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Abstract

Model predictive control (MPC) is a popular controller
design technique in the process industry. Conventional
MPC uses linear or nonlinear discrete-time models. Re-
cently, we have extended MPC to a class of discrete
event systems that can be described by a model that is
“linear” in the (max,+) algebra. In our previous work
we have only considered MPC for the perturbations-
free case and for the case with bounded noise and/or
modeling errors. In this paper we extend our previ-
ous results on MPC for perturbed max-plus-linear sys-
tems to a stochastic setting. We show that under quite
general conditions the resulting optimization problems
turn out to be convex and can be solved very effi-
ciently.

Keywords: discrete event systems, model predictive
control, max-plus-linear systems, noise and modeling
errors, stochastic setting.

1 Introduction

The class of the max-plus-linear (MPL) systems cor-
responds to the class of discrete event systems (DES)
in which there is synchronization but no concurrency
[1, 7]. Such systems can be modeled using the opera-
tions maximization (corresponding to synchronization:
a new operation starts as soon as all preceding opera-
tions have been finished) and addition (corresponding
to durations: the finishing time of an operation equals
the starting time plus the duration). This leads to a de-
scription that is “linear” in the max-plus algebra [1, 7]
(see also Section 2). Max-plus-linear DES usually arise
in the context of manufacturing systems, telecommu-
nication networks, railway networks, and parallel com-
puting.

Model predictive control (MPC) [2, 4, 6, 10] is cur-
rently one of the most widely used advanced control

design method in the process industry. MPC provides
many attractive features: it is applicable to multi-input
multi-output systems, it can handle constraints on in-
puts and outputs in a systematic way, it is capable of
tracking pre-scheduled reference signals, and it is an
easy-to-tune method. Usually MPC uses linear or non-
linear discrete-time models. However, the attractive
features mentioned above have led us to extend MPC
to MPL systems [8, 9, 18]. In [19] we have presented
some results on MPL-MPC in the presence of bounded
noise and/or modeling errors. In this paper we will ex-
tend these results to cases with noise and/or modeling
errors in a stochastic setting, where the noise and/or
modeling errors are not bounded a priori.

In contrast to conventional linear systems, where noise
and disturbances are usually modeled by including an
extra term in the system equations (i.e., the noise is
considered to be additive), the influence of noise and
disturbances in MPL systems is not max-plus-additive,
but max-plus-multiplicative. This means that the sys-
tem matrices will be perturbed and as a consequence
the system properties will change. Ignoring the noise
can lead to a bad tracking behavior or even to an un-
stable closed loop. A second important feature is mod-
eling errors. Uncertainty in the modeling or identifica-
tion phase leads to errors in the system matrices. It is
clear that both modeling errors, and noise and distur-
bances perturb the system by introducing uncertainty
in the system matrices. Sometimes it is difficult to
distinguish the two from one another, but usually fast
changes in the system matrices will be considered as
noise and disturbances, whereas slow changes or per-
manent errors are considered as model mismatch. Simi-
lar to the results in [19], we will show that both features
can be treated in one single framework and the charac-
terization of the perturbation will determine whether
it describes model mismatch or disturbance. We will
also show that under quite general restrictions the re-
sulting MPC optimization problem can be solved very
efficiently.

Note that there are few results in the literature on noise



and modeling errors in an MPL context. However, for
other classes of DES uncertainty results can be found
in [5, 12, 16, 21] and the references therein.

This paper is organized as follows. In Section 2 we
give a concise introduction to MPL systems and MPC
for MPL systems (without noise or modeling errors).
Next, we present a noise and uncertainty model for
MPL systems in a stochastic framework and we derive
algorithms to make predictions in this setting. In Sec-
tion 4 the MPC method for stochastic MPL systems
is presented and in Section 5 we discuss the computa-
tional aspects of the algorithm.

2 Max-plus-linear systems and MPC

Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-
algebraic addition (⊕) and multiplication (⊗) are de-
fined as follows [1, 7]:

x⊕ y = max(x, y) x⊗ y = x+ y

for numbers x, y ∈ Rε and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =
n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix

ε is the max-plus-algebraic zero matrix: [ε]ij = ε for
all i, j.

In [1, 7] it has been shown that (time-invariant) discrete
event systems (DES) in which there is synchronization
but no concurrency can be described by a model of the
form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

y(k) = C ⊗ x(k) . (2)

Systems that can be described by this model will be
called time-invariant max-plus-linear (MPL) systems.
The index k is called the event counter. For DES
the state x(k) typically contains the time instants at
which the internal events occur for the kth time, the
input u(k) contains the time instants at which the in-
put events occur for the kth time, and the output y(k)
contains the time instants at which the output events
occur for the kth time1.

