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Abstract

Model predictive control (MPC) is a very popular controller design method in the process
industry. One of the main advantages of MPC is that it can handle constraints on the
inputs and outputs. Usually MPC uses linear discrete-time models. Recently we have
extended this framework to max-plus-linear discrete event systems. In this paper we
further explore this topic. More specifically, we focus on implementation and timing
aspects, closed-loop behavior and tuning rules for model predictive control of max-plus-
linear (MPL) systems.

Keywords: model predictive control, discrete event systems, max-plus algebra

1 Introduction

Model predictive control (MPC) [13, 18, 23] was pioneered simultaneously by Richalet et
al. [22], and Cutler and Ramaker [8]. Since then, MPC has probably become the most
applied advanced control technique in the process industry and many papers report successful
applications [21]. MPC provides many attractive features. It can handle constraints in a
systematic way and it can keep the system behavior as close as possible to the constraints
without violating them. MPC is applicable to multi-variable systems and is capable of tracking
pre-scheduled reference signals, using the concept of making predictions based on a model of
the process. Finally, it is an easy-to-tune method. Basically three tuning parameters have to
be chosen and adequate tuning rules are available [18, 23].

Conventional MPC uses (nonlinear) discrete-time models. The evolution of such systems
is time-driven, i.e., in general the state of the system changes every sample step. In this paper
we consider MPC for discrete event systems. In contrast to a discrete-time system, the evolu-
tion of a discrete event system is event-driven, i.e., the state of the system changes due to the
occurrence of events. The class of discrete event systems essentially consists of man-made sys-
tems that contain a finite number of resources (such as machines, communications channels,
or processors) that are shared by several users (such as product types, information packets,
or jobs) all of which contribute to the achievement of some common goal (the assembly of
products, the end-to-end transmission of a set of information packets, or a parallel compu-
tation) [1]. Typical examples of discrete event systems are flexible manufacturing systems,
telecommunication networks, parallel processing systems, traffic control systems and logistic
systems. Some examples of events for these systems are the arrival of a part at a buffer, a
machine that has finished processing a part, a message that arrives at a router, a processor
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that has finished a job, and a traffic signal that switches from red to green. Discrete event
systems with synchronization but no concurrency can be described by models that are “lin-
ear” in the max-plus algebra [1, 7], and are called max-plus-linear systems. Typical examples
of max-plus-linear discrete event systems are serial production lines, queuing systems, railway
networks, and parallel computing systems [1].

In [11] we have extended the MPC framework to max-plus-linear systems and focused on
efficient solution techniques for a single step of the max-plus-linear MPC algorithm. In this
paper we investigate properties and implementation aspects of max-plus-linear MPC. More
specifically, we first consider timing issues and the closed-loop behavior of the system and
its MPC controller, i.e., we now look at the influence of applying MPC during the entire
evolution of the system. In MPC for conventional linear discrete-time systems there exist
rules of thumb for determining appropriate values for the MPC tuning parameters. In this
paper we will show by several examples that these rules also more or less apply to MPC for
max-plus-linear systems, with some minor but important changes.

The paper is organized as follows. In Section 2 we introduce max-plus-linear discrete
event systems and we briefly recapitulate the MPC methodology for max-plus-linear systems.
Section 3 discusses the timing aspects of the controller. In Section 4 we consider the closed-
loop properties of max-plus-linear MPC. Next, we discuss the tuning of the parameters in
MPC for max-plus-linear systems. We conclude with some illustrative examples.

2 The MPC problem for max-plus-linear systems

In [1, 6, 7] it has been shown that discrete event systems with only synchronization and no
concurrency can be modeled by a max-plus-algebraic model of the following form:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (1)

y(k) = C ⊗ x(k) (2)

where k is the event counter, x(k) ∈ R
n×1
ε represents the state, u(k) ∈ R

m×1
ε is the input,

y(k) ∈ R
l×1
ε is the output, with Rε

def
= R ∪ {−∞}, and where A ∈ R

n×n
ε , B ∈ R

n×m
ε , and

C ∈ R
l×n
ε are the system matrices. The operations ⊕ and ⊗ denote max-plus-algebraic

addition and max-plus-algebraic multiplication respectively1:

x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε. For matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε we can extend the definition as

follows:

