
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:01-01

MPC for discrete-event systems with soft
and hard synchronisation constraints∗

B. De Schutter and T.J.J. van den Boom

If you want to cite this report, please use the following reference instead:
B. De Schutter and T.J.J. van den Boom, “MPC for discrete-event systems with soft
and hard synchronisation constraints,” International Journal of Control, vol. 76, no.
1, pp. 82–94, Jan. 2003. doi:10.1080/0020717021000049188

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/01_01.html

https://doi.org/10.1080/0020717021000049188
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/01_01.html

MPC for discrete-event systems with soft and hard

synchronisation constraints

B. De Schutter and T.J.J. van den Boom

Control Systems Engineering, Faculty of Information Technology and Systems
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

tel: +31-15-278.51.13, fax: +31-15-278.66.79
email: {b.deschutter,t.j.j.vandenboom}@its.tudelft.nl

Revised version — June 2002

Abstract

Discrete-event systems with only synchronisation and no concurrency, also known as timed
event graphs or (max,+)-linear systems, have been studied by several authors. The syn-
chronisation constraints that arise in these discrete-event systems are hard, i.e., they
cannot be broken under any circumstance. In this paper we consider a more extended
class of discrete-event systems with both hard and soft synchronisation constraints, i.e.,
if necessary, some synchronisation conditions may be broken, but then a penalty is in-
curred. We show how the model predictive control (MPC) framework, which is a very
popular controller design method in the process industry, can be extended to this class
of discrete-event systems. In general, the MPC control design problem for discrete-event
systems with soft and hard synchronisation constraints leads to a nonlinear non-convex
optimisation problem. We show that the optimal MPC strategy can also be computed
using an extended linear complementarity problem.

Keywords: model predictive control, discrete-event systems, soft synchronisation

1 Introduction

1.1 Model predictive control

Model predictive control (MPC) has shown to respond effectively to control demands imposed
by tighter product quality specifications, increasing productivity demands, new environmental
regulations, and fast changes in the market. As a result, MPC is now widely accepted in the
process industry. There are several other reasons why MPC is probably the most applied
advanced control technique in this industry:

• MPC is a model based controller design procedure that can easily handle multi-input
multi-output processes.

• It is an easy-to-tune method: in principle only three parameters have to be tuned.

• It can handle constraints on the inputs and the outputs of the process in a systematic
way during the design and the implementation of the controller.

1

• MPC can handle structural changes, such as sensor or actuator failures, and changes in
system parameters or system structure, by adapting the model and by using a moving
horizon approach, in which the model and the control strategy are regularly updated.

Conventional MPC uses discrete-time models (i.e., models consisting of a system of difference
equations). In this paper we extend and adapt the MPC framework to discrete-event systems
with soft and hard synchronisation constraints while retaining the advantages of MPC listed
above. The proposed MPC approach has the following ingredients (which are also present in
conventional MPC): a prediction horizon, a receding horizon procedure, and a regular update
of the model and re-computation of the optimal control input. For more information on
MPC we refer the interested reader to (Allgöwer et al., 1999; Camacho and Bordons, 1995;
Maciejowski, 2002) and the references therein.

1.2 Discrete event systems

Flexible manufacturing systems, telecommunication networks, parallel processing systems,
traffic control systems, and logistic systems. This kind of systems are typical examples of
discrete-event systems (DESs). One of the most characteristic features of a DES is that its
dynamics are event-driven as opposed to time-driven: the behaviour of a DES is governed by
events rather than by ticks of a clock. An event corresponds to the start or the end of an
activity. For a production system possible events are: the completion of a part on a machine,
a machine breakdown, or a buffer becoming empty. In general the dynamics of DESs are
characterised by ‘synchronisation’ and ‘concurrency’ (Baccelli et al., 1992): Synchronisation
requires the availability of several resources at the same time (e.g., before we can assemble a
product on a machine, the machine has to be idle and the various parts have to be available).
Concurrency appears when at a certain time a user has to choose among several resources
(e.g., in a production system a job may be executed on one of the several machines that can
handle that job and that are idle at that time). For more information on DES the interested
reader is referred to (Baccelli et al., 1992; Cassandras and Lafortune, 1999; Ho, 1992) and the
references therein.

In general, the models that describe the behaviour of a DES are nonlinear. However,
there is a class of DESs that can be described by a model that is ‘linear’ in the (max,+)
algebra, which has maximisation and addition as its basic operations (Baccelli et al., 1992;
Cuninghame-Green, 1979). These ‘(max,+)-linear’ DESs can be characterised as the class of
DESs in which only synchronisation and no concurrency occurs; so typical examples are serial
production lines, production systems with a fixed routing schedule, and railway networks with
rigid connection constraints.

1.3 Overview of the paper

The synchronisation constraints for (max,+)-linear DESs are ‘hard’: these constraints should
always be met. In this paper we consider an extension of the (max,+)-linear DESs: we
propose a modelling and control framework for a class of DESs with both soft and hard

synchronisation constraints. So in some cases we allow an event to start although not all
scheduled predecessor events have been completed, but at a cost. This could occur in a
manufacturing, planning, logistics, or railway operations context. Consider, e.g., a large
manufacturing process with a pre-scheduled planning. Suppose that in order to start a given
operation, we need the intermediary output products of some predecessor operations. If the

2

()k

()k

()k

()k

()k
i

a
i

aij

x

x

i

i

x

i’

’
’

j

j

j

Figure 1: An operation and its predecessors.

synchronisation constraints are hard, then an operation can only start if all the predecessor
operations have been completed, which might lead to a propagation of delays if one of the
predecessor operations is not completed in time. Especially if the planning is tight, this
could cause serious (financial) problems. Therefore, we could impose soft synchronisation
constraints so that we can start the operation anyway if further delay would lead to too large
deviations from the planned schedule. However, in that case we will incur a penalty cost (e.g.,
if the intermediary output products of the delayed predecessor operation have to be bought
from a third party). Another example is that of a railway operation, where a train should
give pre-defined connections to other trains. However, if some of these trains have a too large
delay, then it is sometimes better — from a global performance point of view — to let the
train depart anyway in order to prevent an accumulation of delays in the network. Of course,
missed connections lead to a penalty due to dissatisfied passengers.

In (De Schutter and van den Boom, 2001) we have already extended MPC to the class of
(max,+)-linear DESs. In this paper we will further extend the MPC framework to DESs with
both hard and soft synchronisation constraints. In general, the proposed MPC approach will
lead to a hard non-convex nonlinear optimisation problem. However, we will show that the
trajectories of a DES with hard and soft synchronisation constraints can be described by an
extended linear complementarity problem (ELCP), for which recently more efficient solution
techniques (based on mixed integer programming and on linear complementarity problems)
have been developed. We will also discuss an extended modelling framework with controlled
changes in the processing times of the operations. Related work is described in (Gokbayrak
and Cassandras, 2000; Heidergott and de Vries, 2001).

