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Abstract

We extend the model predictive control (MPC) framework, which is a very popular con-
troller design method in the process industry, to transfer coordination in railway systems.
In fact, the proposed approach can also be used for other systems with both hard and soft
synchronization constraints, such as logistic operations. The main aim of the control is
to recover from delays in an optimal way by breaking connections (at a cost). In general,
the MPC control design problem for railway systems leads to a nonlinear non-convex op-
timization problem. We show that the optimal MPC strategy can also be computed using
an extended linear complementarity problem. Furthermore, we present an extension with
an extra degree of freedom to recover from delays by letting some trains run faster than
usual (again at a cost). The resulting extended MPC railway problem can also be solved
using an extended linear complementarity problem.

1 Introduction

We present a model predictive control (MPC) framework for a class of systems with a main
emphasis on railway networks, although the approach can also be used for, e.g., logistic
systems. MPC [1, 4, 8]. is a very popular on-line, adaptive control design technique in the
process industry. The major advantages of MPC are that it allows the inclusion of constraints
on the inputs and outputs, and that it can handle changes in the system parameters by using
a moving horizon approach, in which the model and the control strategy are continuously
updated. Conventional MPC uses discrete-time models (i.e., models consisting of a system
of difference equations and that are sampled at regularly spaced instants of time). In [6] we
have extended MPC to a class of systems with “hard” synchronization constraints, where
“hard” means that the constraints should always be met. In this paper we further extend the
MPC framework to a class of systems with both hard and soft synchronization constraints,
i.e., in some cases we allow an activity to start although not all pre-scheduled predecessor
activities have been completed, but at a cost. This could occur in a railway operations
context, where a train should give pre-defined connections to other trains. However, if some
of these trains have a too large delay, then it is sometimes better — from a global performance
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viewpoint — to let the train depart anyway in order to prevent an accumulation of delays in
the network. Of course, missed connections lead to a penalty due to dissatisfied passengers or
due to compensations that have to be paid (In the Netherlands, NS, the main Dutch railway
company has to pay back 50% of the fare to passengers if they have an accumulated delay of
more than 30 minutes, and 100% of the fare if the delay is more than 1 hour). The main aim
of the control approach presented here is to recover from past delays or known or expected
future delays in an optimal way by breaking some connections if possible, or by letting the
trains drive faster, where both types of control actions have a cost associated to them. Note
that we do not consider re-routing or adapting the time schedule. Work in connection with
the modeling and control of railway networks in a systems and control context can be found
in [2, 3, 7, 12]. We also refer the interested reader to [9, 10, 11, 13] and the references therein.

This paper is organized as follows. After given a brief introduction to MPC, we derive a
model for a railway system with both hard and soft synchronization constraints. Next, we
define a control design problem for such a system where we can break a connection if delays
occur and if this leads to a better global performance. We use an MPC approach (which has
the following ingredients: a prediction horizon, a receding horizon procedure, and a regular
update of the model and re-computation of the optimal control). In general, this leads to
a hard non-convex nonlinear optimization problem. However, we show that the trajectories
of the system can be described by an extended linear complementarity problem (ELCP) [5],
for which we can compute a parameterized solution. Afterwards, we can then compute the
optimal control over this solution set. The advantage is that we now have to solve a sequence
of optimization problems with a convex feasible set (although the objective function is still
nonlinear and non-convex). Computational experiments show that (for small sized problems
or for a small control horizon) the ELCP approach is much faster and yields a better minimum
than the straightforward nonlinear optimization approach. We also present an extension in
which we allow the trains to drive faster if necessary. We conclude with a worked example.

