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Abstract

Model predictive control (MPC) is a very popular con-
troller design method in the process industry. One of
the main advantages of MPC is that it can handle
constraints on the inputs and outputs. Usually MPC
uses linear discrete-time models. Recently we have
extended this framework to max-plus-linear discrete
event systems. In this paper we further explore this
topic. More specifically, we focus on the closed-loop
behavior and on the tuning aspects of MPC for max-
plus-linear discrete event systems.

Keywords: model predictive control, discrete event
systems, max-plus algebra

1 Introduction

Model predictive control (MPC) was pioneered simul-
taneously by Richalet et al. [9], and Cutler and Ra-
maker [4]. Since then, MPC has become probably the
most applied advanced control technique in the pro-
cess industry and many papers report successful ap-
plications. MPC provides many attractive features,
like systematic constraint handling, applicability to
multivariable systems, good signal tracking and dis-
turbance rejection properties. Finally, it is an easy-to-
tune method. Basically three tuning parameters have
to be chosen and adequate tuning rules are available.

Typical examples of discrete event systems are flexible
manufacturing systems, telecommunication networks,
parallel processing systems, traffic control systems and
logistic systems. The class of discrete event systems es-
sentially consists of man-made systems that contain a
finite number of resources (such as machines, commu-
nications channels, or processors) that are shared by
several users (such as product types, information pack-
ets, or jobs) all of which contribute to the achievement
of some common goal (the assembly of products, the

end-to-end transmission of a set of information pack-
ets, or a parallel computation) [1]. Discrete event sys-
tems with synchronization but no concurrency can be
described by models that are “linear” in the max-plus
algebra [1, 3], and are denoted as max-plus-linear sys-
tems.

In [6, 5] we have extended the MPC framework to
max-plus-linear systems and focused on efficient so-
lution techniques for a single step in the max-plus-
linear MPC algorithm. In this paper we investigate
the closed-loop behavior of the system and its MPC
controller, i.e., we now look at the influence of apply-
ing MPC during the entire evolution of the system.
In MPC for conventional linear discrete-time systems
there exist rules of thumb for determining appropriate
values for the MPC tuning parameters. In this paper
we will also show by several examples that these rules
also more or less apply to MPC for max-plus-linear
systems, with some minor but important changes.

The paper is organized as follows. In Section 2 we
introduce max-plus-linear discrete event systems and
we briefly recapitulate the MPC methodology for max-
plus-linear systems. In Section 3 we discuss the closed-
loop properties of max-plus-algebraic MPC. Next we
discuss the tuning of the parameters in MPC for max-
plus-linear systems. We conclude with some illustra-
tive examples.

2 The MPC problem for max-plus-linear
systems

In [1, 2, 3] it has been shown that discrete event sys-
tems with only synchronization and no concurrency
can be modeled by a max-plus-algebraic model of the
following form:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (1)

y(k) = C ⊗ x(k) (2)



with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m

is the number of inputs and l the number of outputs.
The vector x represents the state, u is the input vector
and y is the output vector of the system. The oper-
ations ⊕ and ⊗ denote max-plus-algebraic addition
and max-plus-algebraic multiplication respectively:

x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε
def
= R ∪ {−∞}. Define ε = −∞. For

matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε we can extend

the definition to:

(A⊕B)ij = aij⊕bij = max(aij , bij) , ∀i, j

(A⊗ C)ij =
n

⊕

k=1

aik ⊗ ckj = max
k

(aik+ckj) , ∀i, j

In [6] we show that prediction of future values of y(k)
can be done by successive substitution, leading to the
expression ỹ(k) = C̃ ⊗x(k) ⊕ D̃⊗ ũ(k) where C̃ and
D̃ only depend on A,B,C and ũ, ỹ are defined as:

ỹ(k) =











ŷ(k+1|k)
ŷ(k+2|k)

...
ŷ(k+Np|k)











, ũ(k) =











u(k)
u(k+1)

...
u(k+Np−1)











where ŷ(k+j|k) denotes the prediction of y(k+j) based
on knowledge at time k and Np is the prediction hori-
zon. The MPC problem for max-plus-linear (MPL)
systems is formulated as follows:

min
ũ(k),ỹ(k)