2 DESs with soft synchronisation constraints

Consider a system with a cyclic operation1 and in which some operations depend on some
predecessor operations (cf. figure 1). Let n be the number of operations, and let xj(k) be
the time instant at which operation j starts during the kth operation cycle. Let dj(k) be the
scheduled starting time of operation j during the kth cycle according to the planning2.

1This may occur in, e.g., a manufacturing system or a railway operation. In the remainder of the paper,
we will mainly focus on manufacturing systems. Note however that the results can also be applied to railway
operations.

2If there is no scheduled starting time, we can set dj(k) = −∞ and also omit the corresponding term in
the definition of the MPC cost function (3).

3

The set Cj(k) of predecessor operations for operation j in the kth cycle can be divided into
in a set Chard

j (k) of predecessor operations with hard synchronisation conditions (i.e., operation
j can only be started if these predecessor operations have been finished, no matter how much
time they are delayed), and a set Csoft

j (k) of predecessor operations with soft synchronisation
conditions (i.e., operation j can be started before these predecessor operations have been
finished, but then a penalty has to be paid). We have Chard

j (k) ∩ Csoft
j (k) = ∅. Let cbrokenij (k)

be the (maximal) cost associated with a broken synchronisation (see (2) for a refinement).
Let aij(k) be the duration of operation i ∈ Cj(k) plus the inter-process time3 — if any

— between operation i and j. The inter-process time could, e.g., be a transportation time
needed to transport the intermediate products of operation i to the location where operation
j takes place, a set-up time between the operations, etc.

Now we have the following constraints for the starting time of operation j in cycle k:

• planning constraint:
Operation j can only start on or after the planned starting time dj(k):

xj(k) > dj(k) .

• hard synchronisation constraints:
Operation j can only start if the predecessor operations with hard synchronisation
conditions have been completed:

xj(k) > xi(k − δ∗ij(k)) + aij(k) for each i ∈ Chard
j (k),

where δ∗i,j(k) denotes the cycle delay between operations i and j for the kth cycle, i.e.,
operation j in cycle k has operation i in cycle k− δ∗i,j(k) as its predecessor (see also the
example in Section 5).

• soft synchronisation constraints:
For predecessor operations with soft synchronisation conditions we can either wait until
they have been completed or break the synchronisation. So for each i ∈ Csoft

j (k) we have

xj(k) > xi(k − δ∗ij(k)) + aij(k) if the synchronisation takes place,

or xj(k) < xi(k − δ∗ij(k)) + aij(k) if the synchronisation is broken.

If we introduce a control variable vij(k) > 0, then we can combine these two equations
into one equation:

xj(k) > xi(k − δ∗ij(k)) + aij(k)− vij(k) ,

where vij(k) can be used to guarantee or to break the synchronisation.

Since we let operation j start as soon as all synchronisation conditions are satisfied, we have

xj(k) = max
(

dj(k), max
i∈Chard

j (k)

(

xi(k − δ∗ij(k)) + aij(k)
)

,

max
i∈Csoft

j (k)

(

xi(k − δ∗ij(k)) + aij(k)− vij(k)
)

)

. (1)

3For a railway network the inter-process time could include, e.g., the change-over time.

4

In a nominal, well-defined time schedule the term dj(k) in (1) will be the largest. However, if
due to unforeseen circumstances (an incident, a machine breakdown, a late departure, etc.)
operation i has a delay, the corresponding term can become larger than the others.

Define tslackij (k) as the slack time of the completion of operation i ∈ Csoft
j (k) (inter-process

time included) w.r.t. the actual starting time of operation j in the kth cycle:

tslackij (k) = xi(k − δ∗ij(k)) + aij(k)− xj(k) .

If tslackij (k) 6 0 then the synchronisation is completely guaranteed. On the other hand, if

tslackij (k) > 0 then the synchronisation is broken and a penalty has to be paid. Note that

tslackij (k) is a function of the control variable vij(k) via xj(k). If tslackij (k) is small and if we
have a production system that works in batches, then we could assume that a large part
of the intermediate products of operation i has already been finished and can be used in
operation j. So in that case only a small amount of intermediate products have to be bought
from a third party4. Alternatively, the completion of operation i could be performed by a
third party at a low cost5. Therefore, we define the cost of a broken synchronisation as the
following piecewise-linear function (see also figure 2) :

Jbroken(t
slack
ij (k), tmax

ij (k), cbrokenij (k)) =

0 if tslackij (k) 6 0,

cbrokenij (k)

tmax
ij (k)

tslackij (k) if 0 < tslackij (k) 6 tmax
ij (k),

cbrokenij (k) if tslackij (k) > tmax
ij (k)

(2)

where tmax
ij (k) is the maximal slack time6 that still allows (partial) use intermediate products

of operation i (this time will in general depend on aij(k)).

3 MPC for DESs with hard and soft synchronisation

We define the following cost function over a given prediction horizon Np for a given input
sequence {vij(k + l)}i;j;l=0,...,Np−1:

Jcost(k) =

Np−1
∑

l=0

n
∑

j=1

|x̂j(k + l)− dj(k + l)|+

λ

Np−1
∑

l=0

n
∑

j=1

∑

i∈Csoft
j (k+l)

Jbroken(t̂
slack
ij (k + l), tmax

ij (k + l), cbrokenij (k + l)) , (3)

where λ > 0 is a weighting factor and where x̂(k + l) is the predicted state for the (k + l)th
operation cycle of the system, and t̂slackij (k + l) is the predicted value for the slack time of

4For the sake of simplicity, we assume that the third party always has the parts in storage and that the
delivery time is negligible. However, if these assumptions do not hold, the model can be adapted accordingly.

5Again, we assume for the sake of simplicity that the third party can allocate enough resources to this task
so that the execution time is negligible.

6In a railway operations context we could assume that the cost of a broken synchronisation is proportional to
the difference between the actual departure time and the scheduled departure time (i.e., fast-running passengers
get the connection, but slower ones may lose it). In this case tmax

ij (k) corresponds to the delay for which no
passengers will succeed in getting on train j, no matter how fast they run.