2 Model predictive control

In this section we give a short introduction to conventional MPC [1, 4, 8] for discrete-time
systems. In MPC we compute at each sample step k an optimal control input that minimizes
a given performance measure over a given prediction horizon. Typically this performance
measure represents a trade-off between reference signal tracking and minimizing the control
effort. The optimization uses a prediction model that predicts the expected future behavior
of the system for the current state of the system and for the expected or predicted external
input signals. In order to limit the number of variables in the optimization procedure (which
in general is equal to the number of control inputs multiplied by the prediction horizon) and
to improve the stability of the system, a control horizon Nc (6 Np) is introduced in MPC:
after the control horizon has been passed the control signal is taken to be constant. In order to
take changes in the system parameters into account, MPC uses an adaptive receding horizon
approach in which at each sample step k only the first step of the optimal control signal is
applied to the system, afterwards the model of the system or the predictions of the external
input signals are updated as new measurements from the sensors or new information become
available, next the time axis is shifted one sample, a new optimal control input is computed,
and the whole procedure is repeated again.

Important parameters in this scheme are the prediction horizon Np and the control horizon
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Figure 1: A part of a railway network.

Nc. Too long control and prediction horizons can result in intractable optimization problems
(recall that the optimization has to be performed on-line, so the size of the problem, i.e., the
number of variables and the length of the prediction horizon, should not be too large). On
the other hand, the prediction horizon Np has to be long enough to represent the important
process dynamics, and the control horizon Nc has to be long enough to be able to achieve
a reasonable performance. In conventional model-based predictive control heuristic tuning
rules have been developed to select appropriate values for Np and Nc. When discussing the
railway MPC problem we will also propose some rules of thumb to select values for Np and
Nc that are specifically oriented towards railway systems.

3 A model for railway systems

Consider a railway operations system. The nominal operation of the system follows a time
schedule with a period T . We assume that all the trains follow a pre-scheduled route. Let
n be the number of tracks in the network. Each track of the railway network has a number
and a virtual train allocated to it. For the sake of simplicity we will say “(virtual) train j” to
denote the (physical) train on track j, and “station j” to denote the station at the beginning
of track j (cf. Figure 1). Let xj(k) be the time instant at which train j departs from station
j for the kth time, and let dj(k) be the departure time for this train according to the time
schedule.

The set of trains to which the kth train on track j gives a connection is denoted by Cj(k).
This set can be divided in a set of hard connections Chard,j(k) (e.g., if the train on track i and
the train on track j are physically the same train, or if it is a very important connection that
should be guaranteed at all cost), and a set of soft connections Csoft,j(k) (e.g., local trains to
which the train j should give connection, but if the local train i ∈ Csoft,j(k) has a too large
delay, then the connection may be broken; however, in that case a (maximal) cost cbroken,i,j(k)
is associated with the broken connection (see also (8)). Let ai,j(k) be the traveling time from
station i to station j for each train i ∈ Cj(k). We also define a minimum connection time
tmin,i,j(k) for passengers to get from train i to train j for each train i ∈ Cj(k) (if virtual trains
i and j are physically the same train, then this time corresponds to the minimum stopping
time of train j at station j to allow passenger to get off or on the train).

We have the following constraints for the kth actual departure time xj(k) of train j:

• time schedule constraint
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Train j should not depart before the departure time according to the time schedule has
passed:

xj(k) > dj(k) . (1)

• hard synchronization constraints
If there is another train i to which train j should give a hard connection, then train j
may only depart if train i has arrived and the passengers have gotten enough time to
get out of the train or to change trains. So for each i ∈ Chard,j(k) we have

xj(k) > xi(k − δi,j(k)) + ai,j(k) + tmin,i,j(k) , (2)

where δi,j(k) denotes the cycle delay between train i and train j in the kth cycle: the
kth train j gives connection to the (k − δi,j(k))th train i (see also the worked example
below).

• soft synchronization constraints
If the connection takes place, then we have a constraint that is similar to (2). If the
connection is broken, the train departs before the other train arrives and the passengers
have gotten the time to change over. So for each i ∈ Csoft,j(k) we have

xj(k) > xi(k − δi,j(k)) + ai,j(k) + tmin,i,j(k) (3)

if the connection takes place, and

xj(k) < xi(k − δi,j(k)) + ai,j(k) + tmin,i,j(k) (4)

if the connection is broken. If we introduce a control variable ui,j(k) > 0, then we can
combine these two equations into one equation of the following form:

xj(k) > xi(k − δi,j(k)) + ai,j(k) + tmin,i,j(k)− ui,j(k) , (5)

where ui,j(k) can be used to guarantee or to break a connection.

