
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:00-20

Model predictive control for discrete-event
systems with soft and hard

synchronization constraints∗

B. De Schutter and T. van den Boom

If you want to cite this report, please use the following reference instead:
B. De Schutter and T. van den Boom, “Model predictive control for discrete-event
systems with soft and hard synchronization constraints,” Proceedings of the Workshop
on Max-Plus Algebras and Their Applications to Discrete-Event Systems, Theoretical
Computer Science, and Optimization, Prague, Czech Republic, 6 pp., Aug. 2001.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/00_20.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/00_20.html

MODEL PREDICTIVE CONTROL FOR

DISCRETE-EVENT SYSTEMS WITH SOFT

AND HARD SYNCHRONIZATION

CONSTRAINTS

Bart De Schutter ∗ Ton van den Boom ∗

∗ Control Lab, Fac. ITS, Delft Univ. of Technology

P.O. Box 5031, 2600 GA Delft, The Netherlands

{b.deschutter,t.j.j.vandenboom}@its.tudelft.nl

Abstract: Max-plus-linear models can be used to model discrete-event systems
with only synchronization and no concurrency. The synchronization constraints in
max-plus-linear discrete-event systems are hard, i.e., they cannot be broken under
any circumstance. We consider a class of discrete-event systems with both hard and
soft synchronization constraints, i.e., if necessary, some synchronization conditions
may be broken, but then a penalty is incurred. We show that — after introducing
control variables — this leads to a max-plus-bilinear model. Furthermore, we also
show how the model predictive control (MPC) framework can be extended to this
class of discrete-event systems.

Keywords: predictive control, adaptive control, discrete-event systems, operations
research, manufacturing systems, railways, synchronization

1. INTRODUCTION

1.1 Overview

Max-plus-linear discrete-event systems are a class
of discrete-event systems (DES) in which only
synchronization and no concurrency or choice oc-
curs. So typical examples are serial production
lines, production systems with a fixed routing
schedule, and railway networks with rigid con-
nection constraints. Max-plus-linear DES can be
described by a model that is “linear” in the
max-plus algebra (Baccelli et al., 1992; Cohen et

al., 1985; Cuninghame-Green, 1979).

The synchronization constraints for max-plus-
linear DES are “hard”, i.e., these constraints
should always be met. In this paper we propose
a modeling and control framework for a class of
DES with both soft and hard synchronization con-
straints: in some cases we allow an event to start

although not all scheduled predecessor events have
been completed, but at a cost. This could occur
in a manufacturing, planning, logistics, or railway
operations context. Consider, e.g., a large manu-
facturing process, with a pre-scheduled planning.
Suppose that in order to start a given opera-
tion, we need the intermediary output products
of some predecessor operations. If the synchro-
nization constraints are hard, an operation can
only start if all predecessor operations have been
completed, which might lead to a propagation
of delays if one of the predecessor operations is
not completed in time. Especially if the plan-
ning is tight, this could cause serious (financial)
problems. Therefore, we could impose soft syn-
chronization constraints so that we can start the
operation anyway if further delay would lead to
large deviations from the planned schedule. How-
ever, in that case we incur a penalty cost (e.g., if
the intermediary output products of the delayed

predecessor operation have to be bought from a
third party).

We also present a model predictive control (MPC)
framework for DES with both hard and soft syn-
chronization constraints. There are several rea-
sons why MPC is the most applied advanced
control technique in the process industry: MPC is
a easy-to-tune model-based controller design pro-
cedure that can handle multi-input multi-output
processes and constraints on the inputs and out-
puts of the process. Furthermore, MPC can handle
structural changes, such as sensor or actuator
failures and changes in the system parameters,
by using a moving horizon approach, in which
the model and the control strategy are continu-
ously updated. For more information on MPC we
refer to (Camacho and Bordons, 1995; Clarke et

al., 1987; Garćıa et al., 1989).