J(ũ(k), ỹ(k)) = min
ũ(k),ỹ(k)

Jout(ỹ(k))+Jin(ũ(k))

= min
ũ(k),ỹ(k)

mNp
∑

i=1

max(ỹi(k)− r̃i(k), 0)−λ

lNp
∑

i=1

ũi(k) (3)

subject to

ỹ(k) = C̃ ⊗ x(k) ⊕ D̃ ⊗ ũ(k) (4)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) (5)

∆u(k + j) > 0 for j = 0, . . . , Np−1 (6)

∆2u(k + j) = 0 for j = Nc, . . . , Np−1 (7)

Jout is measuring the tracking error of the system,
which is equal to the delay between the output date
ỹi(k) and due date r̃i(k) if (ỹi(k) − r̃i(k)) > 0, and
zero otherwise. Jin maximizes the input dates ũi(k).
Equation (5) reflects constraints on the input and out-
put event separation times or maximum due dates
for the output events, equation (6) guarantees a non-
decreasing input signal and equation (7) is due to the
control horizon Nc (see Section 4). The above prob-
lem will be called the MPL-MPC problem1 for event

1Also other cost criteria are possible. See [6, 5].

step k. In [5] we showed that, if the linear constraints
are monotonically nondecreasing as a function of ỹ(k),
the MPL-MPC problem can be recast as a linear pro-
gramming problem.

MPC uses a receding horizon strategy. So after compu-
tation of the optimal control sequence u(k), . . . , u(k+
Nc−1), only the first control sample u(k) will be im-
plemented, subsequently the horizon is shifted and the
model and the initial state estimate can be updated if
new measurements are available, then the new MPC
problem is solved, etc.

3 Closed-loop behavior

In this section we will take a closer look at the closed-
loop behavior of an MPL system and an MPC con-
troller with a control law as derived in the previous sec-
tion. We will only consider SISO systems, but most of
the properties can be directly interpreted in the multi-
variable case.

3.1 Closed-loop expression
In conventional MPC theory, in the absence of in-
equality constraints, the closed loop consisting of the
(conventional) LTI process with the MPC controller,
is again a (conventional) LTI system. Unfortunately,
it seems that there is no analogous property for MPL
systems. In general, the closed loop of process with
MPC controller will not be a MPL system.

3.2 Stability
Stability in conventional system theory is concerned
with boundedness of the states. In MPL systems
however, the variable k is an event counter and xi(k)
refers to the occurrence time of an event. So the
sequence xi(k), xi(k + 1), . . . should always be non-
decreasing, and for k → ∞ the event time xi(k) will
usually grow unbounded. We therefore adopt the fol-
lowing notion of stability for discrete event systems [8].

Definition 3.1 A discrete event system is called

stable if all its buffer levels remain bounded.

Note that in our case we have due dates and that we
assume that finished parts are removed from the out-
put buffer at the due dates (provided that they are
present). This means that there are delays if the parts
are not produced before the due date. These delays
should also remain bounded. Therefore, we add as
an additional condition for stability that all delays
between due dates and actual output dates remain
bounded as well. If there are no internal buffers that



are not (indirectly) coupled to the output of the sys-
tem, then it is easy to verify that the buffer levels are
bounded if the dwelling times of the parts or batches in
the system remain bounded. This implies that closed-
loop stability is achieved for a SISO system if there
exist finite constants Myr, Mry and Myu such that

y(k)− r(k) 6 Myr (8)

r(k)− y(k) 6 Mry (9)

y(k)− u(k) 6 Myu (10)

Condition (8) means that the delay between the ac-
tual output date y(k) and the due date r(k) remains
bounded. Condition (9) means that the number of
parts in the output buffer will remain bounded. Fi-
nally, condition (10) means that the time between the
starting date u(k) and the output date y(k) (i.e., the
throughput time) is bounded.

An important observation is that stability is not an
intrinsic feature of the system, but it also depends on
the input and the due date of the system. Or more
precisely, it depends on the asymptotic slope of the
input and due dates. We will elaborate on this in the
next section.

