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Abstract

We further enhance our previous results on model pre-

dictive control (MPC) for railway systems with both hard

and soft connection constraints, i.e., railway systems where,

if necessary, some connections may be broken (but then a

penalty is incurred). In this paper we extend the previous

model by also including variable traveling times, which of-

fers an extra degree of freedom for control. We present an

MPC framework for railway systems, where the main aim of

the control is to recover from delays in an optimal way by

breaking connections and/or letting some trains run faster

than usual (both at a cost). In general, the MPC control de-

sign problem for railway systems leads to a nonlinear non-

convex optimization problem, but we show that the optimal

MPC strategy can be computed using extended linear com-

plementarity problems or integer programming.

1 Introduction and overview

Currently, model predictive control (MPC) [10, 12] is

one of the most popular advanced control design techniques

in the process industry. MPC is a model-based control de-

sign method that allows the inclusion of constraints on in-

puts and outputs, and that can handle changes in the system

parameters by using a moving horizon approach, in which

the model and the control strategy are updated continu-

ously. In this paper we extend and adapt the MPC frame-

work to railway (or subway) networks. Note that the ap-

proach can also be used for, e.g., logistic systems. The pro-

posed MPC approach has the following ingredients (which

are also present in conventional MPC): a prediction hori-

zon, a receding horizon procedure, and a regular update of

the model and re-computation of the optimal control input.

In [5] we have already extended MPC to a class of

discrete event systems with “hard” synchronization con-

straints, i.e., synchronization constraints that should always

be met. However, railway networks are characterized by

the occurrence of both soft and hard synchronization con-

straints. A typical example of a hard synchronization con-

straint in a railway context is when a train should give a

guaranteed connection to another train. However, in some

cases (e.g., if there are delays) we could allow a train to

depart although not all trains to which it should give con-

nection according to the schedule have arrived at the sta-

tion: if some of these trains have a too large delay, then

it is sometimes better — from a global performance view-

point — to let the train depart anyway in order to prevent an

accumulation of delays in the network. Of course, missed

connections lead to a penalty due to dissatisfied passengers

or due to compensations that have to be paid. Synchro-

nization constraints that may be broken (but at a cost) are

called soft synchronization constraints. In [4, 6] we have

presented a modeling framework for railway systems and

other discrete event systems with soft and hard synchro-

nization constraints. In this paper, which is an improved

and significantly extended version of [4, 6], we consider an

extra degree of freedom for the control by letting trains run

faster than their nominal speed if necessary. Of course, this

control action will also lead to extra costs (due to increased

energy consumption or faster wear of the material).

Other work in connection with modeling and control of

railway networks in a discrete event systems context can be

found in [1, 7, 9, 11]. The main contribution and difference

of our approach compared to the work by other researchers

is that we present an on-line model-based control design

approach that includes hard and soft synchronization con-

straints, that is an extension of the popular MPC approach,

and that uses optimization with continuous variables. Note

that we do not consider re-routing or adapting the timetable.

2 A modeling framework for railway net-

works

Consider a railway operations system, the nominal op-

eration of which follows a timetable with a period T . We
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Figure 1. A part of a railway network.

assume that all the trains follow a pre-scheduled route. Let

n be the number of tracks in the network. Each track has

a number and a virtual train allocated to it. For the sake

of simplicity we will say “(virtual) train j” to denote the

(physical) train on track j, and “station j” to denote the sta-

tion at the beginning of track j (cf. Figure 1). Let x j(k) be

the time instant at which train j departs from station j dur-

ing the kth operation cycle. Let d j(k) be the departure time

for this train according to the timetable, and let a j(k) be the

actual traveling time of this train.