Conventional MPC uses discrete-time models
(i.e., models consisting of a system of differ-
ence equations). In (De Schutter and van den
Boom, 2000) we have extended MPC to the class
of max-plus-linear DES. So there we have only
considered hard synchronization constraints. In
this paper, we further extend the MPC framework
to DES with both hard and soft synchronization
constraints. The proposed MPC approach has the
following ingredients (which are also present in
conventional MPC): a prediction horizon, a re-
ceding horizon procedure, and a regular update
of the model and re-computation of the optimal
control input. In general, this leads to a hard non-
convex nonlinear optimization problem. However,
we show that the trajectories of a DES with hard
and soft synchronization constraints can be de-
scribed by an extended linear complementarity
problem (ELCP), for which we can compute a
parameterized solution using the algorithm de-
scribed in (De Schutter and De Moor, 1995). Af-
terwards, we can compute the optimal control over
the parameters of the resulting solution set of the
ELCP. The advantage is that we now have to solve
a sequence of optimization problems with a convex
feasible set (although the objective function is still
nonlinear and non-convex). Computational exper-
iments show that (for small sized problems or for
a small control horizon) the ELCP approach is
much faster and yields a better minimum than the
straightforward nonlinear optimization approach.

1.2 Notation

We assume that the reader is familiar with the
basic concepts of max-plus algebra (Baccelli et

al., 1992; Cuninghame-Green, 1979). We define

x⊕ y = max(x, y) , x⊗ y = x+ y

for x, y ∈ Rε with Rε = R ∪ {−∞}. For matrices
A,B ∈ R

m×n
ε and C ∈ R

n×p
ε we have

(A⊕B)ij = (A)ij ⊕ (B)ij = max((A)ij , (B)ij)

(A⊗ C)ij =
n

⊕

k=1

(A)ik ⊗ (C)kj

= max
k=1,...,n

((A)ik + (C)kj) .

In (Baccelli et al., 1992; Cuninghame-Green,
1979) it is shown that DES in which there is
(hard) synchronization but no concurrency can be
described by a model of the form

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) (1)

y(k) = C(k)⊗ x(k) . (2)

The index k is called the event counter. The state
x(k) typically contains the time instants at which
the internal events occur for the kth time, the
input u(k) contains the time instants at which
the input events occur for the kth time, and the
output y(k) contains the time instants at which
the output events occur for the kth time. For later
reference, we note that (1) can be rewritten as

xj(k) =

n
⊕

i=1

(A(k))ji ⊗ xi(k − 1)⊕

nu
⊕

i=1

(B(k))ji ⊗ ui(k) (3)

for j = 1, 2, . . . , n where n is the system order and
nu is the number of inputs.

2. DES WITH SOFT SYNCHRONIZATION
CONSTRAINTS

Consider a system in which some operations de-
pend on some predecessor operations (cf. Figure
1). The system is allowed to operate in cycles.
Let n be the number of operations and let xj(k)
be the time instant at which operation j starts
during the kth operation cycle. Let dj(k) be the
scheduled starting time of operation j during the
kth cycle according to the planning.

Let Cj(k) be the set of predecessor operations for
operation j in cycle k. This set can be divided
in a set Chard

j (k) of predecessor operations with
hard synchronization conditions (i.e., operation j

can only be started if these predecessor operations
have been finished, no matter how much time they

i

i′

j

xi(k)

xi′(k)

xj(k)

aij(k)

ai′j(k)

Fig. 1. An operation and its predecessors.

are delayed), and a set Csoft
j (k) of predecessor

operations with soft synchronization conditions
(i.e., operation j can be started before these pre-
decessor operations have been finished, but then
a penalty has to be paid). Let cbrokenij (k) be the
(maximal) cost associated with a broken syn-
chronization (see (6) for a refinement)). We have
Chard
j (k) ∩ Csoft

j (k) = ∅ and Chard
j (k) ∪ Csoft

j (k) =
Cj(k). Let aij(k) be the duration of operation
i ∈ Cj(k) plus the inter-process or connection
time, if any, between operation i and j.

Now we have the following constraints for the
starting time xj(k) of operation j in the kth cycle:

• planning constraint: Operation j cannot
start before the planned starting time dj(k):

xj(k) > dj(k) .

• hard synchronization: Operation j can only
start if the predecessor operations with hard
synchronization conditions are completed:

xj(k) > xi(k − 1∗ij(k)) + aij(k)

for each i ∈ Chard
j (k),

with 1∗ij(k) defined by: operation j in cycle k has
operation i in cycle k−1∗ij(k) as its predecessor.