3.3 Feasibility
The existence of a solution of MPL-MPC at event step
k problem can be verified by solving the system of
(in)equalities (4)–(7), which describes the feasible set
of the problem. Now, feasibility in the MPL-MPC
problem is comparable to feasibility in conventional
MPC. Infeasibility occurs when solving ũ(k) from (4)–
(7) results in a solution set that is empty. An empty
solution set can be caused by conflicting constraints
in (5)–(7). Note that in the absence of (5) a feasible
solution can always be reached. Specific constraints
have to be removed or relaxed if no feasible solution is
found. A selection algorithm has to be designed which
organizes the constraints in a hierarchical way and re-
moves or adapts the least critical ones first.

Constraint relaxation can be done as follows. The con-
straints (4) and (6) should always be satisfied because
of their physical meaning. Furthermore, the constraint
(7) is used to reduce the number of variables. There-
fore, we will not relax it. So the only “soft” constraint
in the problem is the constraint

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) .

This constraint is relaxed as follows. First we choose
a diagonal matrix R ∈ R

nE×nE with positive diago-
nal entries that determine the relative weights of the
constraints (i.e. if satisfying constraint i is more im-
portant than satisfying constraint j then we select rii

and rjj such that rii is much smaller than rjj) where
nE is the number of rows of E(k). Now we introduce
a vector ν ∈ R

nE of dummy variables and we solve the
problem

min
ũ(k),ỹ(k),ν

Jout(ỹ) + λJin(ũ) +

nE
∑

i=1

νi (11)

subject to (4), (6), (7) and

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) +Rν (12)

ν > 0 . (13)

This problem is feasible since the constraints can
always met by making the components of the vector
ν sufficiently large. Furthermore, if the original (in-
feasible) MPL-MPC problem satisfies the convexity
conditions (i.e. the mapping ỹ → F (k)ỹ is a monoton-
ically nondecreasing function of ỹ) then the problem
(11) – (13) also satisfies these conditions. Note that the
relaxed problem is still a linear programming problem.

4 Tuning

In this section we will give some guidelines to find suit-
able choices of the three tuning parameters (Np, Nc,
λ) and to select appropriate due dates r(k). Again
we assume that we are dealing with a SISO system
(so l = m = 1). Furthermore, we will assume irre-
ducibility of the system2. In many applications, for
example in manufacturing systems, this assumption is
not restrictive [2].

The selection of appropriate parameters has to lead
to a stabilizing and effective control law. The MPC
algorithm computes the vector of controls using opti-
mization of the cost criterion (3) with additional con-
ditions (4), (6) and (7). For now we will not consider
constraints of the form (5).

The parameters Np, Nc and λ are the three basic tun-
ing parameters of the MPC algorithm. However, as
we have already pointed out in the previous section, a
closer look at the due dates is necessary for stability
reasons. As will be become clear in this section, the
conventional MPC rules of thumb for tuning of Np,
Nc and λ can be applied to MPC for MPL systems as
well, with only minor changes. In conventional MPC
the following rules of thumb for selecting Np, Nc and
λ are used:

2An MPL system with system matrix A ∈ R
n×n
ε is said to

be irreducible if (A ⊕ A⊗
2

⊕ . . . ⊕ A⊗
n−1

)ij 6= ε for all i, j
with i 6= j.



• The parameter λ is usually chosen as the
smallest non-negative value that still results in
a stabilizing controller.

• The prediction horizon Np is related to the
length of the step response of the system: the
time interval (1, Np) should contain the crucial
dynamics of the process.

• The control horizon Nc 6 Np is usually taken
equal to the system order.

Before we discuss the MPL-MPC tuning rules, we
first need to consider some properties of the impulse
response of a MPL systems. The sequence {e(k)}∞k=0

with e(0) = 0 and e(k) = ε for k 6= 0 is the max-
plus-algebraic unit impulse. The output sequence
that results from applying a max-plus-algebraic unit
impulse to an MPL system is called the impulse
response of the system3. It is easy to verify that the
impulse response of an MPL with system matrices A,

B, C is given by {G(k)}∞k=0 with G(k) = C⊗A⊗
k
⊗B.