Since we let a train depart as soon as all connection conditions are satisfied, we have

xj(k) = max
(

dj(k),

max
i∈Chard,j(k)

(

xi(k − δi,j(k)) + ai,j(k) + tmin,i,j(k)
)

,

max
i∈Csoft,j(k)

(

xi(k − δi,j(k)) + ai,j(k) + tmin,i,j(k)− ui,j(k)
)

)

. (6)

Note that in a nominal, well-defined time schedule the term dj(k) in (6) will be the largest.
However, if due to unscheduled circumstances (an incident, a late departure, works, etc.)
train i has a delay, then the term corresponding to train i may become larger than the other
terms. We define tslack,i,j(k) as the slack time of the arrival of train i ∈ Csoft,j(k) at station j
(the transit time tmin,i,j(k) included) with respect to the actual kth departure time of train
j:

tslack,i,j(k) = xi(k − δi,j(k)) + ai,j(k) + tmin,i,j(k)− xj(k) . (7)
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Figure 2: The piecewise-linear cost function Jbroken (full line) and a smoother approximation
(dashed line).

Note that this slack time is a function of the control variable ui,j(k) via xj(k). If tslack,i,j(k) 6 0
then the connection is completely guaranteed (with enough time for the passengers to change
trains). If tslack,i,j(k) > tmin,i,j(k), then train j leaves the station before the arrival of train
i. If 0 < tslack,i,j(k) 6 tmin,i,j(k) then the connection is guaranteed partly (i.e., fast-running
passengers can get the connection, but slower ones may lose it). Therefore, we use the
following piecewise-linear function to define the cost of a broken connection (see also Figure
2):

Jbroken(tslack, tmin, cbroken) =



















0 if tslack 6 0,

cbroken

tmin
· tslack if 0 < tslack 6 tmin,

cbroken if tslack > tmin .

(8)

4 The railway MPC problem

4.1 Problem definition

We define the following cost function over a given prediction horizon Np for the kth operation
cycle of the railway system:

Jcost(k) =

Np−1
∑

l=0

n
∑

j=1

|xj(k + l)− dj(k + l)|+

λ

Np−1
∑

l=0

n
∑

j=1

∑

i∈Csoft,j(k+l)

Jbroken(tslack,i,j(k + l), tmin,i,j(k + l), cbroken,i,j(k + l)) (9)
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where λ ¿ 0 is a weighting factor. This cost function has two components: the first tries to
keep the trains running on schedule, whereas the second penalizes broken connections. The
factor λ determines the trade-off or relative weight of the two components of the MPC cost
function.

Now we consider the following controller design problem — which will be called the railway
MPC problem at cycle k:

min
ui,j(k),...,ui,j(k+Np−1)

Jcost(k)

subject to (6) and to ui,j(k + l) > 0 for all i, j and l = 0, . . . , Np − 1 . (10)

In addition, to reduce the number of control variables we can — just as in conventional MPC
— introduce a control horizon Nc (6 Np) and set

ui,j(k + l) = ui,j(k +Nc − 1) for l = Nc, . . . , Np − 1 . (11)

This condition can be interpreted as follows: if after Nc cycles the delays have died out (i.e.,
it is not necessary to break connections anymore or equivalently, ui,j(k+Nc) = 0 for all i, j),
then we do not break any connections in the subsequent cycles either. On the other hand, if
the delays are still such that a connection should be broken in cycle k+Nc, then we will also
break these connections in the subsequent cycles. Alternatively, we can take the decrease or
growth of the delays into account by using a constant growth/decrease rate condition of the
form ∆ui,j(k + l) = ∆ui,j(k + Nc − 1) for l = Nc, . . . , Np − 1 where we set negative values
of ui,j(k + l) equal to 0 and where ∆s(k) = s(k) − s(k − 1). Just like in conventional MPC
we use a moving horizon approach, i.e., the railway MPC problem is solved for each cycle,
then the computed controls are applied for the current cycle only, and meanwhile the model
is updated, and the computation is performed again for the next cycle. This implies that we
can also include predictable future delays (due to incidents, broken power lines, works, . . . )
into our prediction model.