(A⊕B)ij = aij ⊕ bij = max(aij , bij)

(A⊗ C)ij =
n

⊕

k=1

aik ⊗ ckj = max
k

(aik + ckj)

for all i,j. Define ε = −∞ and the matrix εm×n as the m×n max-plus-algebraic zero matrix:
(εm×n)ij = ε for all i, j. The matrix En is the n × n max-plus-algebraic identity matrix:

1The operations ⊕ and ⊗ are called the max-plus-algebraic addition and max-plus-algebraic multiplication
respectively since many properties and concepts from linear algebra can be translated to the max-plus algebra
by replacing + by ⊕ and × by ⊗ (see [1, 7]).
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(En)ii = 0 for all i and (En)ij = ε for all i, j with i 6= j. The max-plus-algebraic matrix

power of A ∈ R
n×n
ε is defined as follows: A⊗

0
= En and A⊗

k
= A⊗A⊗

k−1
for k = 1, 2, . . .

Systems that can be described by a model of the form (1)–(2) are called max-plus-linear
(MPL) systems. In (1)–(2) the index k is the event counter. For a manufacturing system,
u(k) would typically represent the time instants at which raw material is fed to the system
for the (k+ 1)th time, x(k) the time instants at which the machines start processing the kth
batch of intermediate products, and y(k) the time instants at which the kth batch of finished
products leaves the system. In [11] we have shown that prediction of future values of y(k) for
the system (1)–(2) can be done by successive substitution, leading to the expression

ỹ(k) = C̃ ⊗ x(k) ⊕ D̃ ⊗ ũ(k)

where C̃ and D̃ are given by

C̃ =













C ⊗A

C ⊗A⊗
2

...

C ⊗A⊗
Np













, D̃ =











C ⊗B ε . . . ε
C ⊗A⊗B C ⊗B . . . ε

...
...

. . .
...

C ⊗A⊗
Np−1

⊗B C ⊗A⊗
Np−2

⊗B . . . C ⊗B











,

and ũ(k), ỹ(k) are defined as:

ỹ(k) =











ŷ(k+1|k)
ŷ(k+2|k)

...
ŷ(k+Np|k)











, ũ(k) =











u(k)
u(k+1)

...
u(k+Np−1)











where ŷ(k+j|k) denotes the prediction of y(k+j) based on knowledge at event step k and Np

is the prediction horizon.
The MPC problem for MPL systems is formulated as follows [11]:

min
ũ(k),ỹ(k)

J(ũ(k), ỹ(k)) = min
ũ(k),ỹ(k)

Jout(ỹ(k)) + λJin(ũ(k)) (3)

subject to

ỹ(k) = C̃ ⊗ x(k) ⊕ D̃ ⊗ ũ(k) (4)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) (5)

∆u(k + j) > 0 for j = 0, . . . , Np−1 (6)

∆2u(k + j) = 0 for j = Nc, . . . , Np−1, (7)

where ∆u(k) = u(k)−u(k−1) and ∆2u(k) = ∆u(k)−∆u(k−1) = u(k)−2u(k−1)+u(k−2) ,
Jout is the output cost criterion and Jin the input cost criterion. Equation (5) reflects
constraints on the input and output event separation times or maximum due dates for the
output events, equation (6) guarantees a non-decreasing input signal, and equation (7) is due
to the control horizon Nc (see Section 5). The above problem will be called the MPL-MPC
problem.
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In the remainder of this paper we consider the following output and input objective
functions2:

Jout(k) =

mNp
∑

i=1

max(ỹi(k)− r̃i(k), 0)

Jin(k) = −

lNp
∑

i=1

ũi(k).

These criteria can be interpreted as follows: Jout measures the tracking error or tardiness of
the system, which is equal to the delay between the output dates ỹi(k) and due dates r̃i(k) if
ỹi(k)− r̃i(k) > 0, and zero otherwise; Jin maximizes the input dates ũi(k)

3.
If we replace (4) by the following inequality:

ỹ(k) > C̃ ⊗ x(k) ⊕ D̃ ⊗ ũ(k) (8)

we obtain the relaxed MPL-MPC problem, which is defined by the optimization of (3) subject
to (8), (5), (6) and (7).