• soft synchronization: For predecessor oper-
ations with soft synchronization conditions we
can either wait until they have been completed
or break the synchronization. So for each oper-
ation i ∈ Csoft

j (k) we have

xj(k) > xi(k − 1∗ij(k)) + aij(k)

if the synchronization takes place,

and xj(k) < xi(k − 1∗ij(k)) + aij(k)

if the synchronization is broken.

If we introduce a control variable vij(k) > 0, we
can combine these equations into one equation:

xj(k) > xi(k − 1∗ij(k)) + aij(k)− vij(k) ,

where vij(k) can be used to guarantee or to
break the synchronization.

Since we let operation j start as soon as all
synchronization conditions are satisfied, we have

xj(k) = max
(

dj(k),

max
i∈Chard

j
(k)

(xi(k − 1∗ij(k)) + aij(k)),

max
i∈Csoft

j
(k)

(xi(k − 1∗ij(k)) + aij(k)− vij(k))
)

. (4)

Remark 1. The relation between (4) and the max-
plus-linear model (1)–(2) or (3) becomes clearer if
we rewrite (4) using ⊕ and ⊗. This yields

xj(k) = dj(k) ⊕
⊕

i∈Chard
j

(k)

aij(k)⊗ xi(k − 1∗ij(k))⊕

⊕

i∈Csoft
j

(k)

aij(k)⊗ xi(k − 1∗ij(k))⊗ wij(k) (5)

where wij(k) = −vij(k). The first term on the
right-hand side of (5) corresponds to the input
term B(k) ⊗ u(k) with the max-plus-algebraic
identity matrix for B(k), the second term corre-
sponds to A(k) ⊗ x(k), and the third term can
be considered as a “bilinear” extension of A(k)⊗
x(k) with a max-plus-algebraic product of x(k)
and the input w(k) (which is a column vector
containing the wij(k)’s). So DES with soft and
hard constraints can in fact be modeled using a
max-plus-bi linear model.

Define tslackij (k) as the slack time of the completion

of operation i ∈ Csoft
j (k) (inter-process or connec-

tion time included) w.r.t. the actual starting time
of operation j in cycle k:

tslackij (k) = xi(k − 1∗ij(k)) + aij(k)− xj(k) .

If tslackij (k) 6 0 then the synchronization is com-

pletely guaranteed. If tslackij (k) > 0 then the syn-
chronization is broken and a penalty has to be
paid. If tslackij (k) is small, say smaller than some
value tmax

ij (k), we could assume that a large part
of the intermediate products of operation i has
already been finished (if the system works in
batches) and only a small amount of intermediate
products have to be bought from a third party 1

or that the completion of operation i can be per-
formed by a third party at a low cost 2 . Therefore,
we define the cost of a broken synchronization as
the following piecewise-linear function:

Jbroken(t
slack
ij (k), tmax

ij (k), cbrokenij (k)) =

0 if tslackij (k) 6 0,

cbrokenij (k)

tmax
ij (k)

tslackij (k) if 0 < tslackij (k) 6 tmax
ij (k),

cbrokenij (k) if tslackij (k) > tmax
ij (k) .

(6)

3. MPC FOR DES WITH HARD AND SOFT
SYNCHRONIZATION

We define the following cost function over a given
prediction horizon Np for a given input sequence
{vij(k + l)}i;j;l=0,...,Np−1:

Jcost(k) =

Np−1
∑

l=0

n
∑

j=1

|x̂j(k + l)− dj(k + l)|+

λ

Np−1
∑

l=0

n
∑

j=1

∑

i∈Csoft
j

(k)

Jbroken(t̂
slack
ij (k + l),

1 For the sake of simplicity, we assume that the third party
always has the parts in storage and that the delivery time
is negligible.
2 Again, we assume for the sake of simplicity that the third
party can allocate enough resources to this task so that the

execution time is negligible.

tmax
ij (k + l), cbrokenij (k + l)) , (7)

where λ > 0 is a weighting factor and where
x̂(k + l) is the predicted state for the (k + l)th
operation cycle of the system, and t̂slackij (k + l)

is the predicted value for the slack tslackij in the
(k + l)th cycle. Equation (4) can be used to
predict x̂(k + l) and t̂slackij (k + l) for the given
input sequence. The cost function Jcost(k) has two
components: the first tries to keep the operations
starting on schedule, whereas the second penalizes
broken synchronizations. The factor λ determines
the trade-off or relative weight of the two compo-
nents of the MPC cost function.