5

−1 −0.5 0 0.5 1 1.5 2 2.5 3

0

 t
 slack

/ t
 max

 c
 broken

Figure 2: The piecewise-linear cost function Jbroken.

operation i w.r.t. operation j in the (k+l)th cycle. Equation (1) can be used to predict x̂(k+l)
and t̂slackij (k+ l) for the given input sequence. Note that in fact the absolute value in the first
term of Jcost(k) may be omitted since x̂j(k+ l) > dj(k+ l) by (1). The cost function Jcost(k)
has two components: the first tries to keep the operations starting on schedule, whereas the
second penalises broken synchronisations. The factor λ determines the trade-off or relative
weight of the two components of the MPC cost function.

Now we consider the following controller design problem, which will be called the soft

synchronisation MPC problem at cycle k:

min
vij(k),...,vij(k+Np−1)

Jcost(k)

subject to (1) and vij(k + l) > 0 for all i, j and l = 0, . . . , Np − 1.

In addition, to reduce the number of control variables we can — just as in conventional MPC
— introduce a control horizon Nc (6 Np) and set

vij(k + l) = vij(k +Nc − 1) for l = Nc, . . . , Np − 1 . (4)

This condition can be interpreted as follows: if after Nc cycles the delays have died out (i.e.,
it is not necessary to break synchronisations anymore or equivalently, vij(k +Nc) = 0 for all
i, j), then we do not break any synchronisations in the subsequent cycles either. On the other
hand, if the delays are still such that a synchronisation should be broken in cycle k+Nc, then
we will also break these synchronisations in the subsequent cycles.

Just like in conventional MPC we use a moving horizon approach, i.e., the soft synchroni-
sation MPC problem is solved for the next operation cycle of the system, then the computed
controls for that cycle are applied, and meanwhile the model is updated, and the computation
is performed again for the subsequent cycle. This implies that we can also include predictable
future delays (due to incidents, broken machines, maintenance, . . .) into our prediction model.

The parameter Np should be chosen such that it covers the (expected) period over which
the delays will die out. The choice of Nc mainly depends on the computational complexity
of the problem. For small-sized systems we can take Nc rather large, whereas for large-sized
systems a small Nc will be necessary to be able to compute the MPC solution sufficiently fast
(i.e., before the start of the next operation cycle of the system).

6

In general, each step of the soft synchronisation MPC problem leads to a non-convex
nonlinear optimisation problem. This problem can be solved using, e.g., a multi-start local
optimisation method such as multi-start sequential quadratic programming. However, this
will not always result in a global optimum. In practice, several local optimisation runs with
different starting points will be necessary to get a good approximation of the global optimum.
Also note that the feasible set of the soft synchronisation MPC problem is non-convex since
(1) is a non-convex constraint. In the next section we will present an alternative approach
to compute the optimal MPC control input that is based on a mathematical programming
problem called the extended linear complementarity problem.

Remark 3.1 If t̂slackij (k+l) is nonpositive (or if there is another index i′ such that t̂slackij (k+l) >

t̂slacki′j (k + l)), then vij(k + l) does not influence the value of the objective function anymore.
Therefore, we could extend the MPC cost function with the extra term

η

Np−1
∑

l=0

n
∑

j=1

∑

i∈Csoft
j (k+l)

vij(k + l) (5)

with η > 0 a small number. In that way, we get the smallest possible values of the vij(k+ l)’s.
This also enables us to see more clearly which synchronisations are broken or not.

4 Link with the ELCP

The Extended Linear Complementarity Problem (ELCP) is defined as follows (De Schutter
and De Moor, 1995):

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q andm subsets φ1, . . . , φm of {1, . . . , p},
find z ∈ R

n such that

∏

i∈φj

(Az − c)i = 0 for j = 1, . . . ,m, (6)

subject to

Az > c (7)

Bz = d . (8)

Equation (6) represents the complementarity condition of the ELCP, and can be interpreted
as follows: each set φj corresponds to a group of inequalities of Az > c and in each group at
least one inequality should hold with equality, i.e., the corresponding slack variable should be
equal to 0. So for each j there should exist an index i ∈ φj such that (Az − c)i = 0.

The formulation of the ELCP arose from our research on nonlinear resistive networks,
DESs ((max,+)-linear systems, (min,max,+) systems, and applications in the (max,+) algebra
and the (max,+)-algebraic system theory) and hybrid systems (traffic signal control, and
first-order hybrid systems with saturation) (see (De Moor et al., 1992; De Schutter, 2000; De
Schutter and van den Boom, 2001; van der Schaft and Schumacher, 2000) and the references
therein for more information).

The following proposition gives a link between the soft synchronisation MPC problem and
the ELCP:

7

Proposition 4.1 The evolution equations and the constraints of the soft synchronisation

MPC problem can be recast as an ELCP.

Proof : Let z be a column vector that contains all xij(k)’s and vij(k)’s. Clearly, the non-
negativity constraint on vij(k) and the control horizon constraint (4) fit the ELCP framework
since they correspond to inequalities of the form Az > c and equalities of the form Bz = d
respectively.

Now we show that (1) can also be written as an ELCP. This will be done by showing that
a (max,+) expression of the form

zj = max
(

max
i=1,...,ℓj

(αij + zi), βj
)

(9)

with αij , βj ∈ R can be recast as an ELCP. Equation (9) can be rewritten as

zj − zi > αij for i = 1, . . . , ℓj (10)

zj > βj (11)

zj = βj or zj − zi = αij for some i ∈ {1, . . . , ℓj} (12)

Condition (12) can be rewritten as

(z − βj) ·

ℓj
∏

i=1

(zj − zi − αij) = 0 ,

which is a condition of the form (6). Hence, (9) can be rewritten as an ELCP.
Finally, we note that the merge of several ELCPs is again an ELCP, i.e., N ELCPs of the

form

Given Al ∈ R
pl×n, Bl ∈ R

ql×n, cl ∈ R
pl , dl ∈ R

ql and ml subsets φl,1, . . . , φl,ml
of

{1, . . . , pl}, find z ∈ R
n such that

∏

i∈φl,j

(Alz − cl)i = 0 for j = 1, . . . ,ml,

subject to

Alz > cl

Blz = dl ,

for l = 1, . . . , N yield again an ELCP of the form (6)–(8) with

A =

A1
...

AN

, B =

B1
...

BN

, c =

c1
...
cN

, d =

d1
...
dN

,

p = p1 + · · · + pN , q = q1 + · · · + qN , m = m1 + · · · + mN , and φsm
l
+j = {i + spl | i ∈ φl,j}

for l = 1, . . . , N and j = 1, . . . ,ml, where sm1 = sp1 = 0 and sml = m1 + · · · + ml−1, s
p
l =

p1 + · · ·+ pl−1 for l = 2, . . . , N .
As a consequence, the trajectories of a DES with soft and hard synchronisation conditions

subject to the MPC constraints can be described by an ELCP. ✷

8

Let us now discuss two approaches to compute the optimal soft synchronisation MPC strategy
using an ELCP.