Proposition 4.1 ([1, 2]) Let {G(k)}∞k=0 be the im-

pulse response of a SISO MPL system with an irre-

ducible system matrix A. Then there exist constants

c, k0 ∈ N\{0} and ρ ∈ R such that

G(k) = c ρ+G(k − c) for all k > k0. (14)

An impulse response that exhibits the behavior (14)
is called ultimately periodic with cycle period c. The
variable ρ gives the average duration of a cycle and is
equal to the max-plus-algebraic eigenvalue of system
matrix A. The length of the impulse response is now
defined as the minimal value k0 for which (14) holds.

4.1 Selection of the due date sequencer(k)
Instability will occur if the slope of the due date se-
quence is not steep enough. Even if u(k+j) = u(k−1)
for j = 0, 1, . . . (all tasks are started as soon as possi-
ble), the system cannot complete the tasks in time (i.e.
y(k) ≫ r(k) for large k). The maximum production
rate of the system is given by 1/ρ. The slope of the
due date must therefore be such that the average pro-
duction rate is lower than 1/ρ. For a feasible solution
we need a due date sequence r(k) for which there exist
a ρr > ρ and an r0 ∈ R, such that r(k) > r0 + k ρr for
all k.

3If we consider a production system then we can give the
following physical interpretation to the impulse response. At
event counter k = 0 all the internal buffers of the system are
empty. Then we start feeding raw material to the input buffer
and we keep on feeding raw material at such a rate that the
input buffer never becomes empty. The time instants at which
finished products leave the system correspond to the terms of
the impulse response.

4.2 Tuning of the parameter λ
The parameter λ makes a trade-off between mini-
mization of the tracking error and the control effort
needed. For λ = 0, the input sequence is not measured
and we may not have a unique solution. Any input
value u(k) that guarantees ỹ(k) 6 r̃(k) will do, and so
we may set u(k) = u(k − 1) for all k. This will result
in an input buffer overflow for k large.
Input buffer overflow will also appear when λ < 0,
because λJin will become infinitely small. Therefore,
the parameter λ should be chosen larger than zero.
A small change of ũ in the neighborhood of the
optimum may cause a similar change in ỹ, such
that ∆Jout = −∆Jin. For λ = 1, this causes non-
uniqueness of the solution.
For λ > 1 the input cost criterion Jin will be dominant
in the optimization, which results in a maximization
of the control input. The input will become infinite in
the absence of an upper bound ∆umax on the input
increment. In the bounded case we the increment
of the input signal is maximal: ∆u(k) = ∆umax. In
the receding horizon implementation this leads to a
unbounded output delay y(k) − r(k) and the system
will become unstable.

Resuming, the parameter λ should be in the interval
0 < λ < 1

and is usually chosen as small as possible (see Example
3 in Section 5), without causing instability or numeri-
cal problems in the optimization.

4.3 Tuning of the parameter Np

The time interval (1, Np) should contain the crucial
dynamics of the process, and important information
of the due dates. To be sure that all crucial dynamics
is in the prediction interval, a good lower bound for
the prediction horizon Np is the length of the impulse
response of the system (k0) (see Example 1). A closer
look to the due date can become important, if the due
dates are gathered in batches.

4.4 Tuning of the parameter Nc

The real power of the MPC approach lies in the as-
sumption made about future control actions. Instead
of allowing them to be “free”, the increments of u(k)
are assumed to be zero:

∆2u(k + j − 1) = 0 for j > Nc.

The parameter Nc, called control horizon, can be cho-
sen between 1 and Np. We usually take it equal to
the upper bound of the minimal system order, which
is easy to compute [3, 7]. Choosing Nc larger than the
system order could be interesting when the constraints
are stringent. On the other hand, one may expect that
a small Nc will lead to a more robust control law in the
case of modeling error. The choice Nc = 1 often leads



to an unstable or a degraded closed loop behavior, be-
cause of a lack on degrees of freedom (see Examples 1
and 2). In many cases, the optimal input signal will
be asymptotically equal to u(k) = u0 + k∆u0, where
u0 and ∆u0 are appropriate constants. We need at
least two degrees of freedom to be able to reach this
asymptotic behavior.