Theorem 2.1 Let the mapping ỹ → F (k)ỹ be a monotonically non-decreasing function of
ỹ. Let (ũ∗, ỹ∗) be an optimal solution of the relaxed MPL-MPC problem. If we define ỹ♯ =
C̃ ⊗ x(k)⊕ D̃ ⊗ ũ∗ then (ũ∗, ỹ♯) is an optimal solution of the original MPL-MPC problem.

Proof : See [11]. ✷

So if the linear constraints are monotonically non-decreasing as a function of ỹ(k), the MPL-
MPC problem can be recast as a convex problem4. Moreover, by introducing some additional
dummy variables the problem can even be reduced to a linear programming problem (see
[11]).

MPC uses a receding horizon strategy. So after computation of the optimal control se-
quence u(k), . . . , u(k+Nc−1), only the first control sample u(k) will be implemented, subse-
quently the horizon is shifted and the model and the initial state estimate can be updated if
new measurements are available, then the new MPC problem is solved, etc.

3 Timing

MPC for MPL systems is different from conventional MPC in the sense that the event counter
k is not directly related to a specific time. In the previous section and in [11] we have assumed
that x(k) is available when we optimize over the future control sequence. However, in practice
not all components of x(k) are known at the same time instant (Recall that x(k) contains
the time instants at which the internal activities or processes of the system start for the kth
time). Therefore, we will now present a method to address the timing issues of MPL-MPC.

2Other cost criteria are also possible — see [10, 11].
3For a manufacturing system, this corresponds to a scheme in which raw material is fed to the system as

late as possible. Note that this implies that the internal buffer levels are kept as low as possible.
4Note that (8) can be rewritten in conventional notation as a system of linear inequalities ỹi(k) > c̃ir+xr(k),

ỹ(k) > d̃is + ũs(k) for i = 1, . . . , l, r = 1, . . . , n and s = 1, . . . ,m.
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We consider the case of full state information5. Let [xtrue(k)]i be the measured (true)
occurrence time of the kth occurrence of internal event i, and let [xest(k, t)]i be an estimation
of the kth occurrence time of this event at time t. The estimation can be done using the
following procedure: Let ℓ(t) be the smallest integer such that [xtrue(k − ℓ(t))]i < t for all
i = 1, . . . , n. Hence, [xtrue(k − ℓ(t))]i is completely known at time t. If we define xest(k −
ℓ(t), t) = xtrue(k−ℓ(t)), we can reconstruct the unknown state components using the recursion

xest(k − ℓ(t) + j, t) = A⊗ xest(k − ℓ(t) + j − 1, t)⊕

B ⊗ ũ(k − ℓ(t) + j − 1, t) for j = 1, . . . , ℓ(t),

where for the components of ũ(k − ℓ(t) + j − 1, t) that are less than t we take the actually
applied input times, and for the other components we take the computed values. Finally, the
value of the state x(k) that can be used to compute the MPL-MPC controller at time t is
given by x(k)|t with components [x(k)|t]i for i = 1, . . . , n such that

[x(k)t]i =

{

[xtrue(k)]i if [xtrue(k)]i is known at time t (so [xtrue(k)]i 6 t)

[xest(k, t)]i otherwise.

A second problem that arises in the implementation of MPL-MPC is to find the best time
t = t(k) to determine x(k)|t and to start the optimization to compute the optimal control
sequence ũ(k) with elements u(k|k), u(k+1|k), . . . , u(k+Nc−1|k). A good indication is found
in the previous computed sequence ũ(k−1) with elements u(k−1|k−1), u(k|k−1), . . . , u(k+
Nc−2|k−1): an appropriate time instant to start the computation for the kth optimal input
sequence is given by

t(k) = min
j

[u(k|k − 1)]j − tc ,

where tc is an upper bound for the computation time of the optimization. If the computational
effort for the optimization is not high, i.e.,

tc ≪ t(k + 1)− t(k) ,

then we can additionally do one or more intermediate optimizations with new information. If
we have a system with more than one input, then if some of the kth input event operations
have already started when we start to recompute the kth optimal input sequence, the inputs
that have already been computed and applied should be fixed to their actual values in the
optimization, which will lead to a number of additional equality constraints. Note that
convexity of the relaxed MPL-MPC problem will not be lost by adding these constraints, so
that Theorem 2.1 can still be applied.