In [8, 9] we have extended the MPC framework to time-
invariant MPL models (1)–(2) as follows. Just as in

1More specifically, for a manufacturing system, x(k) contains
the time instants at which the processing units start working for
the kth time, u(k) the time instants at which the kth batch of
raw material is fed to the system, and y(k) the time instants at
which the kth batch of finished product leaves the system.

conventional MPC [6, 10] we define a cost criterion J

that reflects the input and output cost functions (Jin
and Jout, respectively) in the event period [k, k+Np −
1]:

J(k) = Jout(k) + λJin(k) (3)

where Np is the prediction horizon and λ is a weighting
parameter. Possible choices for Jout and Jin are given
in [8, 9] (see also Section 4). The aim is now to com-
pute an optimal input sequence u(k), . . . , u(k+Np−1)
that minimizes J(k) subject to linear constraints on
the inputs and outputs. Since the u(k)’s correspond to
consecutive event occurrence times, we have the addi-
tional condition ∆u(k+j) = u(k+j)−u(k+j−1) ≥ 0
for j = 0, . . . , Np − 1. Furthermore, in order to reduce
the number of decision variables and the correspond-
ing computational complexity we introduce a control
horizon Nc (≤ Np) and we impose the additional con-
dition that the input rate should be constant from the
point k + Nc − 1 on: ∆u(k + j) = ∆u(k + Nc − 1)
for j = Nc, . . . , Np − 1, or equivalently ∆2u(k + j) =
∆u(k+ j)−∆u(k+ j − 1) = 0 for j = Nc, . . . , Np − 1.

MPC uses a receding horizon principle. This means
that after computation of the optimal control sequence
u(k), . . . , u(k + Nc − 1), only the first control sample
u(k) will be implemented, subsequently the horizon is
shifted one sample, and the optimization is restarted
with new information of the measurements.

Define the vectors

ũ(k) =







u(k)
...

u(k+Np−1)







ỹ(k) =







ŷ(k)
...

ŷ(k+Np−1)







Now the MPL-MPC problem for event step k can be
defined as:

min
ũ(k)

Jout(k) + λJin(k)

subject to

x(k+j)=A⊗x(k+j−1)⊕B⊗u(k+j) (4)

y(k + j) = C ⊗ x(k + j) (5)

∆u(k + j) ≥ 0 (6)

∆2u(k + ℓ) = 0 (7)

Ac(k)ũ(k) +Bc(k)ỹ(k) ≤ cc(k) (8)

for j = 0, . . . , Np−1, and for ℓ = Nc, . . . , Np−1

where (8) represents the linear constraints on the in-
puts and the outputs.

We conclude this section with some results on a class
of (max,+) functions. Let Smpns be the set of max-
plus-nonnegative-scaling functions, i.e., functions f of



the form f(z) = maxi(αi,1z1 + . . . + αi,nzn + βi) with
variable z ∈ R

n
ε and constants αi,j ∈ R

+, βi ∈ R, where
R

+ is the set of the nonnegative real numbers. If we
want to stress that f is a function of z we will denote
this by f ∈ Smpns(z).

Lemma 1 The set Smpns is closed under the opera-
tions ⊕, ⊗, and scalar multiplication by a nonnegative
scalar.

Proof: This is a consequence of the fact
that for x, y, z, v ∈ Rε and ρ ∈ R

+ we have
max(x, y) ⊕ max(z, v) = max(max(x, y),max(z, v)) =
max(x, y, z, v), max(x, y) ⊗ max(z, v) = max(x, y) +
max(z, v) = max(x + z, x + v, y + z, y + v) and
ρmax(x, y) = max(ρx, ρy).

3 Making predictions in the stochastic case

In this section we extend the deterministic model (1)–
(2) to include uncertainty (see also [19]). So we now
consider the following MPL system:

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) (9)

y(k) = C(k)⊗ x(k) (10)

where A(k), B(k) and C(k) represent uncertain system
matrices due to modeling errors or disturbances. Usu-
ally fast changes in the system matrices will be consid-
ered as noise and disturbances, whereas slow changes
or permanent errors are considered as model mismatch.
In this paper both features will be treated in one single
framework. The uncertainty caused by disturbances
and errors in the estimation of physical variables, is
gathered in the uncertainty vector e(k). In this paper
we assume that the uncertainty has stochastic proper-
ties. Hence, e(k) is a stochastic variable.