The set C j(k) of trains to which the train on track j gives

a connection during cycle k can be divided into a set of hard

connections C hard
j (k) (e.g., if the train on track i and the

train on track j are physically the same train, or if it is a very

important connection that should be guaranteed at all costs)

and a set of soft connections C soft
j (k) (e.g., local trains to

which the train j should give connection, but if the local

train i ∈ C soft
j (k) has a too large delay, then the connec-

tion may be broken; however, in that case a maximal cost

cbroken
i, j (k) is associated with the broken connection). We

also define a minimum connection time tmin
i, j (k) for passen-

gers to get from train i to train j for each train i ∈ C j(k).
We have the following constraints for the departure time

x j(k) of train j in the cycle k:

• timetable constraint: Train j should not depart before the

departure time given in the timetable has passed:

x j(k)> d j(k) . (1)

• hard synchronization constraints:

If there is another train i to which train j should give a

hard connection, then train j may only depart if train i

has arrived and the passengers have gotten enough time

to get out of the train or to change trains. So

x j(k)> xi(k−δi, j(k))+ai(k)+ tmin
i, j (k) (2)

for each i ∈ C hard
j (k), where δi, j(k) denotes the cycle de-

lay between train i and train j for the kth cycle, i.e., train

j in cycle k gives connection to the train i ∈ C j(k) that

departed from its station in cycle k−δi, j(k).

• soft synchronization constraints:

If the connection takes place, we have a constraint that is

similar to (2). If the connection with train i ∈ C soft
j (k) is

broken, train j departs before train i has arrived and all

the passengers have gotten the time to change trains. So

for each train i ∈ C soft
j (k) we have

x j(k)> xi(k−δi, j(k))+ai(k)+ tmin
i, j (k)

if the connection takes place,

x j(k)< xi(k−δi, j(k))+ai(k)+ tmin
i, j (k)

if the connection is broken.

If we introduce a control variable ui, j(k)> 0, then we can

combine these equations into

x j(k)> xi(k−δi, j(k))+ai(k)+ tmin
i, j (k)−ui, j(k) (3)

where ui, j(k) can be used to guarantee or to break a con-

nection.

Since we let a train depart as soon as all connection condi-
tions are satisfied, (1) – (3) leads to:

x j(k)=max
(

d j(k), max
i∈C hard

j (k)

(

xi(k−δi, j(k))+ai(k)+ tmin
i, j (k)

)

,

max
i∈C soft

j (k)

(

xi(k−δi, j(k))+ai(k)+ tmin
i, j (k)−ui, j(k)

)

)

(4)

Apart from breaking soft connections if necessary, we

also consider adapting the speed of the train as an addi-

tional control measure. Of course, this will lead to extra

costs (due to increased energy consumption or faster wear

of the material). Let amin
i (k) be the minimal traveling time

(i.e., assuming that the train runs at full speed) from station

i to station j for each train i ∈ C j(k), and let anom
i (k) be the

nominal traveling time (i.e., assuming that the train runs at

its most economical speed, while still guaranteeing that the

timetable is met within a given safety margin). We intro-

duce an extra control variable vi(k) to modify the traveling

time ai(k) on track i (i.e., the track from station i to station

j) in cycle k:

ai(k) = anom
i (k)− vi(k)

with the constraint 0 6 vi(k)6 anom
i (k)−amin

i (k) for all k, i.
This results in:

x j(k)=max
(

d j(k), (5)

max
i∈C hard

j (k)
(xi(k−δi, j(k))+anom

i (k)− vi(k)+ tmin
i, j (k)),

max
i∈C soft

j (k)
(xi(k−δi, j(k))+anom

i (k)− vi(k)+ tmin
i, j (k)−ui, j(k))

)

.

3 The railway MPC problem

Define tslack
i, j (k) as the slack time of the arrival of train i ∈

C soft
j (k) at station j (transit time tmin

i, j (k) included) w.r.t. the
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Figure 2. The piecewise-affine cost function
Jbroken for broken connections defined by (6).

actual departure time of train j in cycle k:

tslack
i, j (k)=xi(k−δi, j(k))+anom

i (k)− vi(k)+ tmin
i, j (k)− x j(k) .