4.2 Tuning

The parameters Np and Nc determine the size of the problem. If they are chosen too large,
then the railway MPC problem is not tractable any more (recall that we have to solve the
problem during each operations cycle, so the available time is limited). On the other hand,
if we select Np and Nc too small, then this will have a negative impact on the performance
of the overall system. We propose the following rule of thumb for the selection of Np: Np

should be chosen such that it covers the (expected) period over which the delays will die
out. The choice of Nc mainly depends on the computational complexity of the problem. For
small-sized networks we can take Nc rather large, whereas for large networks a small Nc will
be necessary to be able to compute the MPC solution sufficiently fast (i.e., before the start
of the next cycle of the railway network).

4.3 Algorithms for the railway MPC problem

In general, each step of the railway MPC problem leads to a non-convex nonlinear optimiza-
tion problem. This problem can be solved using, e.g., a multi-start local optimization method
such as multi-start sequential quadratic programming. Also note that the feasible set of the
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railway MPC problem is non-convex since (6) is non-convex. Now we will present an alter-
native approach to compute the optimal MPC control input that is based on a mathematical
programming problem called the extended linear complementarity problem.

The Extended Linear Complementarity Problem (ELCP) is defined as follows [5]:

∏

i∈ϕj

(Az − c)i = 0 for j = 1, . . . ,m

subject to Az > c and Bz = d.

(12)

This problem can be interpreted as follows: Find solutions of a system of linear equations
and inequalities (Az > c, Bz = d) where there are several groups of inequalities (one for each
index set ϕj) such that in each group at least one inequality should hold with equality, i.e.,
for each j there should exist an index i ∈ ϕj such that (Az − c)i = 0. The formulation of the
ELCP arose from our research on nonlinear resistive networks, discrete-event systems, hybrid
systems, and traffic signal control.

Let us now show that the evolution equations and the constraints of the railway MPC
problem can be recast as an ELCP. Clearly, the non-negativity constraint on ui,j(k) and
the control horizon constraint (11) fit the ELCP framework. Now we show that (6) can
also be written as an ELCP. This will be done by showing that an expression of the form
xj(k) = max(dj(k), z1,j(k), z2,j(k)) where z1,j(k) and z2,j(k) are auxiliary variables, is an
ELCP. If we then add the conditions that z1,j(k) and z2,j(k) should be equal to the second
term and the third term of the right-hand side of (6) and if we take into account that the
merge of two ELCPs is also an ELCP, we have recursively shown that (6) can be written as an
ELCP. The condition xj(k) = max(dj(k), z1,j(k), z2,j(k)) can be rewritten as xj(k)−dj(k) > 0,
xj(k)−z1,j(k) > 0, xj(k)−z2,j(k) > 0, with xj(k) = dj(k) or xj(k) = z1,j(k) or xj(k) = z2,j(k).
The latter condition can be rewritten as (xj(k)−dj(k)) ·(xj(k)−z1,j(k)) ·(xj(k)−z2,j(k)) = 0.
Hence, we have obtained an ELCP. As a consequence, the trajectories of the railway system
can be described by an ELCP.