We assume that the uncertainty vector e(k) captures
the complete time-varying aspect of the system. Fur-
thermore, the system matrices of an MPL model usu-
ally consist of sums or maximizations of internal pro-
cess times, transportation times, etc. (see, e.g., [1]
or [20]). Since the entries of e(k) directly correspond
to the uncertainties in these duration times, it follows
from Lemma 1 that the entries of the uncertain system
matrices belong to Smpns:

A(k) ∈ Sn×n
mpns(e(k)), B(k) ∈ Sn×m

mpns(e(k)),

C(k) ∈ Sl×n
mpns(e(k)) .(11)

The next step is to make predictions. We collect the

uncertainty over the interval [k, k +Np] in one vector

ẽ(k) =







e(k)
...

e(k +Np − 1)






∈ R

nẽ .

We assume that ẽ(k) is a random variable, and that all
elements of ẽ(k) are independent, i.e. for i 6= j there
holds:

pij

(

ẽi(k), ẽj(k)
)

= pi

(

ẽi(k)
)

pj

(

ẽj(k)
)

where pℓ is the probability density function of the ℓth
element of ẽ(k) and pij is the joint probability density
function of the ith and jth element of ẽ(k). The prob-
ability density function of ẽ(k) is denoted by p(ẽ(k))
and satisfies:

p(ẽ(k)) =

nẽ
∏

j=1

pj

(

ẽj(k)
)

(12)

Remark: To make sure that all elements are uncor-
related, redundant (or repeating) components should be
eliminated. After elimination of the elements, there
will still hold:

A(k) ∈ Sn×n
mpns(ẽ(k)), B(k) ∈ Sn×m

mpns(ẽ(k)),

C(k) ∈ Sl×n
mpns(ẽ(k)) .

where ẽ(k) now satisfies (12).

Now it is easy to verify that the prediction model, i.e.,
the prediction of the future outputs for the system (9)–
(10), is given by

ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) , (13)

in which C̃(ẽ(k)) and D̃(ẽ(k)) are given by

C̃(ẽ(k)) =







C̃1(ẽ(k))
...

C̃Np
(ẽ(k))







D̃(ẽ(k)) =







D̃11(ẽ(k)) · · · D̃1Np
(ẽ(k))

...
. . .

...

D̃Np1(ẽ(k)) · · · D̃NpNp
(ẽ(k))






(14)

where

C̃m(ẽ(k)) = C(k+m− 1)⊗A(k+m− 1)⊗ . . .⊗A(k)
(15)

and

D̃mn(ẽ(k)) =

=



























C(k+m−1)⊗A(k+m−1)⊗ . . .

⊗A(k+n)⊗B(k+n−1) if m > n

C(k+m−1)⊗B(k+m−1) if m = n

ε if m < n .

(16)



4 MPC for stochastic MPL systems

Recall that in MPL-MPC the cost function is given by
(3). In this paper Jout and Jin are chosen as follows:

Jout(k) =
∑

i

IE[η̃i(k)]

Jin(k) =
∑

j

ũj(k)

where IE[η̃i(k)] denotes the expectation of the ith “tar-
diness” error η̃i(k), which is given by

η̃i(k) = max( ỹi(k)− r̃i(k) , 0 ) , (17)

the due date signal r(k) is stacked in the vector

r̃(k) =







r(k + 1)
...

r(k+Np)







and ỹi(k), ũi(k) and r̃i(k) denote the ith element of
ỹ(k), ũ(k) and r̃(k), respectively. Other choices for
Jout and Jin are given in [8, 9].

We combine the material of previous subsections, and
obtain

Jout(k) =
∑

i

IE
[

max
( {

[C̃(k)]i ⊗ x(k) ⊕

[D̃(k)]i ⊗ ũ(k)
}

− r̃i(k) , 0
)]

(18)

Jin(k) =
∑

j

ũj(k) (19)

where [C̃(k)]i and [D̃(k)]i denote the ith row of C̃(k)
and D̃(k), respectively. Finally the following problem
is obtained:

min
ũ(k)

Jout(k) + λJin(k) (20)

subject to

Ac(k)ũ(k) +Bc(k)IE[ỹ(k)] ≤ cc(k) (21)

∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1 (22)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (23)

where IE[·] denotes the expectation of a signal. This
problem will be called the stochastic MPL-MPC prob-
lem for event step k.

Recall that MPC uses a receding horizon principle. So
this means that after computation of the optimal con-
trol sequence u(k), . . . , u(k+Nc−1), only the first con-
trol sample u(k) will be implemented, subsequently the
horizon is shifted one sample, and the optimization is
restarted with new information of the measurements.