4 Closed-loop behavior

In this section we will take a closer look at the closed-loop behavior of an MPL system and
an MPC controller with a control law as derived in Section 2. We will only consider SISO
systems, but most of the properties can be directly interpreted in the multi-variable case.

5Since the components of x(k) correspond to event times, they are in general easy to measure. Also note
that measurements of occurrence times of events are in general not as susceptible to noise and measurement
errors as measurements of continuous-time signals involving variables such as temperature, speed, pressure,
etc.
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4.1 Closed-loop expression

In conventional MPC theory, in the absence of inequality constraints, the closed loop con-
sisting of the (conventional) linear time-invariant (LTI) process with the MPC controller,
is again an LTI system (in the conventional algebra). Unfortunately, there is no analogous
property for MPL systems. For two special cases, a closed analytic expression for the opti-
mal MPL-MPC input sequence was found in [9]6. These expressions involve the operations
minimization and addition. In fact, they are linear in the min-plus algebra, which is the dual
of the max-plus algebra and which has minimization and addition as basic operations. So in
these cases the closed-loop system would be a min-max-plus system. In the general case, the
closed-loop system (consisting of the MPL process with the MPL-MPC controller) will not
be an MPL system, but it will be piecewise affine in the state x(k) and reference r(k) and it
can be described by max-min-plus-scaling functions (this follows directly from the results of
[3, 12, 16]).

4.2 Stability

Stability in conventional system theory is concerned with boundedness of the states. In MPL
systems however, k is an event counter and xi(k) refers to the occurrence time of an event. So
the sequence xi(k), xi(k + 1), . . . should always be non-decreasing, and for k → ∞ the event
time xi(k) will usually grow unbounded. We therefore adopt the following notion of stability
for discrete event systems [20].

Definition 4.1 A discrete event system is called stable if all its buffer levels remain bounded.

Note that in our case we have due dates and that we assume that finished parts are removed
from the output buffer at the due dates (provided that they are present). This means that
there are delays if the parts are not produced before the due date. These delays should also
remain bounded. Therefore, we add as an additional condition for stability that all delays
between due dates and actual output dates remain bounded as well. If there are no internal
buffers that are not (indirectly) coupled to the output of the system (observability), then it
is easy to verify that all the buffer levels are bounded if the dwelling times of the parts or
batches in the system remain bounded. This implies that for an observable SISO discrete
event system with due date r(k) closed-loop stability is achieved if there exist finite constants
Myr, Mry and Myu such that

y(k)− r(k) 6 Myr (9)

r(k)− y(k) 6 Mry (10)

y(k)− u(k) 6 Myu . (11)

Condition (9) means that the delay between the actual output date y(k) and the due date
r(k) remains bounded. Condition (10) implies that the number of parts in the output buffer
will remain bounded. Finally, condition (11) means that the time between the starting date
u(k) and the output date y(k) (i.e., the throughput time) is bounded.

An important observation is that stability is not an intrinsic feature of the system, but
it also depends on the input and the due dates (i.e., the reference signal) of the system.

6These expressions are only valid for another objective function than the one considered in this paper. In
addition the parameter λ has to be set to 0, which is a bad choice, as will be demonstrated in Section 5.2.
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More precisely, it depends on the asymptotic slope of the input and due date sequence. If
by a wrong choice of the MPL-MPC tuning parameters the input rate is too fast, we can get
input buffer overflows and unbounded delays between the output dates and the due dates.
A similar effect will occur if the slope of the due date sequence is not steep enough, since
then the system cannot complete the tasks in time (i.e., y(k) ≫ r(k) for large k) even if
u(k + j) = u(k − 1) for j = 0, 1, . . . (i.e., all tasks are started as soon as possible). So an
input rate and a due date rate that are too fast may result in unstable phenomena. We will
elaborate on this in Section 5.