In [5] we have developed an algorithm that yields a parametric description of the solution
set of an ELCP. More specifically, the solution set of the ELCP defined by (12) is characterized
by a set of vectors V = {zi | i = 1, . . . , r} and a set of index sets Λ = {ψj | j = 1, . . . , s} such
that for any j any combination of the form

∑

i∈ψj

ρiz
i with ρi > 0 for all i and

∑

i∈ϕj

ρi = 1 (13)

is a solution of the ELCP. The optimal MPC strategy can now be obtained by determining
for each index set ψj the combination of the ρi’s for which the objective function Jcost(k)
reaches a global minimum (note that for each index set ψj this amounts to an optimization
over a convex set since (13) describes a convex combination of the vectors zi) and afterwards
selecting the overall minimum.

The advantage of this ELCP approach compared to straightforward nonlinear constrained
optimization is that in the ELCP approach we have to solve a sequence of optimization
problems with a convex feasible set instead of one big problem with a non-convex feasible
set. Optimization problems with a convex feasible set (albeit with a non-convex objective
function) are easier to solve numerically than problems with a non-convex feasible set. Note
however that the algorithm of [5] to compute the solution set of a general ELCP requires
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exponential execution times, which means that the ELCP approach is not feasible if Nc is
large. Our computational experiments have shown that in most cases the determination of the
minimum value of the objective functions given above is a well-behaved problem in the sense
that using a local minimization routine (that uses, e.g., sequential quadratic programming)
starting from different initial points almost always yields the same numerical result (within
a certain tolerance). So (for small sized problems or for a small control horizon) the ELCP
approach is much faster and yields a better minimum than the straightforward nonlinear
optimization approach.

To get a smoother optimization problem we can introduce another, smoother cost function
for broken connections such as, e.g., the one represented by the dashed line in Figure 2. Such
a cost function might also better correspond to what we could expect in reality than the
piecewise-linear cost function defined by (8) and represented by the full line in Figure 2.

5 Extension

Up to now we have assumed that — in absence of any information about future delays — the
traveling time from station i to station j in the kth cycle is given by the nominal traveling
time ai,j(k). However, in practice we can also use this time to recover from delays by letting
train i run faster if necessary. Of course, this will lead to extra costs (due to increased energy
consumption or faster wear of the material). Let amin,i,j(k) be the minimal time needed to get
from station i to station j at full speed in cycle k, and let anom,i,j(k) be the nominal traveling
time. We introduce an extra control variable vi,j(k) to modify the traveling time from station
i to station j in the kth cycle. We get a model for this extended system by replacing all
occurrences of ai,j(k) in (6) by amin,i,j(k) + vi,j(k) and by adding the extra condition

0 6 vi,j(k) 6 anom,i,j(k)− amin,i,j(k) . (14)

Note that if vi,p(k) and vi,q(k) correspond to the same traveling time for some indices p and
q (i.e., stations p and q are in fact the same (physical) station), then we have to add the
constraint vi,p(k) = vi,q(k). To express the extra costs related to increasing the speeds of the
trains, we add a term of the form

µ

Np−1
∑

l=0

n
∑

j=1

∑

i∈Cj(k+l)

cspeed,i,j ·
(

anom,i,j(k + l)− (amin,i,j(k + l) + vi,j(k + l))
)2

(15)

to the cost function Jcost(k), where µ is a nonnegative weight parameter that represents the
relative importance of the speed term with respect to the other terms of the (extended)
objective function, and where cspeed,i,j characterizes the extra cost per squared unit traveling
time decrease for trains on the track going from station i to station j (this factor may also
depend on k). This results in an extended railway MPC problem. It is easy to verify that
this problem can also be solved using the ELCP.

6 Worked example

Consider the railroad network of Figure 3. There are 4 stations in this railroad network (S1,
S2, S3 and S4) that are connected by 6 single tracks (T1 up to T6). There are two trains
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Figure 3: The railroad network considered in the worked example.

