np−1
∑

l=1

n
∑

j=1

∑

i∈Csoft
j

(k+l)

uij(k + l) (8)

to the MPC cost function. In that way, we get the smallest
possible values of uij(k). This also enables us to see more
clearly which connections are broken or not. ✸

V. Worked example

Consider the railroad network of Figure 3. There are 4
stations in this railroad network (A, B, C and D) that are
connected by 6 single tracks. There are two trains available.
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Fig. 3. The railroad network of the example of Section V.

TABLE I

The nominal traveling times and the departure times for the

railroad network of the example of Section V.

Track From To Nominal Scheduled
station station traveling departure time

time modulo 60

1 A B 15 00

2 B C 9 18

3 C D 10 30

4 D A 11 45

5 B D 22 20

6 D B 21 50

The first train follows the route A → B → C → D → A
and the second train follows the route B → D → B. We
assume that there exists a periodic timetable that schedules
the earliest departure times of the trains. The period of
the timetable is T = 60 minutes. So if a departure of a
train from station B is scheduled at 5.18 a.m., then there
is also scheduled a departure of a train from station B at
6.18 a.m., 7.18 a.m., and so on. Table I summarizes the
information in connection with the nominal traveling times
and the departure times. All the times are measured in
minutes. The indicated departure times are the earliest
departure times in the initial station of the track expressed
in minutes after the hour. The first period starts at time
t = 0. At the beginning of the first period the first train is
in station A and the second train is in station B.

Suppose that we have to guarantee the following connec-
tions in order to allow the passengers to change trains:

- the train on track 2 has to wait for the train on track 6,
- the train on track 4 has to wait for the train on track 5,
- the train on track 5 has to wait for the train on track 1,
- the train on track 6 has to wait for the train on track 3.

These connections are soft constraints. The hard connec-
tion constraints are that the trains on tracks 1, 2, 3 and 4
are physically the same train, and the same holds for the
trains on tracks 5 and 6. The passengers get 2 minutes to
change trains (for soft connections) and 1 minute to get
out of the train (for hard connections).

Each train departs as soon as all the connections are

guaranteed (except for a soft connection when it is broken),
the passengers have gotten the opportunity to change over
and the earliest departure time indicated in the timetable
has passed. We assume that in the first period all the
trains depart according to schedule. Recall that xj(k) is
the time instant at which the train on track j departs from
the initial station of the track for the kth time.

Now we write down the equations that describe the evo-
lution of the xj(k)’s. First we consider the train on track
1 and we determine x1(k), the time instant at which this
train departs from station A for the kth time. At the be-
ginning of the first period the train is in station A. So if k is
equal to 1, the train departs from station A at time t = 0.
If k is greater than 1, the train departs from station A for
the kth time as soon as it has arrived in station A for the
(k−1)th time4 and the passengers have got the time to get
out of the train and the earliest departure time indicated
in the timetable has passed. The train arrives in station A
for the (k−1)th time at time instant x4(k−1)+a41(k), and
afterwards, the passengers have tmin

41 (k) = 1 minute to get
out of the train. Since the system operates under a peri-
odic timetable with period T , the kth departure time of the
train on track 1 according to the timetable is 0+ (k− 1)T .
So if we set5 x4(0) = −∞, then we have

x1(k) = max(x4(k − 1) + a41(k) + 1, 0 + (k − 1)T )

for k = 1, 2, . . .

The train on track 1 will arrive for the kth time in station
B at time instant x1(k)+a12(k), after which the passengers
have tmin

12 (k) = 1 minute to get out of the train. If k is
greater than 1, the train has to wait for the passengers of
the train on track 6, which arrives in station B at time
instant x6(k − 1) + a62(k). The passengers have tmin

62 (k) =
2 minutes to change trains. According to the timetable
the train on track 2 can only depart after time instant
18+(k−1)T . Furthermore, since the connection constraint
is soft, we introduce a control variable u62(k) to break the
connection if necessary. Hence, we have

x2(k) = max(x1(k) + a12(k) + 1,

x6(k − 1) + a62(k) + 2− u62(k), 18 + (k − 1)T )

for k = 1, 2, . . . with x6(0) = −∞. Note that — referring
to (1) — we have 1∗12(k) = 0 since the kth train on track 2
is the same train as the kth train on track 1, and 1∗62(k) =
1 since the kth train on track 2 gives connection to the
(k − 1)th train on track 6.