4.3 Feasibility

The existence of a solution of MPL-MPC at event step k problem can be verified by solving
the system of (in)equalities (4)–(7), which describes the feasible set of the problem. Now,
feasibility in the MPL-MPC problem is comparable to feasibility in conventional MPC. In-
feasibility occurs when solving ũ(k) from (4)–(7) results in a solution set that is empty. In
that case, some constraints could be released. The constraints (4) and (6) should always be
satisfied because of their physical meaning. The control horizon constraint (7) is used to
reduce the number of variables in the optimization. By increasing Nc the degrees of freedom
increases and the optimization may become feasible for a larger Nc. However, an increase of
Nc may give a dramatic increase of computational burden and may also lead to instability
in the case of modeling errors. So for constraint relaxation, we therefore concentrate on the
constraint (5).

If for a certain step k the problem is not feasible, so if the set described by the constraints
(4)–(7) is empty, then constraint (5) can be relaxed as follows. First, we choose a diagonal
matrix R ∈ R

nE×nE with non-negative diagonal entries, where nE is the number of rows of
E(k). Now we introduce a vector ν(k) ∈ R

nE of dummy variables and we solve the problem

min
ũ(k),ỹ(k),ν(k)

Jout(ỹ) + λJin(ũ) +

nE
∑

i=1

νi(k) (12)

subject to (4), (6), (7) and

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) +Rν(k) (13)

ν(k) > 0 . (14)

The entries of diagonal matrix R give a measure on the violation degree of the corresponding
constraints.

For R > 0 optimization problem (12)-(14) is feasible since the constraints can always be
met by making the components of ν(k) sufficiently large. Also note that inclusion of the
term ν1(k) + · · ·+ νnE

(k) in the objective function makes the constraint violations w.r.t. the
original infeasible problem as small as possible. Furthermore, if the original (infeasible)
MPL-MPC problem satisfies the conditions of Theorem 2.1 (i.e. the mapping ỹ → F (k)ỹ is a
monotonically non-decreasing function of ỹ) then the problem (12) – (14) also satisfies these
conditions so that Theorem 2.1 still applies. Moreover, the new objective function is also
convex since the relaxation term is linear.
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5 Tuning

In this section we will give some guidelines to find suitable choices of the three tuning pa-
rameters (Np, Nc, λ) and to select an appropriate due date sequence r(k). The selection
of appropriate parameters has to lead to a stabilizing and effective control law. Again we
assume that we are dealing with a SISO system (so l = m = 1). Furthermore, we will as-
sume irreducibility of the system7. In many applications, e.g., in manufacturing systems, this
assumption is not restrictive [6].

The parametersNp, Nc and λ are the three basic tuning parameters of the MPC algorithm.
However, as we have already pointed out in the previous section, a closer look at the due dates
is necessary for stability reasons. As will be become clear in this section, the conventional
MPC rules of thumb for tuning of Np, Nc and λ can be applied to MPC for MPL systems as
well, with only minor changes. In conventional MPC the following rules of thumb for selecting
Np, Nc and λ are used [23]:

• The parameter λ is usually chosen as small as possible, 0 in most cases. In many cases
(e.g. for non-minimum phase systems), the choice λ = 0 will lead to stability problems
and so λ should be chosen as the smallest positive value that still results in a stabilizing
controller.

• The prediction horizon Np is related to the length of the step response of the system:
the time interval (1, Np) should contain the crucial dynamics of the process.

• The control horizon Nc 6 Np is usually taken equal to the system order.

Before we discuss the MPL-MPC tuning rules, we first need to consider some properties of
the impulse response of an MPL system. The sequence {e(k)}∞k=0 with e(0) = 0 and e(k) = ε
for k 6= 0 is the max-plus-algebraic unit impulse. The output sequence that results from
applying a max-plus-algebraic unit impulse to an MPL system is called the impulse response
of the system8. It is easy to verify that the impulse response of an MPL system with system

matrices A, B, C is given by {G(k)}∞k=0 with G(k) = C ⊗A⊗
k
⊗B.