Now we consider the following controller design
problem, which will be called the soft synchro-

nization MPC problem at cycle k:

min
vij(k),...,vij(k+Np−1)

Jcost(k)

subject to (4) and vij(k + l) > 0 for all i, j

and l = 0, . . . , Np − 1.

In addition, to reduce the number of control
variables we can — just as in conventional MPC
— introduce a control horizon Nc (6 Np) and set

vij(k + l) = vij(k +Nc − 1) for l > Nc . (8)

This condition can be interpreted as follows: if
after Nc cycles the delays have died out (i.e., it is
not necessary to break synchronizations anymore
or equivalently, vij(k + Nc) = 0 for all i, j),
then we do not break any synchronizations in the
subsequent cycles either. On the other hand, if the
delays are still such that a synchronization should
be broken in cycle k+Nc, then we will also break
these synchronizations in the subsequent cycles.

Just like in conventional MPC we use a moving
horizon approach, i.e., the soft synchronization
MPC problem is solved for each operation cycle
of the system, then the computed controls for
that cycle are applied, and meanwhile the model
is updated, and the computation is performed
again for the next cycle. This implies that we
can also include predictable future delays (due to
incidents, broken machines, or maintenance) into
our prediction model. The parameter Np should
be chosen such that it covers the (expected) period
over which the delays will die out. The choice of
Nc mainly depends on the computational com-
plexity of the problem. For small-sized systems we
can take Nc rather large, whereas for large-sized
systems a small Nc will be necessary to be able to
compute the MPC solution sufficiently fast (i.e.,
before the start of the next operation cycle).

In general each step of the soft synchronization
MPC problem leads to a non-convex nonlinear
optimization problem, which can be solved using,
e.g., multi-start sequential quadratic program-
ming. In the next section we will present an al-

ternative approach to compute the optimal MPC
control input which is based on a mathematical
programming problem called the extended linear
complementarity problem (ELCP).

4. LINK WITH THE ELCP

The ELCP is defined as follows (De Schutter and
De Moor, 1995):

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and
φ1, . . . , φm ⊆ {1, . . . , p}, find z ∈ R

n such that

∏

i∈φj

(Az − c)i = 0 for j = 1, . . . ,m, (9)

Az > c, Bz = d . (10)

This can be interpreted as follows: each set φj

corresponds to a group of inequalities of Az > c

and in each group at least one inequality should
hold with equality, i.e., for each j there should
exist an index i ∈ φj such that (Az − c)i = 0.

Proposition 2. The evolution equations and the
constraints of the soft synchronization MPC prob-
lem can be recast as an ELCP.

PROOF. Clearly, the non-negativity constraint
on vij(k) and the control horizon constraint fit
the ELCP framework. Now we show that (4)
can also be written as an ELCP. This will be
done by showing that an expression of the form
xj(k) = max(dj(k), ej(k), fj(k)) is an ELCP. If
we then add the conditions that ej(k) and fj(k)
should be equal to the second term and the third
term of the right-hand side of (4) and if we take
into account that the merge of two ELCPs is
also an ELCP, we have recursively shown that (4)
can also be written as an ELCP. The condition
xj = max(dj , ej , fj) can be rewritten as xj −
dj > 0, xj − ej > 0, xj − fj > 0, with xj = dj
or xj = ej or xj = fj . The latter condition can
be rewritten as (xj − dj)(xj − ej)(xj − fj) = 0.
Hence, we have obtained an ELCP. ✷

The solution set of an ELCP is the union of a
subset of faces of the polyhedron defined by (10).
So it is the union of convex sets. The ELCP
algorithm of (De Schutter and De Moor, 1995)
yields a parametric description of the solution set
in which each face is presented by its vertices.
The optimal MPC strategy can now be obtained
by determining for each face the combination of
the parameters for which Jcost(k) reaches a global
minimum (this is an optimization over a convex
set) and afterwards selecting the overall minimum.
The advantage of this approach compared to
straightforward nonlinear constrained optimiza-
tion is that in the ELCP approach we have to solve

Table 1. The nominal processing times
and the scheduled starting times.

Buffer/Machine Processing Scheduled

Bj/Mj time tj(k) starting time dj(k)

(modulo T = 15)

B1 0 0

M2 10 1

M3 13 11

M4 14 11

M5 4 25

a sequence of optimization problems with a convex
feasible set instead of one big problem with a non-
convex feasible set. Optimization problems with
a convex feasible set (albeit with a non-convex
objective function) are easier to solve numerically
than problems with a non-convex feasible set.