Using a similar reasoning, we find that the other depar-

4Under nominal operations the kth train on track 1 (e.g., the one
that departs from station A at 10.00 a.m.) gives connection to the
(k−1)th train on track 4 (which has departed from station D at 9.45
a.m.) and not to the kth train on track 4 (which will depart from
station D at 10.45 a.m.).

5In fact it is sufficient to set the value of x4(0) such that x4(0) +
a41(k) + 1 is smaller than 0. Note that the choice x4(0) = −∞
guarantees that this condition will always hold.



ture times are given by

x3(k) = max(x2(k) + a23(k) + 1, 30 + (k − 1)T )

x4(k) = max(x3(k) + a34(k) + 1,

x5(k) + a54(k) + 2− u54(k), 45 + (k − 1)T )

x5(k) = max(x1(k) + a15(k) + 2− u15(k),

x6(k − 1) + a65(k) + 1, 20 + (k − 1)T )

x6(k) = max(x3(k) + a36(k) + 2− u36(k),

x5(k) + a56(k) + 1, 50 + (k − 1)T )

for k = 1, 2, . . . with xj(0) = −∞ for j = 1, 2, . . . , 6.

Let us now assume that all travel times are nominal
(cf. Table I) except for a12(1) = a15(1) = 28 and a12(2) =
a15(2) = 20. Let Nc = 3, Np = 5, λ = 0.5, η = 0.01,
cbroken62 (k) = cbroken54 (k) = 15, cbroken15 (k) = cbroken36 (k) = 10
and use J∗

broken as the cost function for the broken connec-
tions (with α = 4, β = 0.05 and γ = 0.75).

If we do not break any connections then we find a maxi-
mal delay w.r.t. the departure time schedule of 11 minutes
in the first cycle (for the train on track 2), 9 minutes in
the second cycle (for the train on track 2), and 4 minutes
in the third cycle (for the train on track 1). In the fourth
cycle the trains will again ride on schedule. If we do not
break any connections, then the value of the total MPC
cost function ((8) included) is 87.

If we compute the optimal MPC control input for k = 1,
we find with both the nonlinear optimization approach
and the ELCP approach the following solution: completely
break the connection 1 → 5 in the first cycle, and partially
break connection 3 → 6 during the first cycle and connec-
tions 1 → 5 and 5 → 4 during the second cycle6. If we
apply this control strategy, then we find a maximal delay
w.r.t. the departure time schedule of 11 minutes in the first
cycle and 5 minutes in the second cycle (both for the train
on track 2). In the third cycle all the trains will again ride
on schedule. The corresponding value of the total MPC
cost function ((8) included) is approximately 46.71.

VI. Conclusions

We have presented an MPC-like control design method
for a class of discrete event systems with both soft and
hard synchronization constraints. The control action con-
sists in breaking certain soft connections to prevent delays
from accumulating, but this can only be done at a certain
cost. We have also shown that the resulting optimization
problem can be solved using ELCPs. Furthermore, due to
the use of a moving horizon strategy and a control horizon
this method can be used in on-line applications and it can
deal with (predicted) changes in the system parameters.
So if we can predict the delays that will occur due to an
incident or to works, then we can include this information
when determining the optimal control input for the next
cycles of the operation of the network.

6More specifically, only allow transfer/connection times of t36(1) =
1.14, t15(2) = 0.97 and t54(2) = 1.23 minutes instead of tmin

36 (1) =

tmin
15 (2) = tmin

54 (2) = 2 minutes.

An important topic for future research is the develop-
ment of efficient algorithms to solve the railway MPC prob-
lem. One option could be to develop a branch-and-bound
algorithm to solve optimization problems defined over the
solution set of an ELCP. So instead of first determining the
solution set of the ELCP (which is a computationally inten-
sive operation) and then optimizing the objective function
over the parameterized solution set, we could then per-
form the optimization and the (implicit) solution of the
ELCP in one step, which should lead to a much more effi-
cient approach. We will also compare the performance of
this branch-and-bound algorithm with the straightforward
nonlinear non-convex optimization approach.
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