• Approach 1: optimisation over the solution set of the ELCP:
In (De Schutter and De Moor, 1995) we have developed an algorithm that yields a para-
metric description of the solution set of an ELCP. The optimal MPC strategy can now
be obtained by determining the combination of the parameters for which the objective
function Jcost(k) reaches a global minimum (it can be shown that this corresponds to
solving a sequence of optimisation problems with a convex feasible set7), and afterwards
selecting the overall minimum. The advantage of this approach compared to straight-
forward nonlinear constrained optimisation of the soft synchronisation MPC problem
is that in the ELCP approach we have to solve a sequence of optimisation problems
with a convex feasible set instead of one big problem with a non-convex feasible set.
Optimisation problems with a convex feasible set (albeit with a non-convex objective
function) are easier to solve numerically than problems with a non-convex feasible set.
Note, however, that the algorithm of (De Schutter and De Moor, 1995) to compute the
solution set of a general ELCP requires exponential execution times, which implies that
the ELCP approach is not feasible if Nc is large. Therefore, we will also present another
ELCP-based approach, which uses mixed-integer optimisation.

Our computational experiments have shown that in most cases the determination of
the minimum value of the objective functions given above is a well-behaved problem in
the sense that using a local minimisation routine (that uses, e.g., sequential quadratic
programming) starting from different initial points almost always yields the same nu-
merical result (within a certain tolerance). So for small sized problems or for a small
control horizon this ELCP approach is also much faster and yields a better minimum
than the straightforward nonlinear optimisation approach.

• Approach 2: mixed-integer optimisation:
In (De Schutter et al., 2002b) we have shown that an ELCP with a bounded feasible
set8 can be rewritten as the following mixed-integer problem:

δ ∈ {0, 1}p, z ∈ R
n (13)

∑

i∈φj

δi 6 #φj − 1 for j = 1, 2, . . . ,m, (14)

0 6 (Az − c)i 6 duppi δi for i = 1, . . . , p, (15)

Bz = d , (16)

where #φj denotes the cardinality of the set φj and where duppi is an upper bound for
(Az− c)i over the feasible set of the ELCP9. So the trajectories of a DES with soft and

7In fact, the objective function Jcost(k) has to be minimised over each face of the solution set of the ELCP.
8In general the feasible set of the ELCP that corresponds to (1) is not bounded. However, we already know

that the vij(k)’s are bounded from below since they are nonnegative. Moreover, if t0 is the time instant at
which the first cycle of the operation of the system starts and te,k is a hard upper bound for the end of the
kth cycle (e.g., the end time of the daily operation), then we do not change the optimal strategy by adding the
constraint vij(k) 6 te,k − t0. Furthermore, it is easy to verify that the vij(k)’s are bounded, then the starting
times xj(k) are also bounded. Hence, we have an ELCP with a bounded feasible set.

9d
upp
i can be determined via a linear programming problem: duppi = max

z∈Rn

{(Az − c)i | Az > c, Bz = d}.

9

hard synchronisation conditions subject to the MPC constraints can also be described
by a mixed-integer problem of the form (13)–(16). The optimal MPC strategy can now
be determined by minimising the objective function Jcost(k) subject to (13)–(16) using,
e.g., a branch-and-bound or a branch-and-cut method (Cordier et al., 1999; Fletcher and
Leyffer, 1998). The main advantage of this approach over (multi-start) local nonlinear
optimisation is that we always get the global optimum. A disadvantage might be that
the running time of the optimisation might become too large if we have a large number
of variables (i.e., a large number of operations n and/or a large control horizon Nc).
However, this approach is much more efficient and it can deal with much larger problems
than Approach 1 (see also (De Schutter et al., 2002a)).

Remark 4.2 We can further extend the model of Section 2 and add an extra degree of
freedom for the control by also allowing modifications of the process times (but at a cost).
We could, e.g., hire additional production units or man power, apply more energy, or speed
up the production units (at the expense of faster wear). In this way the processing times
aij(k) can be lowered with respect to their nominal values. This yields an additional control
input to prevent the accumulation and propagation of delays, but it also augments the costs.

Let amin,i,j(k) be the minimal duration of operation i ∈ Cj(k) when all available extra
resources are applied to this operation to their full extent, and let anom,i,j(k) be the nominal
processing time. We introduce an extra control variable ui,j(k) to modify the processing time
of operation i ∈ Cj(k) in cycle k. We get a model for the extended system by replacing all
occurrences of ai,j(k) in (1) by anom,i,j(k)− ui,j(k) and by adding the extra condition

0 6 ui,j(k) 6 anom,i,j(k)− amin,i,j(k) . (17)

To express the extra costs related to increasing the production rate, we add a term of the
form

ξ

Np−1
∑

l=0

n
∑

j=1

∑

i∈Cj(k+l)

cspu,i,j(k + l) · ui,j(k + l) (18)

to the cost function Jcost(k), where ξ is a nonnegative weight parameter that represents the
relative importance of the speed-up term with respect to the other terms of the (extended)
objective function, and where cspu,i,j(k) characterises the extra cost per unit processing time
decrease for operation i ∈ Cj(k). This results in an extended model for DESs with soft and
hard synchronisation constraints, and in an extended soft synchronisation MPC problem. It
is easy to verify that this problem can also be solved using the ELCP.

5 Worked example

In this section we present a worked example that involves a production system with soft
and hard synchronisation constraints. First, we describe the set-up and the operation of the
system. Next, we illustrate the modelling approach of Section 2 by deriving a model of the
system. Finally, we apply MPC on this system in order to illustrate the advantages and extra
degrees of freedom in the MPC control offered by considering soft synchronisation constraints.

Consider the production system of figure 3. There is one buffer B1 and 4 machines M2,
M3, M4 and M5. At the beginning of each production cycle a batch of raw material is sent

10

()k

()k ()k

()k

()k

()k

()k

()k

()k
()k

()k ()k ()k

1 2
xx

12

=2

B1 M2 3

4

4

3
x

4

y
5

5
x

1
t

14t

t

x

=1

2

M

t3
t
5t

t

= 0

MM

Figure 3: The production system of the example of Section 5. The filled arrows represent hard
synchronisation constraints, and the open arrows represent soft synchronisation constraints.