Track From station To station Nominal traveling Scheduled departure

times (min) time modulo 60 (min)

T1 S1 S2 16 00

T2 S2 S3 8 19

T3 S3 S4 10 31

T4 S4 S1 12 45

T5 S2 S4 20 22

T6 S4 S2 25 50

Table 1: The nominal traveling times and the departure times for the railroad network con-
sidered in the worked example.

available. The first train follows the route S1—S2—S3—S4—S1 and the second train follows
the route S2—S4—S2. We assume that there exists a periodic timetable that schedules the
earliest departure times of the trains. The period of the timetable is T = 60 minutes. So if a
departure of a train from station S2 is scheduled at 5.13 a.m., then there is also scheduled a
departure of a train from station S2 at 6.13 a.m., 7.13 a.m., and so on. Table 1 summarizes
the information in connection with the nominal traveling times and the departure times. All
the times are measured in minutes. The indicated departure times are the earliest departure
times in the initial station of the track expressed in minutes after the hour. The first period
starts at time t = 0. At the beginning of the first period the first train is in station S1and
the second train is in station S2. We will only consider the basic model here (so speed control
will not be included).

Suppose that we have the following soft synchronization constraints in the network:

• the train on track T2 has to wait for the train on track T6,

• the train on track T4 has to wait for the train on track T5,

• the train on track T5 has to wait for the train on track T1,

• the train on track T6 has to wait for the train on track T3.

The hard connection constraints are that the (virtual) trains on tracks T1, T2, T3 and T4

are physically the same train, and the same holds for the (virtual) trains on tracks T5 and
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T6. The passengers get 2 minutes to change trains (for soft connections) and 1 minute to get
out of the train (for hard connections). Each train departs as soon as all the connections are
guaranteed (except for a soft connection when it is broken), the passengers have gotten the
opportunity to change over, and the earliest departure time indicated in the timetable has
passed. We assume that in the first period all the trains depart according to schedule.

Now we write down the equations that describe the evolution of the xj(k)’s. First we
consider the train on track T1 and we determine x1(k), the time instant at which this train
departs from station S1for the kth time. At the beginning of the first period the train is in
station S1. So if k is equal to 1, the train departs from station S1 at time t = 0. If k is greater
than 1, the train departs from station S1 for the kth time as soon as it has arrived in station
S1 for the (k − 1)th time, the passengers have gotten the time to get out of the train and
the earliest departure time indicated in the timetable has passed. Note that under nominal
operations the kth train on track T1 (e.g., the one that departs from station S1 at, e.g., 10.00
a.m.) gives connection to the (k − 1)th train on track T4 (which has departed from station
S4 at 9.45 a.m.) and not to the kth train on track T4 (which will depart from station S4 at
10.45 a.m.). This implies that the train arrives in station S1 for the (k − 1)th time at time
instant x4(k− 1) + a4,1(k). Afterwards, the passengers have tmin,4,1(k) = 1 minute to get out
of the train. Since the system operates under a periodic timetable with period T , the kth
departure time of the train on track T1 according to the timetable is 0+ (k− 1)T . Hence, we
have

x1(k) = max(x4(k − 1) + a4,1(k) + 1, 0 + (k − 1)T ) (16)

for k = 1, 2, . . ., where we set x4(0) = −∞ to make the equation hold for k = 1 (note that
setting x4(0) = −∞ makes that for k = 1 the first term of the max expression in (16) is
always smaller than the second term), since in the first cycle of the day (i.e., for k = 1) the
train is already present in station S1 so that it departs according to the time schedule.

The train on track T1 will arrive for the kth time in station S2 at time instant x1(k) +
a1,2(k), after which the passengers have tmin,1,2(k) = 1 minute to get out of the train. If k is
greater than 1, then the train has to wait for the passengers of the train on track T6, which
arrives in station S2 at time instant x6(k − 1) + a6,2(k). The passengers have tmin,6,2(k) = 2
minutes to change trains. According to the timetable the train on track T2 can only depart
after time instant 19 + (k − 1)T . Furthermore, since the connection constraint is soft, we
introduce a control variable u6,2(k) to break the connection if necessary. Hence, we have

x2(k) = max(x1(k) + a1,2(k) + 1, x6(k − 1) + a6,2(k) + 2− u6,2(k), 19 + (k − 1)T ) (17)

for k = 1, 2, . . . with x6(0) = −∞. Note that — referring to (6) — we have δ1,2(k) = 0 since
the kth train on track T2 is the same train as the kth train on track T1, and δ6,2(k) = 1 since
the kth train on track T2 gives connection to the (k − 1)th train on track T6.