If tslack
i, j (k)6 0, the connection between train i and j is com-

pletely guaranteed (with enough time for the passengers to
change trains). If tslack

i, j (k) > tmin
i, j (k), train j leaves the sta-

tion before the arrival of train i. If 0 < tslack
i, j (k) 6 tmin

i, j (k),
the connection is partly guaranteed (i.e., fast-running pas-
sengers get the connection, but slower ones may lose it).
Therefore, we define the cost of a broken connection as the
following piecewise-affine function (cf. Figure 2):

Jbroken
i, j (k)=























0 if tslack
i, j (k)6 0,

cbroken
i, j (k)

tmin
i, j (k)

tslack
i, j (k) if 0 < tslack

i, j (k)6 tmin
i, j (k),

cbroken
i, j (k) if tslack

i, j (k)> tmin
i, j (k).

(6)

We use the following quadratic cost function to express

the extra costs related to increasing the speed of the train on

track i in cycle k:

J
speed
i (k) = c

speed
i (k)v2

i (k) . (7)

where c
speed
i (k) characterizes the extra cost per squared unit

traveling time decrease for the train on track i in cycle k.
In each MPC cycle we consider the evolution of the sys-

tem over a given prediction horizon Np. We define the fol-
lowing cost function over the period consisting of cycles k
up to k+Np −1:

Jcost(k) =
Np−1

∑
l=0

n

∑
j=1

coff
j (k+ l)

(

x̂ j(k+ l|k)−d j(k+ l)
)2

+

λ
Np−1

∑
l=0

n

∑
j=1

∑
i∈C soft

j (k+l)

Jbroken
i, j (k+ l)+

µ
Np−1

∑
l=0

n

∑
j=1

∑
i∈C j(k+l)

J
speed
i (k+ l) (8)

where λ ,µ > 0 are weighting factors, coff
j (k) is the off-

schedule cost per time unit for train j in cycle k, x̂ j(k+ l|k)
is the estimate of the departure time x j(k+ l) in cycle k+ l

based on the state of the network at the beginning of cycle

k and on the future inputs ui, j(k+ p) for p = 0,1, . . . , l. The

cost function Jcost has three components: the first tries to

keep the trains running on schedule, the second penalizes

broken connections, whereas the third expresses the extra

costs related to increasing the speeds of the trains. The fac-

tors λ and µ determine the trade-off or the relative weights

of the three components of the MPC cost function.

Now consider the following controller design problem
— which is called the railway MPC problem at cycle k:

min
ui, j(k),...,ui, j(k+Np−1)

vi(k),...,vi(k+Np−1)

Jcost(k) (9)

subject to

x̂ j(k+ l|k) = max
(

d j(k+ l), (10)

max
i∈C hard

j (k+l)

(

x̂i(k+ l −δi, j(k+ l)|k)+anom
i (k+ l)

− vi(k+ l)+ tmin
i, j (k+ l)

)

,

max
i∈C soft

j (k+l)

(

x̂i(k+ l −δi, j(k+ l)|k)+anom
i (k+ l)

− vi(k+ l)+ tmin
i, j (k+ l)−ui, j(k+ l)

)

)

0 6 ui, j(k+ l) (11)

0 6 vi(k+ l)6 anom
i (k+ l)−amin

i (k+ l) (12)

for all i, j and for l = 0, . . . ,Np −1 and with

x̂ j(k+ p|k) = xi(k+ p) if p < 0.

In addition, to reduce the number of control variables we

can — just as in conventional MPC — introduce a control

horizon Nc (6 Np) and set

ui, j(k+ l)=ui, j(k+Nc −1) and vi(k+ l)=vi(k+Nc −1)

for l = Nc, . . . ,Np − 1. This condition can be interpreted

as follows: if after Nc cycles the delays have died out —

i.e., it is not necessary to break connections or to speed up

the trains any more (so ui, j(k+Nc) = vi(k+Nc) = 0 for all

i, j), — we do not break any connections or speed up trains

in the subsequent cycles either. On the other hand, if the

delays are still such that a connection should be broken in

cycle k+Nc or such that some trains should still ride faster

than usual, we will also break these connections or let the

trains ride faster in the subsequent cycles.