Buffer/Machine Processing Scheduled
Bj/Mj time tj(k) starting time dj(k)

(modulo T = 20)

B1 0 0

M2 9 1

M3 16 10

M4 18 10

M5 5 28

Table 1: The nominal processing times and the scheduled starting times for the production
system of the example of Section 5.

from the buffer B1 to machines M1 and M3. The batch of intermediate products of M1

is partially sent to machine M2 for further processing and partially to machine M3 where
assembly takes place with the material coming from buffer B1. The intermediate products
of M2 and M3 are sent to M4 for the final assembly. We assume that the buffer B1 has a
sufficiently large inventory or is regularly refilled, so that it never starves.

Let x1(k) be the time instant at which buffer B1 releases a batch of raw material for
the kth time, and let xj(k) be the time instant at which machine Mj starts working for the
kth time for j = 2, 3, 4, 5. The nominal processing times tj(k) and the time schedule of the
production system are given in table 1. All the times in this example will be expressed in
minutes. The length of one cycle of the production system operation is T = 20. So the
kth scheduled starting time for operation j is given by dj(k) = dj(1) + (k − 1)T . All the
transportation or interprocess times are assumed to be negligible except for t12(k) = 1 and
t14(k) = 2 for all k. The first operation cycle of the system starts at time t = 0.

Each machine starts processing a new batch as soon the machine is idle (i.e., the machine
has finished the previous batch) and as soon as all the required material is available — unless
there is a soft synchronisation constraint. Moreover, we assume that there are buffers with a
large capacity between the input buffer B1 and the machines M2 and M3, and between M2

and M3, M2 and M4, M3 and M5, and M4 and M5, so that no internal buffer overflow can
occur. At the beginning of the first cycle all the machines are empty.

There are two types of synchronisations in the production system:

• hard synchronisations: The synchronisation constraints on machines M2 and M4 for

11

the raw material coming from the buffer B1 are hard constraints, and the same holds
for the synchronisation constraint on machine M3 for the material coming from M2, and
for the constraint that a machine can only start working on a new batch if it is idle.

• soft synchronisations: The synchronisation constraint on machine M4 for the in-
termediate products coming from M2 is a soft constraint, and the same holds for the
synchronisation constraint on machine M5 for the intermediate products coming from
M3 and M4.

We set tmax
24 (k) = 5, tmax

35 (k) = 10, tmax
45 (k) = 15, cbroken24 (k) = 10, cbroken35 (k) = 15 and

cbroken45 (k) = 20 for all k.
Let us now write down the equations that describe the evolution of the xj(k)’s. Since

there are no synchronisation constraints at buffer B1 we have

x1(k) = d1(k) = 0 + (k − 1)T

for all k. The kth batch of raw material that leaves buffer B1 at time instant x1(k) will reach
machine M2 at time t = x1(k)+ t12(k) = x1(k)+ 1. If k = 0 then machine M2 is idle and can
immediately start processing the batch of raw material as soon as it arrives. If k > 0 then we
have to wait until machine M2 has finished processing the previous batch, which will happen
at time t = x2(k − 1) + t2(k − 1). Hence, we have

x2(k) = max
(

1 + (k − 1)T, x1(k) + 1, x2(k − 1) + t2(k − 1)
)

for all k. This equation also holds for k = 0 if we set10 x2(0) = −∞. Note that — referring
to (1) — we have δ∗12(k) = 0 and δ∗22(k) = 1 for all k. Using a similar reasoning we find

x3(k) = max
(

10 + (k − 1)T, x2(k) + t2(k), x3(k − 1) + t3(k − 1)
)

for all k with x3(0) = −∞.
Now consider machine M4. This machine can start processing the kth batch as soon as

the scheduled starting time d4(k) = 10 + (k − 1)T has passed, the raw material has arrived
(which happens at time t = x1(k) + t14(k) = x1(k) + 2), the machine is idle (which happens
at time t = x4(k − 1) + t4(k − 1)), and the intermediate products from machine M2 have
arrived (which happens at time t = x2(k) + t2(k)). However, since the last condition is a soft
synchronisation condition, we introduce a control variable v24(k) to break the synchronisation
if necessary. Hence, we have

x4(k) = max
(

10 + (k − 1)T, x1(k) + 2, x4(k − 1) + t4(k − 1), x2(k) + t2(k)− v24(k)
)

for all k with x4(0) = −∞. Analogously, we find

x5(k) = max
(

28 + (k − 1)T, x5(k − 1) + t5(k − 1), x3(k) + t3(k)− v35(k),

x4(k) + t4(k)− v45(k)
)

y(k) = x5(k) + t5(k)

for all k with x5(0) = −∞ and where y(k) is the time instant at which the kth batch of
finished products leaves the system.

10In fact it is sufficient to select the value of x2(0) such that x2(0) + t2(0) is smaller than d2(1) = 1 or
x1(1) + 1. The choice x2(0) = −∞ guarantees that this condition will always hold.

12

1 2 3 4 5 6 7 8

0

2

4

6

8

10

12

 k

d
el

ay

no broken synchronizations
optimal MPC input for k=1

Figure 4: Delays w.r.t. the time schedule of the example of Section 5 for a situation with no
broken synchronisations and for the optimal MPC input for k = 1 and Nc = 4 applied during
the period [1,8].

Let us now assume that all processing times are nominal (cf. table 1) except for t2(1) = 20.
Let Nc = 4, Np = 6, λ = 0.25 and η = 0.01.

If we do not break any synchronisations, then we find maximal delays w.r.t. the time
schedule of 11 minutes in the first cycle (for machines M3, M4 and M5), and respectively 9,
7, 5, 3, and 1 minutes in the subsequent cycles (for M4 and M5). From the seventh cycle
on all machines operations start again according to the schedule (see also figure 4). If we do
not break any synchronisations, then the value of the total MPC cost function (the term (5)
included) is 93.

Let us now compute the optimal MPC control input for one step of the soft synchronisation
MPC procedure (i.e., for k = 1). Then we find with both the multi-start local nonlinear
optimisation approach11 and the ELCP approaches the following solution: completely break
the synchronisationM2 → M4 in the first cycle, and partially break the synchronisationM3 →
M5 during the first, the second and the third cycle. More specifically, we have v24(1) = 11,
v35(1) = 9, v35(2) = 5, and v35(3) = 1. If we apply this control strategy, then we find a
delay w.r.t. the time schedule of 11 minutes in the first cycle, 7 in the second cycle, and 3
in the third cycle (all for machine M3 — the other machines all operate according to the
schedule). In the fourth cycle all operations start again on schedule (see also figure 4). The
corresponding value of the total MPC cost function (the term (5) included) is 29.385.

