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Abstract

In previous work we have introduced model predic-

tive control (MPC) for max-plus-linear and max-min-plus(-

scaling) discrete-event systems. For max-plus-linear sys-

tems there are efficient algorithms to solve the correspond-

ing MPC optimization problems. However, previously, for

max-min-plus(-scaling) systems the only approach was to

consider a limited subclass of decoupled max-min-plus sys-

tems or to use nonlinear nonconvex optimization algo-

rithms, which are not efficient if the size of the system or

the MPC optimization problem is large. In this paper, we

present a more efficient approach that is based on canoni-

cal forms for max-min-plus-scaling functions and in which

the MPC optimization problem is reduced to a set of linear

programming problems.

1 Introduction

In [6, 8] we have extended the model predictive con-

trol (MPC) framework to max-min-plus and max-min-plus-

scaling systems. These systems are extensions of max-plus-

linear systems [1, 5], which can be used to model discrete-

event systems with synchronization but no choice. The oc-

currence of choice can lead to the appearance of the min-

imum operation. This results in max-min-plus systems.

A further extension is obtained by adding scalar multi-

plication. This yields max-min-plus-scaling (MMPS) sys-

tems, which are also equivalent to certain classes of hybrid

systems, such as mixed logical dynamic systems [2] and

piecewise-affine systems [11], as is shown in [10].

In MPC for max-plus-linear systems the resulting opti-

mization problem can be rewritten as a convex or a linear

optimization problem. However, such a nice property does

not hold for MMPS systems, except for a limited class of

systems (see [6, 8]). In general, the optimization problems

that occur in MPC for MMPS systems are nonconvex non-

linear optimization problems, which in general are known to

be hard to solve. The main result of this paper is the devel-

opment of a new, more efficient method to solve the MPC

optimization problem for MMPS systems. This method is

based on canonical forms for MMPS functions and results

in an algorithm that is similar to the cutting-plane algorithm

for convex optimization [3]. The proposed algorithm con-

sists in solving several linear programming problems and is

more efficient than the algorithms used in [6, 8].

2 Max-min-plus-scaling systems

An MMPS function f of the variables x1, . . . ,xn is de-

fined by the recursive grammar1

f := xi|α|max( fk, fl)|min( fk, fl)| fk + fl |β fk , (1)

with i ∈ {1, . . . ,n}, α,β ∈ R, and where fk and fl are again

MMPS functions.

Consider a system that can be described by state space

equations of the following form2:

x(k) = Mx(x(k−1),u(k),v(k)) (2)

y(k) = My(x(k),u(k),v(k)) , (3)

where Mx,My are MMPS functions, and where x(k) is the

state vector, y(k) the output vector, and u(k) and v(k) are

the input vectors. More specifically, we discern two types

of inputs: controllable inputs (u(k)) and uncontrollable in-

puts (v(k)). Systems the behavior of which can be described

by a model of the form (2)–(3) will be called (extended)

MMPS systems. Typical examples of MMPS systems in a

discrete-event systems context are digital circuits, computer

networks, telecommunication networks, and manufacturing

plants. MMPS systems encompasses several other classes

of discrete-event systems such as max-plus-linear systems,

1The symbol | stands for “or”.
2The counter k in (2)–(3) can be either a sample step counter (for

discrete-time systems), or an event counter (for discrete-event systems).



max-plus-bilinear systems, max-plus-polynomial systems,

separated max-min-plus systems, and max-min systems [7].

So MMPS systems can be considered as a generalized

framework for several classes of discrete-event systems.

Moreover, recently a link between constrained MMPS sys-

tems and hybrid systems — among which piecewise-affine

systems — has been established [10].

3 Canonical forms of MMPS functions

Let α,β ,γ ,δ ,ρ ∈ R with ρ > 0. It is easy to verify that

min(max(α,β ),max(γ ,δ )) =

max(min(α,γ),min(α,δ ),min(β ,γ),min(β ,δ )) (4)

max(min(α,β ),min(γ ,δ )) =

min(max(α,γ),max(α,δ ),max(β ,γ),max(β ,δ )) (5)

min(α,β )+min(γ ,δ ) =

min(α + γ ,α +δ ,β + γ ,β +δ ) (6)

max(α,β )+max(γ ,δ ) =

max(α + γ ,α +δ ,β + γ ,β +δ ) (7)

max(α,β ) =−min(−α,−β ) (8)

ρ max(α,β ) = max(ρα,ρβ ) (9)

ρ min(α,β ) = min(ρα,ρβ ) . (10)

Theorem 3.1 Any MMPS function f : Rn → R can be

rewritten in the min-max canonical form

f = min
i=1,...,K

max
j=1,...,ni

(αT
(i, j)x+β(i, j)) (11)

or in the max-min canonical form

f = max
i=1,...,L

min
j=1,...,mi

(γT
(i, j)x+δ(i, j)) (12)

for some integers K, L, n1, . . . ,nK , m1, . . . ,mL, vectors α(i, j),

γ(i, j), and real numbers β(i, j), δ(i, j).