Just like in conventional MPC we use a moving horizon

approach, i.e., the railway MPC problem is solved for the

current cycle, next the computed controls for that cycle are

applied, and meanwhile the model is updated, and the com-

putation is performed again for the next cycle. So we can

also include predictable future delays (due to incidents, bro-

ken power lines, works, etc.) into our prediction model.



4 Algorithms for the railway MPC problem

In general each step of the railway MPC problem leads to

a nonconvex nonlinear optimization problem, which can be

solved using a multi-start local optimization method such

as multi-start sequential quadratic programming. A ma-

jor disadvantage of local minimization is that in general

the minimization routine will only return a local minimum

and that several starting points are necessary to obtain a

good approximation to the global optimum. Therefore, we

now present an alternative approach to compute the opti-

mal MPC control input, which is based on a mathematical

programming problem called the Extended Linear Comple-

mentarity Problem (ELCP). The ELCP is defined as [2]:

Given A ∈ R
p×n, c ∈ R

p, and m subsets φ1,. . .,φm of

{1,. . ., p}, find z ∈ R
n such that

∏
i∈φ j

(Az− c)i = 0 for j = 1, . . . ,m, (13)

subject to Az > c.

Equation (13) can be interpreted as follows: each set φ j cor-

responds to a group of inequalities of Az > c and in each

group at least one inequality should hold with equality. So

for each j there should exist an i∈ φ j such that (Az−c)i = 0.

Proposition 1 The evolution equations and the constraints

of the railway MPC problem can be recast as an ELCP.

Proof : The proof follows the same lines as [6]. Although

compared to [6] we have included extra control variables

for the speed in this paper, these extra variables can be dealt

with in the same way as the connection control variables

as far as the conversion to the ELCP is concerned. Ba-

sically, the proof is based on the fact that max(α,β ) = γ
with α,β ,γ ∈ R can be rewritten as the ELCP γ −α > 0,

γ −β > 0, (γ −α) · (γ −β ) = 0. �

We discuss two approaches to compute the optimal railway

MPC strategy using an ELCP.

• optimization over the solution set of the ELCP:

The solution set of an ELCP is the union of a subset of

faces of the polyhedron defined by Az 6 c. In [2] we have

developed an algorithm that yields a parametric descrip-

tion of the solution set of an ELCP in which each face is

presented by its vertices. The optimal MPC strategy can

now be obtained by determining for each face the point

for which the objective function Jcost(k) reaches a global

minimum (this is an optimization over a convex set) and

afterward selecting the overall minimum.

The advantage of this approach compared to straightfor-

ward nonlinear constrained optimization is that now we

A

B

C

DE

1 2

3

4

5

6 7

8

Figure 3. The railroad network of the example
of Section 5.

have to solve a sequence of optimization problems with

a convex feasible set instead of one big problem with a

nonconvex feasible set. Optimization problems with a

convex feasible set (albeit with a nonconvex objective

function) are easier to solve numerically than problems

with a nonconvex feasible set. Since the algorithm of [2]

to compute the solution set of a general ELCP requires

exponential execution times, this approach is not feasible

if Nc is large. Therefore, we also present another ELCP-

based approach, which uses mixed-integer optimization.

• mixed-integer optimization:

In [3] we show that an ELCP with a bounded feasible set

can be rewritten as the following mixed-integer problem:

δ ∈ {0,1}p
, z ∈ R

n (14)

∑
i∈φ j

δi 6 #φ j −1 for j = 1,2, . . . ,m, (15)

0 6 (Az− c)i 6 d
upp
i δi for i = 1, . . . , p . (16)

with d
upp
i = maxz∈Rn{(Az− c)i | Az > c}. This implies

that the optimal MPC strategy can be determined by min-

imizing the objective function Jcost(k) subject to (14)–

(16) using, e.g., a branch-and-bound method [8].

5 Worked example

Consider the railroad network of Figure 3. There are 5

stations (A, B, C, D and E), connected by 8 single tracks.