For λ = 0 (which implies that breaking synchronisations is not penalised at all) we find

11We have selected the best result of a sequential quadratic programming algorithm over 20 runs with
random starting points. The minimal value of the objective function was 29.38, with mean 29.79 and standard
deviation 0.31.

13

the same result as for λ = 0.25.
For λ = 2 (which implies that breaking synchronisations becomes more ‘expensive’) we find
the following MPC solution (for k = 1): completely break the synchronisation M2 → M4

in the first cycle, and do not break any other synchronisation. More specifically, we have
v24(1) = 11. If we apply this control strategy, then we find the same delays w.r.t. the time
schedule as for λ = 0.25 as far as machine M3 is concerned, and a delay of 9 minutes in the
first cycle, 5 in the second cycle, and 1 in the third cycle for machine M5. The other machines
all operate according to the schedule.
If we make breaking synchronisations even more expensive by taking λ = 10, we get an
optimal solution in which no synchronisations should be broken (Note that in general the
strategy with no synchronisations broken corresponds to λ → ∞.).

For Nc = 5 and Nc = 6 (and again λ = 0.25) we get the same result as for Nc = 4, which
implies that if we would use the receding horizon approach and apply the first sample of the
optimal MPC control input for k = 1, 2, . . . , Np during each cycle, we would get the same
input sequence as the one given above (provided that the system keeps operating according
to the schedule of table 1 and provided that all processing times (except for t2(1) = 20) stay
nominal).
For Nc = 3 (and λ = 0.25) we find the same optimal MPC input as for Nc = 4, but due to
the control horizon constraint (4) we now have v35(4) = v35(5) = v35(6) = 1 = v35(3) instead
of v35(4) = v35(5) = v35(6) = 0. The corresponding value of the objective function is 29.415
(the difference with the optimal objective value for Nc = 4 is entirely due to the term (5),
which aims at minimising the vij(k)’s).

6 Conclusions

We have further extended the MPC control design method, which is very popular in the
process industry where it is usually based on linear or nonlinear discrete-time models, to a
class of DESs with both soft and hard synchronisation constraints. The control action consists
in breaking certain soft synchronisation conditions to prevent delays from accumulating, but
this can only be done at a certain cost. Due to the use of a moving horizon strategy and a
control horizon this method can be used in on-line applications and it can deal with (predicted)
changes in the system parameters. So if we can predict the delays that will occur due to an
incident, a machine breakdown, or maintenance works, then we can include this information
when determining the optimal control input for the next cycles of the operation of the system.

We have shown that the optimisation problem that has to be solved in each step of the
soft synchronisation MPC problem can be solved using ELCPs (either via optimisation over
the parameterised solution set of the ELCP or via mixed-integer optimisation).

Topics for future research are: development of efficient specialised algorithms to solve
the soft synchronisation MPC problem, stability issues, determination of tuning rules for the
tuning parameters λ, Np and Nc, and the inclusion of modelling errors and/or (bounded)
uncertainty in the prediction model.

Acknowledgement

Research partially funded by the Dutch Technology Foundation STW project ‘Model predic-
tive control for hybrid systems’ (DMR.5675) and by the European IST project ‘Modelling,
Simulation and Control of Nonsmooth Dynamical Systems (SICONOS)’ (IST-2001-37172).

14

References

Allgöwer, F., T.A. Badgwell, J.S. Qin, J.B. Rawlings and S.J. Wright (1999). Nonlinear predictive
control and moving horizon estimation – An introductory overview. In: Advances in Control:

Highlights of ECC ’99 (P.M. Frank, Ed.). London, UK: Springer. pp. 391–449.

Baccelli, F., G. Cohen, G.J. Olsder and J.P. Quadrat (1992). Synchronization and Linearity. John
Wiley & Sons. New York.

Camacho, E.F. and C. Bordons (1995). Model Predictive Control in the Process Industry. Springer-
Verlag. Berlin, Germany.

Cassandras, C.G. and S. Lafortune (1999). Introduction to Discrete Event Systems. Kluwer Academic
Publishers. Boston.

Cordier, C., H. Marchand, R. Laundy and L.A. Wolsey (1999). bc-opt : A branch-and-cut code for
mixed integer programs. Mathematical Programming, Series A 86(2), 335–353.

Cuninghame-Green, R.A. (1979). Minimax Algebra. Vol. 166 of Lecture Notes in Economics and Math-

ematical Systems. Springer-Verlag. Berlin, Germany.

De Moor, B., L. Vandenberghe and J. Vandewalle (1992). The generalized linear complementarity
problem and an algorithm to find all its solutions. Mathematical Programming 57, 415–426.

De Schutter, B. (2000). Optimal control of a class of linear hybrid systems with saturation. SIAM
Journal on Control and Optimization 39(3), 835–851.

De Schutter, B. and B. De Moor (1995). The extended linear complementarity problem. Mathematical

Programming 71(3), 289–325.

De Schutter, B. and T. van den Boom (2001). Model predictive control for max-plus-linear discrete
event systems. Automatica 37(7), 1049–1056.

De Schutter, B., W.P.M.H. Heemels and A. Bemporad (2002a). Max-plus-algebraic problems and the
extended linear complementarity problem — Algorithmic aspects. In: Proceedings of the 15th

IFAC World Congress. Barcelona, Spain. Paper 728 / T-We-M02.

De Schutter, B., W.P.M.H. Heemels and A. Bemporad (2002b). On the equivalence of linear comple-
mentarity problems. Operations Research Letters 30(4), 211–222.

Fletcher, R. and S. Leyffer (1998). Numerical experience with lower bounds for MIQP branch-and-
bound. SIAM Journal on Optimization 8(2), 604–616.

Gokbayrak, K. and C.G. Cassandras (2000). Hybrid controllers for hierarchically decomposed systems.
In: Hybrid Systems: Computation and Control (Proceedings of the 3rdd International Workshop
on Hybrid Systems: Computation and Control (HSCC 2000), Pittsburgh, Pennsylvania, March
2000) (N. Lynch and B.H. Krogh, Eds.). Lecture Notes in Computer Science. Berlin, Germany:
Springer. pp. 117–129.

Heidergott, B. and R. de Vries (2001). Towards a (max,+) control theory for public transportation
networks. Discrete Event Dynamic Systems: Theory and Applications 11(4), 371–398.

Ho, Y.C., Ed.) (1992). Discrete Event Dynamic Systems: Analyzing Complexity and Performance in

the Modern World. IEEE Press. Piscataway, New Jersey.

Maciejowski, J.M. (2002). Predictive Control with Constraints. Prentice Hall. Harlow, England.

van der Schaft, A.J. and J.M. Schumacher (2000). An Introduction to Hybrid Dynamical Systems. Vol.
251 of Lecture Notes in Control and Information Sciences. Springer-Verlag. London.