5. WORKED EXAMPLE

Consider the production system of Figure 2. There
is one buffer B1 and 4 machines M2, M3, M4 and
M5. During each cycle a batch of raw material
is sent from B1 to M1 and M3. The batch of
intermediate products of M1 is partially sent to
M2 for further processing and partially sent to
M3 where assembly takes place with the material
coming from B1. The intermediate products ofM2

and M3 are sent to M4 for the final assembly. We
assume that B1 has a sufficiently large inventory
or is regularly refilled, so that it never starves.

Let x1(k) be the time instant at which buffer
B1 releases a batch of raw material for the kth
time, and let xj(k) be the time instant at which
Mj starts working for the kth time. The nominal
processing times tj(k) and the time schedule are
given in Table 1. All the times in this example will
be expressed in minutes. The length of one cycle
of the production system operation is T = 15. So
dj(k) = dj(1) + (k − 1)T . All the transportation
or interprocess times are assumed to be negligible
except for t12(k) = 1 and t14(k) = 4 for all k.
The first operation cycle starts at time t = 0. A
machine starts working on a new batch as soon as
all the required material is available and as soon as
the machine is idle (i.e., the machine has finished
the previous batch). We assume that there are
buffers with a large capacity between the input
buffer B1 and the machines, and between the
machines themselves, so that no internal buffer
overflow can occur. At the beginning of the first
cycle all the machines are empty.

Now we consider two types of synchronization
constraints:

• hard synchronization: The synchronization
constraint on M4 for the raw material going
from B1 to M4 is hard, and the same holds for

the constraint that a machine can only start
working on a new batch if it is idle.

• soft synchronization: The synchronization
constraint on M4 for the intermediate products
coming from M2 is soft, and the same holds for
the synchronization constraint on M5 for the
intermediate products coming fromM3 andM4.

We set tmax
24 (k) = 8, tmax

35 (k) = tmax
45 (k) = 10, and

cbroken24 (k) = cbroken35 (k) = cbroken45 (k) = 10 for all k.

Now we write down the equations that describe
the evolution of the xj(k)’s. Since there are no
synchronization constraints at buffer B1 we have

x1(k) = d1(k) = 0 + (k − 1)T .

The kth batch of raw material that leaves B1

at time instant x1(k) will reach M2 at time t =
x1(k)+t12(k) = x1(k)+1. If k = 0 then M2 is idle
and can immediately start processing the batch of
raw material as soon as it arrives. If k > 0 then we
have to wait until M2 has finished processing the
previous batch (i.e., the (k − 1)th batch), which
will happen at t = x2(k − 1) + t2(k − 1). Hence,
we have 3

x2(k) = max(1 + (k − 1)T, x1(k) + 1,

x2(k − 1) + t2(k − 1)) .

Using a similar reasoning we find

x3(k) = max(11 + (k − 1)T, x2(k) + t2(k),

x3(k − 1) + t3(k − 1)) .

Machine M4 can start processing the kth batch as
soon as the scheduled starting time d4(k) = 11 +
(k− 1)T has passed, the raw material has arrived
(which happens at t = x1(k)+t14(k) = x1(k)+4),
the machine is idle (which happens at t = x4(k −
1) + t4(k − 1)), and the intermediate products
from machine M2 has arrived (which happens
at t = x2(k) + t2(k)). However, since the last
condition is a soft synchronization condition, we
introduce a control variable v24(k) to break the
synchronization if necessary. Hence, we have

x4(k) = max(11 + (k − 1)T, x1(k) + 4,

x4(k − 1) + t4(k − 1),

x2(k) + t2(k)− v24(k)) .

Analogously, we find

x5(k) = max(25 + (k − 1)T,

x5(k − 1) + t5(k − 1),

x3(k) + t3(k)− v35(k),

x4(k) + t4(k)− v45(k))

y(k) = x5(k) + t5(k)

where y(k) is the time instant at which the kth
batch of finished products leaves the system.

Let us now assume that all processing times are
nominal (cf. Table 1) except for t2(1) = 15. Let
Nc = 4, Np = 6, and λ = 2.