There are two trains available. The first train follows the

route A → B → C → D → E → A and the second train fol-

lows the route B→D→E →B. The period of the timetable

is T = 60 minutes, Table 1 summarizes the information in

connection with the nominal traveling times and the depar-

ture times. All the times are measured in minutes. The first

cycle starts at time t = 0. At the beginning of the first cycle

the first train is in station A and the second in station B.

Suppose that we have to guarantee the following soft

connection constraints:



Track From To Nominal Scheduled
station station traveling departure time

time modulo 60

1 A B 12 00

2 B C 10 15

3 C D 8 26

4 D E 6 36

5 E A 15 44

6 E B 26 45

7 B D 20 14

8 D E 6 37

Table 1. The nominal traveling times and the
departure times.

- the train on track 2 has to wait for the train on track 6,

- the train on track 6 has to wait for the train on track 4,

- the train on track 7 has to wait for the train on track 1.

The hard connection constraints are that the (virtual) trains

on tracks 1, 2, 3, 4 and 5 are physically the same train, and

the same holds for the trains on tracks 6, 7 and 8. The pas-

sengers get 2 minutes to change trains (for soft connections)

and 1 minute to get out of the train (for hard connections).
First, we determine x1(k). At the beginning of the first

cycle train 1 is in station A. So if k = 1, the train de-
parts from station A at time t = 0. If k > 1, the train de-
parts from station A as soon as it has arrived in station
A (via track 5) and the passengers have got the time to
get out of the train and the earliest departure time indi-
cated in the timetable has passed. Under nominal opera-
tions the train on track 1 in cycle k will give connection to
the train on track 5 that has departed in the previous cy-
cle, i.e., in cycle k − 1. This train arrives in station A at
t = x5(k−1)+a5(k) = x5(k−1)+anom

5 (k)−v5(k), and af-

terward, the passengers have tmin
5,1 (k) = 1 minute to get out

of the train. The departure time of the train on track 1 ac-
cording to the timetable is 0+(k−1)T in cycle k. So if we
set x5(0) =−∞, we have

x1(k) = max(x5(k−1)+anom
5 (k)− v5(k)+1, 0+(k−1)T )

for k = 1,2, . . . The train on track 1 will arrive in station B
at t = x1(k)+ anom

1 (k)− v1(k), after which the passengers

have tmin
1,2 (k) = 1 minute to get out of the train. If k > 1, the

train has to wait for the passengers of the train on track 6,
which arrives in station B at t = x6(k−1)+anom

6 (k)−v6(k).

The passengers have tmin
6,2 (k) = 2 minutes to change trains

(since connection 6 → 2 is a soft connection). According to
the timetable the train on track 2 can only depart after t =
15+(k−1)T . Furthermore, since the connection constraint
is soft, we introduce a control variable u6,2(k) to break the
connection if necessary. So if we set x6(0) =−∞, we have

x2(k)=max(x1(k)+anom
1 (k)− v1(k)+1,

x6(k−1)+anom
6 (k)− v6(k)+2−u6,2(k),15+(k−1)T )

for k = 1,2, . . . Similarly, we find

x3(k) = max(x2(k)+anom
2 (k)− v2(k)+1,26+(k−1)T )

x4(k) = max(x3(k)+anom
3 (k)− v3(k)+1,36+(k−1)T )

x5(k) = max(x4(k)+anom
4 (k)− v4(k)+1,44+(k−1)T )

x6(k) = max(x4(k)+anom
4 (k)− v4(k)+2−u4,6(k),

x8(k)+anom
8 (k)− v8(k)+1,45+(k−1)T )

x7(k) = max(x1(k)+anom
1 (k)− v1(k)+2−u1,7(k),

x6(k−1)+anom
6 (k)− v6(k)+1,14+(k−1)T )

x8(k) = max(x7(k)+anom
7 (k)− v7(k)+1,37+(k−1)T )

for k = 1,2, . . . with x j(0) =−∞ for j = 1,2, . . . ,8.

Assume that all traveling times are equal to their usual

values (cf. Table 1) except for those of the train on track 1

during the 1st, 2nd, 3rd and 4th operation cycle: anom
1 (1) =

anom
1 (2) = 25, anom

1 (3) = 20, and anom
1 (4) = 15.