15

A Appendix

A.1 Link with (max,+)-linear models

Recall that DESs with hard synchronisation constraints only can be described by a (max,+)-
linear model (Baccelli et al., 1992). In this appendix we show that the model of Section 2 for
DESs with soft and hard synchronisation constraints also leads to a (max,+) model (albeit
not (max,+)-linear but a special type of (max,+)-bilinear model).

In (Baccelli et al., 1992; Cuninghame-Green, 1979) it has been shown that DESs in which
there is (hard) synchronisation but no concurrency can be described by a model of the fol-
lowing form:

xj(k) = max
(

max
i=1,...,n

(

αij(k) + xi(k − 1)
)

, max
i=1,...,nu

(

βij(k) + ui(k)
)

)

for j = 1, . . . , n, (A.1)

yj(k) = max
i=1,...,n

(

γij(k) + xi(k)
)

for j = 1, . . . , ny,

(A.2)

where nu and ny are respectively the number of inputs and outputs. If we use the conventional
(max,+)-algebraic symbols ⊕ and ⊗ for respectively maximisation and addition, (A.1)–(A.2)
can be rewritten as12

xj(k) =
n

⊕

i=1

αij(k)⊗ xi(k − 1) ⊕
nu
⊕

i=1

βij(k)⊗ ui(k) for j = 1, . . . , n, (A.3)

yj(k) =
n

⊕

i=1

γij(k)⊗ xi(k) for j = 1, . . . , ny. (A.4)

Note that (A.3) and (A.4) are linear expressions in the operators ⊕ and ⊗. Therefore, we say
that (A.3) and (A.4) are (⊕,⊗)-linear — or equivalently (max,+)-linear — expressions of the
state and the input. As a consequence, the model (A.3)–(A.4) is called (max,+)-linear. The
relation between (1) and the (max,+)-linear model (A.3)–(A.4) becomes clearer if we rewrite
(1) using the (max,+)-algebraic symbols ⊕ and ⊗. This yields the following expression:

xj(k) = dj(k) ⊕
⊕

i∈Chard
j (k)

aij(k)⊗ xi(k − δ∗ij(k)) ⊕
⊕

i∈Csoft
j (k)

aij(k)⊗ xi(k − δ∗ij(k))⊗ wij(k) (A.5)

where wij(k) = −vij(k). The first ‘term’ (in the (max,+)-algebraic sense) on the right-hand
side of (A.5) corresponds to the input term of (A.3) with βjj(k) = 0 and βij(k) = −∞ for all
i 6= j and with u(k) = d(k). The second term of the right-hand side of (A.5) corresponds to
the state term of (A.3). The third term of (A.5) can be considered as a ‘bilinear’ extension
of the state term with a (max,+)-algebraic product of the state x(k) and an additional input
w(k) (which is a column vector containing the wij(k)’s). So the class of DESs with soft and
hard constraints considered in this paper can in fact be modelled using a special type of
(max,+)-bi linear model.

12We use

n⊕

i=1

ai as a short-hand notation for a1 ⊕ · · · ⊕ an.

i

1

2

4

3 5

(−1)k

()k ()k

(−1)k

()k

(−1)k

()k

()k

(−1)k

()k

()k()k

t

t
3

t
4

t t
3

t

4

t
=1+

=2
14

t
5

5
t

121
t

t+
1

t

2

2

Figure 5: The predecessor relations between the operations of the production systems of
Section 5. Operation j corresponds to buffer Bj or machine Mj . The numbers above or next
to the arrows denote the duration of the operation (interprocess time included). The cycle
delay is 0 everywhere, except for the self-loops, which have a cycle delay of 1.

Remark A.1 We can also combine the soft synchronisation MPC framework of Section 3 and
the MPC framework for (max,+)-linear systems of the form (A.1)–(A.2) (see (De Schutter
and van den Boom, 2001)) by dropping the time schedule and adding an external input u(k)
and an output y(k). If the due dates r for the finished products are known, we could then
use the following MPC cost function:

J∗
cost(k) =

Np−1
∑

l=0

ny
∑

j=1

max(yj(k + l)− rj(k + l), 0)− µ

Np−1
∑

l=0

nu
∑

j=1

uj(k + l)+

λ

Np−1
∑

l=0

n
∑

j=1

∑

i∈Csoft
j (k+l)

Jbroken(t
slack
ij (k + l), tmax

ij (k + l), cbrokenij (k + l))

with µ > 0, and where nu and ny are the number of inputs and outputs respectively. The
first term of J∗

cost(k) is called the tardiness and penalises late deliveries, whereas the second
term aims at maximising the input time instants (which is needed for internal stability). We
refer the interested reader to (De Schutter and van den Boom, 2001) for more information
and for other possible choices for the first and second term of the objective function.

The resulting modified MPC problem also leads to nonlinear non-convex optimisation
problem. Moreover, Proposition 4.1 also holds for this extended soft synchronisation MPC
problem.

A.2 The worked example revisited

In this section we have a closer look at the MPC optimisation problem that has to be solved
in each operation cycle of the production system of the work example of Section 5.

If we associate each buffer or machine of the production system of figure 1 with an oper-
ation, then the graph of figure 5 represents the predecessor/successor relations between the
operations. In addition, the sets Chard

j (k) and Csoft
j (k) are listed in table 2.

ii

Operation (Bj/Mj) Chard
j (k) Csoft

j (k)

1 ∅ ∅

2 {1, 2} ∅

3 {2, 3} ∅

4 {1, 4} {2}

5 {5} {3, 4}

Table 2: The sets that correspond to the hard and soft synchronisation constraints for each
operation j. Note that for the synchronisation relations of the form i → i we have a cycle
delay of 1, whereas the other cycle delays are 0.