Proposition 5.1 ([1, 6]) Let {G(k)}∞k=0 be the impulse response of a SISO MPL system
with an irreducible system matrix A. Then there exist constants c, k0 ∈ N\{0} and ρ0 ∈ R

such that

G(k) = c ρ0 +G(k − c) for all k > k0. (15)

An impulse response that exhibits the behavior (15) is called ultimately periodic with cycle
period c. The variable ρ0 gives the average duration of a cycle and is equal to the max-plus-
algebraic eigenvalue of system matrix A. The length of the impulse response is defined as the
minimal value k0 for which (15) holds.

7An MPL system with system matrix A ∈ R
n×n
ε is said to be irreducible if (A ⊕ A⊗

2
⊕ . . . ⊕ A⊗

n−1
)ij 6= ε

for all i, j with i 6= j.
8If we consider a production system then we can give the following physical interpretation to the impulse

response. At event counter k = 0 all the internal buffers of the system are empty. Then we start feeding raw
material to the input buffer and we keep on feeding raw material at such a rate that the input buffer never
becomes empty. The time instants at which finished products leave the system correspond to the terms of the
impulse response.
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The minimal system order of an MPL system is of importance in the selection of the control
horizon Nc. The state space representation of the input-output behavior of a given MPL
system by a triple of system matrices A, B, C is not unique. Just as in conventional system
theory we define the minimal system order of an MPL system as the minimal dimension of the
system matrix A over all possible state space realizations of the given system. In conventional
system theory for linear discrete-time systems the minimal system order is given by the rank
of the semi-infinite Hankel matrix H∞,∞ defined by

H∞,∞ =











G(0) G(1) G(2) . . .
G(1) G(2) G(3) . . .
G(2) G(3) G(4) . . .
...

...
...

. . .











.

with G(k) the kth Markov parameter. In contrast to linear algebra the different notions of
rank (like column rank, row rank, minor rank, . . .) are in general not equivalent in the max-
plus algebra. Nevertheless, a characterization of the minimal system order of an MPL system
can be found in [14]. Unfortunately, computing the minimal system order of an MPL system
is not a trivial task and it is often computationally very intensive. However, upper and lower
bounds for the minimal system order of an MPL system can be determined as follows. The
so-called max-plus-algebraic minor rank and Schein rank of H provide lower bounds [14, 15].
At present, there are no efficient (i.e., polynomial time) algorithms to compute the max-plus-
algebraic minor rank or the Schein rank of a matrix. The max-plus-algebraic weak column
rank of H provides an upper bound [14, 15]. Efficient methods to compute this rank are
described in [7, 14].

5.1 Selection of the due date sequence r(k)

Let ρ0 be the average cycle duration of the system. Then the maximum production rate of
the system is given by 1/ρ0. The slope of due date sequence must therefore be such that the
average production rate is lower than 1/ρ0. For a stable (and — if (5) is present — feasible)
solution we need a due date sequence r(k) for which there exist a ρr > ρ0 and an r0 ∈ R,
such that r(k) > r0 + k ρr for all k.

5.2 Tuning of the parameter λ

The parameter λ makes a trade-off between minimization of the tracking error and the control
effort needed. For λ = 0, the input sequence is not taken into account in the objective function,
and we may not have a unique solution. Any input value u(k) that guarantees ỹ(k) 6 r̃(k)
will do, and so we may set u(k) = u(k − 1) for all k. This will result in an input buffer
overflow for k large.

Input buffer overflow will also appear when λ < 0, because λJin will become infinitely
small. Therefore, the parameter λ should be chosen larger than zero.

A small change of ũ in the neighborhood of the optimum may cause a similar change in
ỹ, such that ∆Jout = −∆Jin. For λ = 1, this causes non-uniqueness of the solution.

For λ > 1 the input cost criterion Jin will be dominant in the optimization, which results
in a maximization of the control input. The input will become unbounded in the absence of
an upper bound ∆umax on the input increment. In the bounded case the increment of the
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input signal will be maximal: ∆u(k) = ∆umax. In the receding horizon implementation this
leads to a unbounded output delay y(k)− r(k) and the system will become unstable.