Proof : We will only prove the theorem for the min-max
canonical form since the proof for the max-min canonical
form is similar.
It is easy to verify that if fk and fl are affine functions, then
the functions that result from applying the basic construc-
tors of an MMPS function (max, min, +, and scaling —
cf. (1)) are in min-max canonical form.
Now we use a recursive argument that consists in
showing that if we apply the basic constructors of
an MMPS function to two (or more) MMPS func-
tions in min-max canonical form, then the result can
again be transformed into min-max canonical form.
Consider two MMPS functions f and g in min-max
canonical form3: f = min(max( f1, f2),max( f3, f4)) and

3For the sake of simplicity we only consider two min-terms in f and g,

each of which consists of the maximum of two affine functions. However,

the proof also holds if more terms are considered.

g = min(max(g1,g2),max(g3,g4)). Now we show that
max( f ,g), min( f ,g), f + g and β f with β ∈ R can again
be written in min-max canonical form:

max( f ,g)

= max[min(max( f1, f2),max( f3, f4)),

min(max(g1,g2),max(g3,g4))]

= max[max(min( f1, f3),min( f1, f4),min( f2, f3),

min( f2, f4)),max(min(g1,g3),

min(g1,g4),min(g2,g3),min(g2,g4))] (by (4))

= max(min( f1, f3),min( f1, f4),min( f2, f3),

min( f2, f4),min(g1,g3),

min(g1,g4),min(g2,g3),min(g2,g4))

= min(max( f1, f1, f2, f2,g1,g1,g2,g2),

max( f1, f1, f2, f2,g1,g1,g2,g4), . . . ,

max( f3, f4, f3, f4,g3,g4,g3,g4))

(since max is distributive w.r.t. min)

min( f ,g)

= min[min(max( f1, f2),max( f3, f4)),

min(max(g1,g2),max(g3,g4))]

= min(max( f1, f2),max( f3, f4),max(g1,g2),max(g3,g4))

f +g

= min(max( f1, f2),max( f3, f4))+

min(max(g1,g2),max(g3,g4))

= min(max( f1, f2)+max(g1,g2),

max( f1, f2)+max(g3,g4),max( f3, f4)+max(g1,g2),

max( f3, f4)+max(g3,g4)) (by (6))

= min(max( f1 +g1, f1 +g2, f2 +g1, f2 +g2),

max( f1 +g3, f1 +g4, f2 +g3, f2 +g4),

max( f3 +g1, f3 +g2, f4 +g1, f4 +g2),

max( f3 +g3, f3 +g4, f4 +g3, f4 +g4)) (by (7)).

For β > we have

β f = β min(max( f1, f2),max( f3, f4))

= min(max(β f1,β f2),max(β f3,β f4)) (by (9),(10))

and for β < 0 we have

β f = β min(max( f1, f2),max( f3, f4))

=−|β |min(max( f1, f2),max( f3, f4))

=−min(max(|β | f1, |β | f2),max(|β | f3, |β | f4)) (by (9),(10))

= max(−max(|β | f1, |β | f2),−max(|β | f3, |β | f4)) (by (8))

= max(min(−|β | f1,−|β | f2),min(−|β | f3,−|β | f4)) (by (8))

= max(min(β f1,β f2),min(β f3,β f4))

= min(max(β f1,β f3),max(β f1,β f4),

max(β f2,β f3),max(β f2,β f4)) (by (5)). ✷



4 MPC for MMPS systems

In this section we give a short overview of the main re-

sults of [6, 8] in which we have extended the MPC frame-

work to MMPS systems. We apply these results to the

model (2)–(3), which — in contrast to [6, 8] — also has

uncontrollable inputs. Related results can be found in [2].

More extensive information on conventional MPC for (lin-

ear and nonlinear) discrete-time systems can be found in

[4, 12] and the references therein.

Consider the deterministic model (2)–(3). Note that

this model does not include modeling errors or uncertainty.