5 Convexity of stochastic MPL-MPC

In the previous section we found that we need the ex-
pectation of the signals η̃(k) and ỹ(k). We now derive
the following property:

Lemma 2 Define the vector z(k) as

z(k) =









−r̃(k)
x(k − 1)
ũ(k)
ẽ(k)









Then, the future tardiness error η̃(k) and the future
output signal ỹ(k) belong to Smpns(z(k)).

Proof: Equations (14)-(16) in combination with
(11) and Lemma 1 show that the entries of C̃(ẽ(k))
and D̃(ẽ(k)) belong to Smpns(ẽ(k)). Then, using (13),
(17) and again Lemma 1 we find that both η̃(k) and
ỹ(k) belong to Smpns(z(k)).

Let v(k) ∈ Smpns(z(k)), where z(k) is as defined in
Lemma 2. In the sequel of this section we will derive
how to compute the expectation IE[v(k)], and show
that IE[v(k)] has some nice convexity properties.

Define w(k) =
[

−r̃T (k) xT (k − 1) ũT (k)
]T

to
be the non-stochastic part of z(k). Then, because
of the above lemma and the definition of max-plus-
nonnegative-scaling functions, there exist scalars αj

and nonnegative vectors βj and γj , such that

v(k) = max
j=1,...,nv

(

αj + βT
j w(k) + γT

j ẽ(k)
)

Define the sets Φj(w(k)), j = 1, . . . , nv such that for
all ẽ(k) ∈ Φj(w(k)) there holds:

v(k) = αj + βT
j w(k) + γT

j ẽ(k)

and
nv
⋃

j=1

Φj(w(k)) = R
nẽ

Denote, for a given w(k), the expectation of v(k) by
v̂(w(k)) = IE[v(k)], then

v̂(w(k)) = IE[v(k)] (24)

=

+∞ +∞
∫

. . .
∫

−∞ −∞

v(k) p(ẽ) dẽ (25)

=

+∞ +∞
∫

. . .
∫

−∞ −∞

max
j=1,...,nv

(

αj+βT
j w(k)+γT

j ẽ
)

p(ẽ) dẽ (26)

=

nv
∑

j=1

∫

. . .
∫

ẽ∈Φj(w(k))

(

αj+βT
j w(k)+γT

j ẽ
)

p(ẽ) dẽ (27)



where dẽ = dẽ1 dẽ2 . . . dẽnẽ
.

The following lemma is on the convexity of v̂(w(k)) in
the vector w(k)

Lemma 3 The function v̂(w(k)) as defined in (27) is
convex in w(k) and a subgradient gv(w(k)) is given by

gv(w(k)) =

nv
∑

ℓ=1

βT
ℓ

∫

. . .
∫

ẽ∈Φℓ(w(k))

p(ẽ) dẽ (28)

Proof: Recall that (cf. (27))

v̂(wo(k)))=

nv
∑

j=1

∫

. . .
∫

ẽ∈Φj(wo(k))

(

αj+βT
j wo(k)+γT

j ẽ
)

p(ẽ) dẽ

Then, using the fact that

nv
⋃

j=1

Φj(wo(k)) = R
nẽ , there

holds for any w(k):

v̂(w(k)) =

=

+∞ +∞
∫

. . .
∫

−∞ −∞

max
j=1,...,nv

(

αj+βT
j w(k)+γT

j ẽ
)

p(ẽ) dẽ

(by (26))

=

nv
∑

ℓ=1

∫

. . .
∫

ẽ∈Φℓ(wo(k))

max
j=1,...,nv

(

αj+βT
j w(k)+γT

j ẽ
)

p(ẽ) dẽ

≥

nv
∑

ℓ=1

∫

. . .
∫

ẽ∈Φℓ(wo(k))

(

αℓ+βT
ℓ w(k)+γT

ℓ ẽ
)

p(ẽ) dẽ

Note that the sets Φℓ(wo(k)) are computed for wo(k),
whereas v̂(w(k)) is computed for w(k). Now we derive:

nv
∑

ℓ=1

∫

. . .
∫

ẽ∈Φℓ(wo(k))

(

αℓ + βT
ℓ w(k) + γT

ℓ ẽ
)

p(ẽ) dẽ

=

nv
∑

ℓ=1

∫

. . .
∫

ẽ∈Φℓ(wo(k))

(

αℓ + βT
ℓ wo(k) + γT

ℓ ẽ
)

p(ẽ) dẽ

+

nv
∑

ℓ=1

∫

. . .
∫

ẽ∈Φℓ(wo(k))