Resuming, the parameter λ should satisfy

0 < λ < 1 ,

and it is usually chosen as small as possible without causing instability or numerical problems
in the optimization (see Example 3 in Section 6).

5.3 Tuning of the parameter Np

The time interval [1, Np] should contain the crucial dynamics of the process, and important
information of the due date sequence. To be sure that all crucial dynamics are situated in
the prediction interval, a good lower bound for the prediction horizon Np is the length of the
impulse response of the system (k0) (see Example 1). A closer look to the reference signal
may become important if the due dates are gathered in batches (see Example 5).

5.4 Tuning of the parameter Nc

The real power of the MPC approach lies in the assumption made about future control actions.
Instead of allowing them to be “free”, the increments of u(k) are assumed to be zero:

∆2u(k + j − 1) = 0 for j > Nc.

The parameter Nc, called control horizon, can be chosen between 1 and Np. We usually take
it equal to the upper bound of the minimal system order, which is easy to compute [7, 14].
Choosing Nc larger than the system order could be interesting when the constraints are
stringent. On the other hand, one may expect that a small Nc will lead to a more robust
control law in the case of modeling error. The choice Nc = 1 often leads to an unstable or a
degraded closed-loop behavior, because of a lack on degrees of freedom (see Examples 1 and
2). In many cases, the optimal input signal will be asymptotically equal to u(k) = u0+k∆u0,
where u0 and ∆u0 are appropriate constants. We need at least two degrees of freedom to be
able to reach this asymptotic behavior.

6 Examples

The MPC algorithm for MPL systems was simulated for some examples using MATLAB. The
objective is to study the effect of changes in the tuning parameters λ, Np and Nc and the
choice of due date sequence r(k). For the analysis we use two systems.

System 1 is described by the model (1)–(2) with system matrices:

A =









3 5 0 ε
ε ε 0 4
6 1 3 2
3 0 4 ε









, B =









6
6
1
4









, C =
[

6 2 1 2
]

. (16)

This system has a minimal system order n = 4, cycle period c = 4, cycle duration ρ0 = 4.75
and impulse response length k0 = 5.
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Figure 1: The due date sequences used in the examples.

System 2 is described by (1)–(2) with system matrices:

A =









2 5 5 5
ε 2 1 ε
4 2 1 ε
3 0 ε 2









, B =









1
3
6
1









, C =
[

6 3 1 1
]

, (17)

and has a minimal system order n = 3, cycle period c = 1, cycle duration ρ0 = 5 and impulse
response length k0 = 10.

We choose the following due date sequences:

r1(k) = 10 + 4.5 k + 10 e−0.07 k

r2(k) = 10 + 4.9 k + 10 e−0.07 k

r3(k) = 10 + 5.1 k + 10 e−0.07 k ,

and fourth due date sequence signal r4(k), which is a staircase signal with batches, which
increase in length and satisfy: r4(k) > r2(k) for all k (see Figure 1).

Figures 2–7 display the tracking error y(k)− r(k) over 70 simulation samples for various
settings of the control parameters.

Example 1 (Influence of Np):

In Figure 2 the influence of Np on the closed-loop of System 1 with an MPC controller is
displayed for Nc = 1. We have selected r(k) = r2(k) and fixed λ = 0.001. It is clear that
Np = 1 gives an unstable closed loop behavior, because of the unbounded growth of the
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Figure 5: Influence of λ.
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output delay. Increasing Np from 2 to 25 leads to a decrease in delays. In Figure 2 we have
repeated the above simulations for Nc = 2.

Example 2 (Influence of Nc):

Figure 3 reveals the influence of Nc on the closed-loop behavior of System 2 with an MPC
controller. Taking Nc = 1 leads to an unstable behavior, Nc = 2 gives a sluggish output
response, and for Nc > 3 (= the minimal system order) the tracking error is minimal.