5 Examples

The MPC algorithm for MPL systems was simulated
in some examples using MATLAB. The objective is to
study the effect of changes in the tuning parameters
λ, Np and Nc and the choice of due date r(k). For the
analysis we use two systems.
The first system is described by equations (1)–(2) with
system matrices:

A =









3 5 0 ε
ε ε 0 4
6 1 3 2
3 0 4 ε









, B =









6
6
1
4









, (15)

C =
[

6 2 1 2
]

This system has a system order n = 4, cycle period
c = 4, cycle duration ρ = 4.75 and impulse response
length k0 = 5.
The second system is described by equations (1)–(2)
with system matrices:

A =









2 5 5 5
ε 2 1 ε
4 2 1 ε
3 0 ε 2









, B =









1
3
6
1









, (16)

C =
[

6 3 1 1
]

This system has a system order n = 3, cycle period
c = 1, cycle duration ρ = 5 and impulse response
length k0 = 10.

We choose three due date sequences, defined by

r1(k) = 10 + 4.5 k + 10 e−0.07 k

r2(k) = 10 + 4.9 k + 10 e−0.07 k

r3(k) = 10 + 5.1 k + 10 e−0.07 k

Figure (1)-(5) display the tracking error y(k) − r(k)
over 70 simulation samples for various settings of the
control parameters.

Example 1 (Influence of Np):
In Figure 1 the influence of Np on the closed-loop of
system (15) with an MPC controller is displayed. It
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Figure 1: Influence of Np for Nc = 1.
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Figure 2: Influence of Np for Nc = 2.

is clear that Np = 1 gives an unstable closed loop be-
havior, because of the unbounded growth of the output
delay. Increasing Np from 2 to 25 leads to a decrease
in delays. We have selected r(k) = r2(k) and fixed
λ = 0.001. In Figure 2 the same is done for Nc = 2
and Np = 2, 3, 4, 10, 25.

Example 2 (Influence of Nc):
Figure 3 reveals the influence of Nc on the closed-
loop behavior of system (16) with an MPC controller.
Nc = 1 leads to an unstable behavior, Nc = 2 gives a
sluggish output response, and for Nc > 3 (= the sys-
tem order), the tracking error is minimal.

Example 3 (Influence of λ):
Figure 4 shows that λ > 1 leads to an unstable MPC-
control law. For 0 < λ < 1 the control law is stabi-
lizing, with a better tracking behavior for λ closer to
zero. (λ = 0 and λ = 1 lead to uniqueness problems
and are not computed).

Example 4 (Influence of r(k)):
Figure 5 shows the tracking error of system (15) for
the input signals r1(k), r2(k) and r3(k). Note that
r1(k) has an asymptotic slope ρr = 4.5 < ρ = 4.75.
The due date-schedule is too tight and the delays grow
unbounded. The asymptotic slopes of r2(k) and r3(k)
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Figure 3: Influence of Nc.
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are larger than 4.75. We see that the tracking error
|y(k)− r(k)| becomes zero for large k.

6 Discussion

Model predictive control for max-plus-linear systems
is a practical approach to design optimal input se-
quences for a specific class of discrete event systems
in which only synchronization and no concurrency or
choice plays a role.

Initial settings for the parameters (Np,Nc,λ) were
given and the influence of the due date r(k)) was stud-
ied. Appropriate choices result in a stabilizing and
effective MPC-control law. In practical industrial sit-
uations, the initial parameter settings have to be fine-
tuned to obtain the desired closed-loop behavior.

Because of the receding horizon strategy, used in MPC,
and properties of the max-plus algebra, it is not so
straightforward to study closed-loop behavior and an
analytic closed-loop expression is hard to find (con-
trary to conventional LTI MPC). The issue of stabil-
ity has been discussed and we considered the relation
between buffer overflow and the settings of the param-
eters. Based on closed-loop aspects and some illustra-
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Figure 5: Influence of the due date r(k).

tive examples, we have derived some guidelines for the
settings of tuning parameters and due dates.
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