Using a similar reasoning as the one above, we find that the other departure times are
given by

x3(k) = max(x2(k) + a2,3(k) + 1, 31 + (k − 1)T )

x4(k) = max(x3(k) + a3,4(k) + 1, x5(k) + a5,4(k) + 2− u5,4(k), 45 + (k − 1)T )

x5(k) = max(x1(k) + a1,5(k) + 2− u1,5(k), x6(k − 1) + a6,5(k) + 1, 22 + (k − 1)T ) (18)

x6(k) = max(x3(k) + a3,6(k) + 2− u3,6(k), x5(k) + a5,6(k) + 1, 50 + (k − 1)T )
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Figure 4: The delays with and without MPC control for the railroad network considered in
the worked example.

for k = 1, 2, . . . with xj(0) = −∞ for j = 1, 2, . . . , 6.
Let us now assume that all traveling times are nominal (cf. Table 1) except for a1,2(1) =

a1,5(1) = 30 and a1,2(2) = a1,5(2) = 25. Let Nc = 4, Np = 6, λ = 0.75, cbroken,6,2(k) =
cbroken,5,4(k) = 10, and cbroken,1,5(k) = cbroken,3,6(k) = 5.

If we do not break any connections then we find a maximal delay w.r.t. the departure
time schedule of 12 minutes in the first cycle (for the train on track T2), 14 minutes in the
second cycle (for the train on track T2), 9 minutes in the third cycle (for the train on track
T1), and 2 minutes in the fourth cycle (for the train on track T1); from the fifth cycle on,
the trains will again ride on schedule (see Figure 4). If we do not break any connections,
then the value of the MPC cost function is 134. If we consider the (basic) MPC railway
problem for this network and if we compute the optimal MPC control input for k = 1, we
find with both the nonlinear optimization approach and the ELCP approach the following
solution: completely break the connection T1→T5 in the first and the second cycle. If we
apply this control strategy, then we find a maximal delay w.r.t. the departure time schedule
of 12 minutes in the first cycle (for the train on track T2), 11 minutes in the second cycle (for
the train on track T2), and 3 in the third cycle (for the train on track T1); in the fourth cycle
all the trains again ride on schedule (see Figure 4). The corresponding value of the MPC cost
function is 69.5.

7 Conclusions

We have presented an MPC-like control design method for a class of systems with both soft
and hard synchronization constraints. A typical example of this class are railway systems.
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The control action consists in breaking certain soft connections to prevent delays from accu-
mulating, but this can only be done at a certain cost. We have also considered an extended
problem in which we also allow trains to drive faster if necessary (again at a certain cost). We
have shown that the resulting optimization problem for both the basic railway MPC problem
and the extended railway MPC problem can be solved using ELCPs. Furthermore, due to
the use of a moving horizon strategy and a control horizon this method can be used in on-line
applications and it can deal with (predicted) changes in the system parameters. So if we can
predict the delays that will occur due to an incident or to works, then we can include this
information when determining the optimal control input for the next cycles of the operation
of the network.

An important topic for future research is the development of efficient algorithms to solve
the basic and the extended railway MPC problem. One option could be to develop a branch-
and-bound algorithm to solve optimization problems defined over the solution set of an ELCP.
So instead of first determining the solution set of the ELCP (which is a computationally
intensive operation) and afterwards optimizing the objective function over the parameterized
solution set, we could then perform the optimization and the (implicit) solution of the ELCP
in one step, which should lead to a much more efficient approach. We will also compare
the performance of this branch-and-bound algorithm with the straightforward nonlinear non-
convex optimization approach.
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