(

βT
ℓ (w(k)− wo(k))

)

p(ẽ) dẽ

=

nv
∑

ℓ=1

∫

. . .
∫

ẽ∈Φℓ(wo(k))

(

αℓ + βT
ℓ wo(k) + γT

ℓ ẽ
)

p(ẽ) dẽ

+





nv
∑

ℓ=1

∫

. . .
∫

ẽ∈Φℓ(wo(k))

(βT
ℓ ) p(ẽ) dẽ





(

w(k)− wo(k)
)

= v̂(wo(k)) + gv(wo(k))
(

w(k)− wo(k)
)

and we conclude:

v̂(w(k)) ≥ v̂(wo(k)) + gv(wo(k))
(

w(k)−wo(k)
)

(29)

Equation (29) proves that v̂ is convex in w(k) and gv
is a sub-gradient of v̂ ([17]).

Now consider the MPC problem (20) – (23). First note
that because of Lemma 3, IE[η̃i(k)] and ỹ(k) are convex
in w(k). This means that Jout(k) and J(k) are convex
in ũ(k). It is easy to verify that if the linear MPC con-
straints are monotonically non-decreasing as a function
of IE[ỹ(k)] (in other words, if [Bc]ij ≥ 0 for all i, j), the
constraint (21) becomes convex in ũ(k). In that way,
the MPL-MPC problem turns out to be a convex prob-
lem and both a subgradient of the constraints and a
subgradient of the cost criterion can easily be derived
using Lemma 3. More on convex optimization algo-
rithms can be found in [15].

So far, we did not make any assumption on the charac-
terization of probability function pi(ẽi). For the com-
putation of the cost criterion and the constraints we
need the values of IE[ỹ(k)] and IE[η̃(k)]. If we choose
for example a Gaussian distribution, they can be calcu-
lated from equation (27) using numerical integration.
Numerical integration is usually time-consuming and
cumbersome, but can be avoided by choosing piecewise
affine probability density functions.

Piecewise affine probability density functions

Let pi(ẽi) for all i = 1, . . . , nẽ be piecewise affine func-
tions. So there exist sets Pℓ, ℓ = 1, . . . , np, such that
for ẽ ∈ Pℓ the probability density functions are given
by:

pi(ẽi) = µi,ℓ + ηTi,ℓẽi for i = 1, . . . , nẽ .

Consider a signal v(k) ∈ Smpns(z(k)). Let Ejℓ(w(k)) =
Φj(w(k)) ∩ Pℓ, then v̂(w(k)) is given by

v̂(w(k)) =

np
∑

ℓ=1

nv
∑

j=1

∫

. . .
∫

ẽ∈Ejℓ(w(k))

(

αj + βT
j w(k) +

+γT
j ẽ
)

(

nẽ
∏

i=1

(µi,ℓ + ηTi,ℓẽi)

)

dẽ

This is an integral of polynomial functions and can be
solved analytically for all regions Ejℓ. Methods for in-
tegration on convex polytopes are given by Lasserre
[11] and Büeler et al. [3].
If piecewise affine probability density functions are used
as an approximation of ‘true’ non-affine probability
functions, the quality of the approximation can be im-
proved by increasing the number of sets np.

6 Discussion

We have further extended the MPC framework to
include max-plus-linear discrete event systems with



stochastic uncertainties. We have shown that, if the
constraints are a non-decreasing function of the out-
put, the resulting optimization problem is a convex op-
timization problem. In general, the computation of the
predictions requires a numerical integration. However,
in the case of piecewise affine probability density func-
tions, this numerical integration can be prevented.
Topics for future are: determination of rules of thumb
for appropriate values for the tuning parameters (con-
trol horizon Nc, prediction horizon Np, and perfor-
mance weighting parameter λ) in the stochastic case,
complexity reduction and approximation to further im-
prove the efficiency of our approach.

Acknowledgments

This research was partially sponsored by the TMR project

ALAPEDES (Algebraic Approach to Performance Evalua-

tion of Discrete Event Systems) of the European Commu-

nity Training and Mobility of Researchers Program (net-

work contract ERBFMRXCT960074), and by the FWO

(Fund for Scientific Research–Flanders) Research Commu-

nity ICCoS (Identification and Control of Complex Sys-

tems).

References

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P.
Quadrat, Synchronization and Linearity. New York:
John Wiley & Sons, 1992.

[2] L. Biegler, “Efficient solution of dynamic opti-
mization and NMPC problems,” in Nonlinear Model
Predictive Control (F. Allgöwer and A. Zheng, eds.),
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