Now we apply MPC algorithm (including the receding

horizon approach) to the system over a simulation period

[1,K] with K = 12. We take Nc = 0.5n= 4, Np = 6, λ = µ =
0.5, cbroken

6,2 (k) = 2, cbroken
1,7 (k) = cbroken

4,6 (k) = 5, coff
i, j (k) = 1,

c
speed
i (k) = 1, and anom

i (k)− amin
i (k) = 1 (i.e., the maximal

possible gain in the traveling time by running at full speed is

1 minute) for all i, j,k. We discern four different cases: no

control (NC), connection control only (CC), speed control

only (SC), and connection and speed control (C&SC).
We have assumed that at the beginning of each MPC cy-

cle both the correct state vector (i.e., the actual departure
times in the previous cycle) and the delay for that cycle
were known1. By re-computing the optimal control strategy
at the beginning of each cycle and by applying the receding
horizon approach, MPC can adapt the control strategy to
changes in the system and take new information (e.g., about
delays and actual departure and arrival times) into account
as it becomes available. Clearly, this has a positive effect
on the performance of the system as can be seen from Fig-
ure 4 and Table 2, where we have also listed the “total” cost
function over the simulation horizon:

Jtotal=
K

∑
l=1

n

∑
j=1

(

x j(l)−d j(l)
)2

+λ
K

∑
l=1

n

∑
j=1

∑
i∈C soft

j (l)

Jbroken
i, j (l)+

µ
K

∑
l=1

n

∑
j=1

∑
i∈C j(l)

J
speed
i (l) .

Finally, we have computed the optimal control (OC) signal

that minimizes Jtotal by solving the MPC optimization prob-

lem for cycle k = 1 with all delays assumed to be known

and with Nc = Np = K. In this particular case, the perfor-

mance of the OC control signal coincides almost completely

with that of the closed-loop MPC signal. In general, the

OC control signal may lead to a better performance (under

1I.e., for k = 1 we know that anom
1 (1) = 25 but the other values are

assumed to be given by Table 1, for the optimization for k = 2 we assume

that anom
1 (2) = 25, with the other values given by Table 1, etc.



Case Delays Jtotal

No control (NC) 13, 22, 26, 25, 21, 18, 14, 11, 7, 4, 0, 0 19 333.00

Connection (CC) 11, 20, 24, 23, 21, 17, 13, 9, 5, 1, 0, 0 10 768.90

Speed (SC) 12, 16, 15, 9, 1, 0, 0, 0, 0, 0, 0, 0 2 973.33

Connection and speed (C&SC) 10, 14, 13, 7, 1, 0, 0, 0, 0, 0, 0, 0 1 567.97

Optimal control (OC) 10, 14, 13, 7, 1, 0, 0, 0, 0, 0, 0, 0 1 568.01

Table 2. Delays and total cost function for the closed-loop MPC and OC control signals.
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Figure 4. Delays for the closed-loop MPC and

OC control signals over [1,K].

the assumption that there are no disturbances and modeling

errors). Note, however, that computing the OC control in-

put requires much more computation time than computing

the MPC control inputs. Furthermore, the MPC approach

is more robust since it is a control strategy that can take

changes in the system and new information about actual ar-

rival and departure times, actual traveling times, and up-

dated estimates of the delays into account.

6 Conclusions

We have proposed a modeling framework for railway

and subway systems with both soft and hard synchroniza-

tion constraints, and we have presented an MPC-like control

design method for these systems. The control actions con-

sist in breaking certain soft connections or letting trains ride

faster to prevent delays from accumulating, but this can only

be done at a certain cost. We have shown that the resulting

optimization problem can be solved using ELCPs. Further-

more, due to the use of a moving horizon strategy and a

control horizon the railway MPC method can be used in on-

line applications and it can deal with (predicted) changes in

the system parameters. So if we can predict the delays that

will occur due to an incident, maintenance, or works, we

can include this information when determining the optimal

control input for the next operation cycles of the network.
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