However, since MPC uses a receding finite horizon ap-

proach, we can regularly update the model and the state

estimate as new measurements become available.

In MPC we compute at each step k an optimal con-

trol input that minimizes a cost criterion over the period

[k,k+Np − 1] where Np is the prediction horizon. For the

system (2)–(3) we can make an estimate ŷ(k+ j|k) of the

output at step k+ j based on the state4 x(k− 1), the future

controllable inputs u(k+ i), i = 0, . . . , j, and (estimates) of

the future uncontrollable inputs v(k+ i), i = 0, . . . , j. Using

successive substitution, we obtain an expression of the form

ŷ(k + j|k) = Fj(x(k − 1),u(k), . . . ,u(k + j),v(k), . . . ,v(k +
j)) for j = 0, . . . ,Np − 1. Clearly, ŷ(k+ j|k) is an MMPS

function of x(k−1),u(k), . . . ,u(k+ j),v(k), . . . ,v(k+ j).
The cost criterion J(k) = Jout(k) + λJin(k) used in

MMPS-MPC reflects the reference tracking error (Jout) and

the control effort (Jin) where λ is a nonnegative weight pa-

rameter. Let r denote the reference or due date signal. De-

fine the vectors

ũ(k) =
[

uT (k) . . . uT (k+Np −1)
]T

ṽ(k) =
[

vT (k) . . . vT (k+Np −1)
]T

ỹ(k) =
[

ŷT (k|k) . . . ŷT (k+Np −1|k)
]T

r̃(k) =
[

rT (k) . . . rT (k+Np −1)
]T

.

We consider the following output and input cost functions5:

Jout,1(k)=‖ỹ(k)− r̃(k)‖1, Jin,1(k)=‖ũ(k)‖1, (13)

Jout,∞(k)=‖ỹ(k)− r̃(k)‖∞, Jin,∞(k)=‖ũ(k)‖∞ . (14)

Note that these cost functions are also MMPS functions (re-

call that we have |x|= max(x,−x) for all x ∈R). In fact, the

results presented below hold for any cost criterion that is an

MMPS function of ỹ(k) and ũ(k).
In practical situations, there will be constraints on the

input and output signals (caused by limited capacity of

4We assume that at step k the current state can be measured, estimated

or predicted using previous measurements.
5In conventional MPC usually quadratic cost functions of the form

Jout(k) = ‖ỹ(k)− r̃(k)‖2
2 and Jin(k) = ‖ũ(k)‖2

2 are used. In a discrete-event

context, however, other choices are more appropriate (see [8, 9]).

buffers, limited transportation rates, saturation, etc.) In gen-

eral, this is reflected in a nonlinear constraint of the form

Cc(k, ũ(k), ṽ(k), ỹ(k))> 0 .

The MMPS-MPC problem at step k consists in mini-

mizing J(k) over all possible future (controllable) input se-

quences subject to the constraints. To reduce the complexity

of the optimization problem a control horizon Nc is intro-

duced in MPC: for discrete-event systems we could, e.g.,

take the rate of change of controllable input to be constant

beyond event step k+Nc (see [8]):

∆u(k+ j) = ∆u(k+Nc −1) for j = Nc, . . . ,Np −1, (15)

where ∆u(k) = u(k)− u(k− 1). For a manufacturing sys-

tem, this implies that the feeding rate of the raw material is

constant after k+Nc. Alternatively, we can set the control-

lable input constant as is done in “conventional” MPC:

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1. (16)

In addition to a decrease in the number of optimization pa-

rameters and thus also the computational burden, a smaller

control horizon Nc also gives a smoother control signal,

which is often desired in practical situations.

MPC uses a receding horizon principle. This means

that after computation of the optimal control sequence

u(k),u(k+1), . . . ,u(k+Nc −1), only the first control sam-

ple u(k) will be implemented, subsequently the horizon is

shifted one step, next the model and the state are updated

using new information from the measurements, and a new

MPC optimization is performed for step k+1.

5 Algorithms for the MMPS-MPC optimiza-

tion problem

5.1 Nonlinear optimization

In general the MMPS-MPC optimization problem is a

nonlinear, nonconvex optimization problem. In [6, 8] we

have discussed some algorithms to solve the MMPS-MPC

optimization problem: we can use multi-start nonlinear

optimization based on sequential quadratic programming

(SQP), or we can use a method based on the extended linear

complementarity problem (ELCP). However, both methods

have their disadvantages. If we use the SQP approach, then

we usually have to consider a large number of initial start-

ing points and perform several optimization runs to obtain

(a good approximation to) the global minimum. In addi-

tion, the objective functions that appear in the MMPS-MPC

optimization problem are nondifferentiable and piecewise-

affine (if we use the cost criteria given in (13)–(14) or in

[9]), which makes the SQP approach less suitable for them.