If we plug the model derived in Section 5 into the formulation of the soft synchronisation
MPC problem given in Section 3, then we obtain the following optimisation problem for
operation cycle k:

min
v24(k),v35(k),v45(k),

v24(k+1),v35(k+1),v45(k+1),...,
v24(k+Np−1),v35(k+Np−1),v45(k+Np−1)

[

Np−1
∑

l=0

5
∑

j=2

|x̂j(k + l)− dj(k + l)|

+ λ

Np−1
∑

l=0

(

Jbroken(t̂
slack
24 (k + l), tmax

24 (k + l), cbroken24 (k + l))

+ Jbroken(t̂
slack
35 (k + l), tmax

35 (k + l), cbroken35 (k + l))

+ Jbroken(t̂
slack
45 (k + l), tmax

45 (k + l), cbroken45 (k + l))

)

+ η

Np−1
∑

l=0

(

v24(k + l) + v35(k + l) + v45(k + l)
)

]

subject to

t̂slack24 (k + l) = x̂2(k + l) + t̂2(k + l)− x̂4(k + l) for l = 0, . . . , Np − 1 (A.6)

t̂slack35 (k + l) = x̂3(k + l) + t̂3(k + l)− x̂5(k + l) for l = 0, . . . , Np − 1 (A.7)

t̂slack45 (k + l) = x̂4(k + l) + t̂4(k + l)− x̂5(k + l) for l = 0, . . . , Np − 1 (A.8)

x̂2(k + l) = max
(

1 + (k + l − 1)T, d1(k + l) + 1,

x̂2(k + l − 1) + t̂2(k + l − 1)
)

for l = 0, . . . , Np − 1 (A.9)

x̂3(k + l) = max
(

10 + (k + l − 1)T,

x̂2(k + l) + t̂2(k + l),

x̂3(k + l − 1) + t̂3(k + l − 1)
)

for l = 0, . . . , Np − 1 (A.10)

x̂4(k + l) = max
(

10 + (k + l − 1)T, x̂1(k + l) + 2,

x̂4(k + l − 1) + t̂4(k + l − 1),

x̂2(k + l) + t̂2(k + l)− v24(k + l)
)

for l = 0, . . . , Np − 1 (A.11)

x̂5(k + l) = max
(

28 + (k + l − 1)T,

iii

x̂5(k + l − 1) + t̂5(k + l − 1),

x̂3(k + l) + t̂3(k + l)− v35(k + l),

x̂4(k + l) + t̂4(k + l)− v45(k + l)
)

for l = 0, . . . , Np − 1 (A.12)

v24(k + l) > 0 for l = 0, . . . , Nc − 1 (A.13)

v35(k + l) > 0 for l = 0, . . . , Nc − 1 (A.14)

v45(k + l) > 0 for l = 0, . . . , Nc − 1 (A.15)

v24(k + l) = v24(k +Nc − 1) for l = Nc, . . . , Np − 1 (A.16)

v35(k + l) = v35(k +Nc − 1) for l = Nc, . . . , Np − 1 (A.17)

v45(k + l) = v45(k +Nc − 1) for l = Nc, . . . , Np − 1, (A.18)

with x̂i(k − 1) = xi(k − 1) and t̂i(k − 1) = ti(k − 1) for all i, and where t̂i(k) is an estimate
of the duration of operation i. Equations (A.6)–(A.8) define the estimates of the slack times
in cycle k + l, (A.9)–(A.12) define the estimates of the starting times of the operations13 in
cycle k+ l, (A.13)–(A.15) represent the non-negativity constraints on the control variables14,
and (A.16)–(A.18) represent the control horizon constraint.

If we want to solve the MPC optimisation problem given above via an ELCP, we first have
to transform (A.6)–(A.18) into an ELCP. Since (A.6)–(A.8) and (A.13)–(A.18) are already
linear equations — and, hence, fit the ELCP framework —, we will now concentrate on
(A.9)–(A.12). Using the reasoning given in the proof of Proposition 4.1 these equations can
be rewritten as the following ELCP:

x̂2(k + l) > 1 + (k + l − 1)T for l = 0, . . . , Np − 1 (A.19)

x̂2(k + l) > d1(k + l) + 1 for l = 0, . . . , Np − 1 (A.20)

x̂2(k + l) > x̂2(k + l − 1) + t̂2(k + l − 1) for l = 0, . . . , Np − 1 (A.21)

x̂3(k + l) > 10 + (k + l − 1)T for l = 0, . . . , Np − 1 (A.22)

x̂3(k + l) > x̂2(k + l) + t̂2(k + l) for l = 0, . . . , Np − 1 (A.23)

x̂3(k + l) > x̂3(k + l − 1) + t̂3(k + l − 1) for l = 0, . . . , Np − 1 (A.24)

x̂4(k + l) > 10 + (k + l − 1)T for l = 0, . . . , Np − 1 (A.25)

x̂4(k + l) > x̂1(k + l) + 2 for l = 0, . . . , Np − 1 (A.26)

x̂4(k + l) > x̂4(k + l − 1) + t̂4(k + l − 1) for l = 0, . . . , Np − 1 (A.27)

x̂4(k + l) > x̂2(k + l) + t̂2(k + l)− v24(k + l) for l = 0, . . . , Np − 1 (A.28)

x̂5(k + l) > 28 + (k + l − 1)T for l = 0, . . . , Np − 1 (A.29)

x̂5(k + l) > x̂5(k + l − 1) + t̂5(k + l − 1) for l = 0, . . . , Np − 1 (A.30)

x̂5(k + l) > x̂3(k + l) + t̂3(k + l)− v35(k + l) for l = 0, . . . , Np − 1 (A.31)

x̂5(k + l) > x̂4(k + l) + t̂4(k + l)− v45(k + l) for l = 0, . . . , Np − 1 (A.32)

13Note that x1(k) could be eliminated since there are no synchronisation constraints at buffer B1 and
x1(k) = d1(k) for all k.

14We have already used (A.16)–(A.18) to change the upper bound for the counter l into Nc − 1 instead of
Np − 1.

iv

Np−1
∑

ℓ=0

[

slℓ(A.19) · slℓ(A.20) · slℓ(A.21) + slℓ(A.22) · slℓ(A.23) · slℓ(A.24)

+ slℓ(A.25) · slℓ(A.26) · slℓ(A.27) · slℓ(A.28)

+ slℓ(A.29) · slℓ(A.30) · slℓ(A.31) · slℓ(A.32)

]

, (A.33)

where slℓ(A.i) denotes the difference between the right-hand side and the left-hand side of the
linear inequality of (A.i) for l = ℓ. Since these differences are always nonnegative due to the
inequality constraints, the condition (A.33) implies that in each group of equations (A.19)–
(A.21), (A.22)–(A.24), (A.25)–(A.28), (A.29)–(A.32), and for each ℓ ∈ {0, 1, . . . , Np − 1} at
least one inequality holds with equality, which implies that the maximum in (A.9), (A.10),
(A.11), and (A.12) is reached for each ℓ ∈ {0, 1, . . . , Np − 1}. If we add equations (A.6)– (A.8)
and (A.13)–(A.18) to the ELCP (A.19)–(A.33), we get again an ELCP, which describes the
(estimated) trajectories of the system up to the prediction horizon, and which can be used to
solve the soft synchronisation optimisation problem for cycle k using one of the approaches
presented in Section 4.

v