Example 3 (Influence of λ):

Figure 4 shows that λ > 1 leads to an unstable MPC-control law. For 0 < λ < 1 the control
law is stabilizing, with a better tracking behavior for λ closer to zero (the choices λ = 0 and
λ = 1 lead to uniqueness problems and are not displayed).

Example 4 (Influence of r(k)):

Figure 5 shows the tracking error of System 1 for the input signals r1(k), r2(k) and r3(k).
Note that r1(k) has an asymptotic slope ρr = 4.5 < ρ0 = 4.75. The due date-schedule is too
tight and the delays grow unbounded. The asymptotic slopes of r2(k) and r3(k) are larger
than 4.75. We see that the tracking error |y(k)− r(k)| becomes zero for large k.

Next, we choose the staircase due date sequence r4(k) in which the due dates are gathered
in batches. For this due date sequence we study the influence of Np. The batch-length ℓb
increases by 1 for every next batch. If the prediction horizon is fixed to Np, we can only look
Np “orders” ahead. If a batch length is larger than the prediction horizon, the (Np + 1)th
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Figure 6: Influence of the due date sequence r(k).
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Figure 7: Influence of Np for a staircase due date sequence.

order is not considered in the optimization, and the production of this order is started too
late. The result is a delay for ℓb > Np. Consider the dash-dot line in Figure 7, corresponding
to Np = 8. For the batch corresponding to k = 28, . . . , 35, we have ℓb = 8. This batch
can still be produced in time, without delay. However, the next batch, which corresponds to
k = 36, . . . , 44 (so ℓb = 9), results in a delay for k = 44.

7 Discussion

Model predictive control (MPC) for max-plus-linear (MPL) systems is a practical approach to
design optimal input sequences for a specific class of discrete event systems without concur-
rency or choice and in which only synchronization plays a role. Typical examples of discrete
event systems that fall into this class are serial production lines, queuing systems, railway
networks, and parallel computing systems. In this paper we have considered several prop-
erties and implementation aspects of MPL-MPC. The timing of MPC for MPL systems is
not as straightforward as in conventional MPC. Therefore, we have presented a method to
tackle the timing issues of MPL-MPC. In conventional MPC we can guarantee closed-loop
stability by the introduction of an end-point constraint [19]. Unfortunately, for MPL systems
such an end-point constraint is not yet derived. However, making appropriate choices for the
controller parameters and selecting an adequate due date sequence, results in a stabilizing and
effective MPC control law. Initial settings for the parameters (Np, Nc, λ) were given and the
influence of the due date sequence r(k) was studied. In practical industrial situations, these
initial parameter settings have to be fine-tuned to obtain the desired closed-loop behavior.
Because of the receding horizon strategy used in MPC, and the properties of the max-plus
algebra, it is not so straightforward to study closed-loop behavior and an analytic closed-loop
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expression is hard to find (contrary to conventional MPC for linear time-invariant discrete-
time systems). However, it can be shown that the closed-loop MPL-MPC system is piecewise
affine. The issue of stability has been discussed and we have considered the relation between
buffer overflow and the values of the tuning parameters and the due date signal. Based on
closed-loop aspects and some illustrative examples, we have derived some guidelines for the
settings of tuning parameters and the due date sequence.

MPC for max-plus-linear systems is closely related to MPC for mixed-logical-dynamical
(MLD) systems [2, 5]. To be more precise: the set of max-plus-linear systems is a subset
of the class of max-min-plus-scaling systems, which is shown to be equivalent to the above
mentioned set of MLD systems [3, 4]. The disadvantage of MPC using MLD models is the
fact that this approach needs integer variables and therefore will lead to a mixed integer
linear programming problem, which is known to be NP-hard. The advantage of exploiting
the special structure of MPL systems is that the final optimization in the MPC algorithm
boils down to a linear programming problem with real-valued variables, which is polynomially
solvable [17] and for which efficient algorithms are available.

An important topic for future research will be to include noise and uncertainty in the
timing and tuning rules, based on the MPC algorithms for perturbed MPL systems developed
in [26, 25, 24]. Furthermore, we will study stability in more detail and put our focus on a
MPL-MPC equivalent of the conventional MPC end-point constraint.
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