3 The equation also holds for k = 0 if we set x2(0) = −∞.

B1 M2

M3

M4

M5

x1(k)

x2(k)

x3(k)

x4(k)

x5(k) y(k)

t1(k) t2(k)

t3(k)

t4(k)

t5(k)

t12(k) = 1

t14(k) = 4

Fig. 2. The production system of the example. The filled arrows represent hard synchronization
constraints, and the open arrows represent soft synchronization constraints.

If we do not break any synchronizations then we
find maximal delays w.r.t. the time schedule of 5
minutes in the first cycle (for M3, M4 and M5),
4 in the second cycle (for M4 and M5), 3 in the
third cycle (for M4 and M5), 2 in the fourth cycle
(for M4 and M5), and 1 minute in the fifth cycle
(for M4 and M5). In the sixth cycle the machines
operate again according to schedule. If we do not
break any synchronizations, then the value of the
total MPC cost function is 39.

If we compute the optimal MPC control input for
k = 1, we find the following solution: partially
(37.5%) break the synchronization M2 → M4 in
the first cycle, and do not break any other syn-
chronizations. More specifically, we have v24(1) =
3. If we apply this control strategy, then we find
a maximal delay w.r.t. the time schedule of 5
minutes in the first cycle, 3 in the second cycle
and 1 in the third cycle (all for M3). In the
fourth cycle all operations start again on schedule.
The corresponding value of the total MPC cost
function is 25.5.

For λ = 0.5 we get the following solution: partially
(62.5%) break the synchronization M2 → M4 in
the first cycle, and partially break the synchro-
nization M3 → M5 during the first (40%) and
the second cycle (20%). More specifically, we have
v24(1) = 5, v35(1) = 4 and v35(2) = 2. The
maximal delays are the same as for λ = 2 although
the total sum of all the delays is less: 9 versus 18.

6. CONCLUSIONS

We have presented an MPC-like control design
method for a class of discrete-event systems with
both soft and hard synchronization constraints.
The control action consists in breaking certain
soft synchronization conditions to prevent delays
from accumulating, but this can only be done at
a certain cost. We have shown that the behavior
of such systems can be described by a max-
plus-bilinear model. We have also shown that
the resulting optimization problem can be solved

using ELCPs. Furthermore, due to the use of a
moving horizon strategy and a control horizon
this method can be used in on-line applications
and it can deal with (predicted) changes in the
system parameters. So if we can predict the delays
that will occur due to an incident, a machine
breakdown, or maintenance works, then we can
include this information when determining the
optimal control input for the next cycles of the
operation of the system.

Topics for future research include the development
of tuning rules and of efficient algorithms to solve
the soft synchronization MPC problem, and the
inclusion of modeling errors and/or (bounded)
uncertainty in the prediction model.

ACKNOWLEDGEMENTS

Research partially sponsored by the European
Community TMR project ALAPEDES and by the
FWO Research Community ICCoS.

REFERENCES

Baccelli, F., G. Cohen, G.J. Olsder and J.P.
Quadrat (1992). Synchronization and Linear-

ity. John Wiley & Sons. New York.
Camacho, E.F. and C. Bordons (1995). Model

Predictive Control in the Process Industry.
Springer. Berlin, Germany.

Clarke, D.W., C. Mohtadi and P.S. Tuffs (1987).
Generalized predictive control – Part I. The
basic algorithm. Automatica 23(2), 137–148.

Cohen, G., D. Dubois, J.P. Quadrat and M. Viot
(1985). A linear-system-theoretic view of
discrete-event processes and its use for per-
formance evaluation in manufacturing. IEEE
Trans. on Aut. Contr. 30(3), 210–220.

Cuninghame-Green, R.A. (1979). Minimax Alge-

bra. Vol. 166 of Lect. Notes in Econ. and

Math. Syst. Springer. Berlin, Germany.
De Schutter, B. and B. De Moor (1995). The

extended linear complementarity problem.
Math. Prog. 71(3), 289–325.

De Schutter, B. and T. van den Boom (2000).
Model predictive control for max-plus-linear
discrete event systems. Accepted for publica-
tion in Automatica, vol. 37, no. 7, July 2001.

Garćıa, C.E., D.M. Prett and M. Morari (1989).
Model predictive control: Theory and practice
— A survey. Automatica 25(3), 335–348.