The main disadvantage of the ELCP approach is that the

execution time of the algorithm increases exponentially as



the size of the problem increases. This implies that this ap-

proach is not feasible if Nc or the number of inputs and out-

puts of the system are large.

An alternative option consists in transforming the MMPS

system into a mixed-logic (MLD) system [2] since MMPS

systems are equivalent to MLD systems [10]. The main

difference between MLD-MPC and MMPS-MPC is that

MLD-MPC requires the solution of mixed integer-real opti-

mization problems. In general, these are also computation-

ally hard optimization problems.

5.2 A new algorithm

We assume that the cost criterion is an MMPS function

of ỹ(k) and ũ(k) (e.g., one of the cost criteria given in (13)–

(14) or a linear combination of them). Note that the estimate

of the future output ỹ(k) is also an MMPS function of x(k−
1), ṽ(k) and ũ(k). So if we substitute ỹ(k) in the expression

for J(k), we finally obtain an MMPS function as objective

function. From Theorem 3.1 it follows that this objective

function can be written in min-max canonical form:

J(k) = min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)ũ(k)+β(i, j))

for appropriately defined integers ℓ, n1, . . . ,nℓ, vectors α(i, j)

and integers β(i, j). Note that α(i, j) and β(i, j) depend on k

via x(k−1), ṽ(k) or r̃(k); however, for ease of notation, we

drop the index k from α(i, j) and β(i, j). Although in general

the expression obtained by straightforwardly applying the

manipulations of the proof of Theorem 3.1 may contain a

large number of affine arguments αT
(i, j)ũ(k) + β(i, j), often

many of these terms are redundant and can thus be removed.

This reduces the number of affine arguments.

The derivation below is similar to the cutting-plane al-

gorithm for convex optimization (see, e.g., [3]). Hence, it

requires constraints that are linear (or convex) in ũ(k). Note

that the control horizon constraints (15) and (16) satisfy this

condition. However, even if the original MPC constraint

Cc(k, ũ(k), ṽ(k), ỹ(k))> 0 is linear in ũ(k) and ỹ(k), then in

general this constraint is not linear any more after substitu-

tion of ỹ(k). Therefore, from now on we assume that there

are only linear constraints on the input ũ(k):

Pũ(k)+q > 0 . (17)

Note that in practice such constraints occur if we have to

guarantee that the control signal ũ or the control signal rate

∆ũ stay within certain bounds.

So to obtain the optimal MPC input signal at step k,

we have to solve an optimization problem of the following

form:

min
ũ(k)

min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)ũ(k)+β(i, j))

u(k)

v(k)

y(k)

d1

d2

d3
M1

M2

M3

Figure 1. A simple manufacturing system.

subject to Pũ(k)+q > 0 .

or equivalently

min
i=1,...,ℓ

min
ũ(k)

max
j=1,...,ni

(αT
(i, j)ũ(k)+β(i, j)) (18)

subject to Pũ(k)+q > 0 . (19)

Now let i ∈ {1, . . . , ℓ} and consider the subproblem

min
ũ(k)

max
j=1,...,ni

(αT
(i, j)

˜u(k)+β(i, j)) subject to Pũ(k)+q > 0 .

It is easy to verify that this problem is equivalent to the fol-

lowing linear programming problem:

min t (20)

subject to

{

t > αT
(i, j)ũ(k)+β(i, j) for j = 1, . . . ,ni

Pũ(k)+q > 0 .
(21)

This problem can be solved efficiently using a simplex

method or an interior-point algorithm. To obtain the so-

lution of (18)–(19), we solve (20)–(21) for i = 1, . . . , ℓ

and afterward we select the solution ũ
opt

(i)
(k) for which

max j=1,...,ni
(αT

(i, j)ũ
opt

(i)
(k) + β(i, j)) is the smallest. This re-

sults in an algorithm to solve the MMPS-MPC problem that

is much more efficient than the SQP or ELCP approach.

6 Worked example

Consider the manufacturing system of Figure 1, which

consists of 3 processing units M1, M2, and M3 with pro-

cessing times d1, d2 and d3. Raw material is coming from

two sources: from an external provider, over which we have

no control, and from a source for which we can completely

control the release times (e.g., a storage unit with a large

capacity so that its stock level never runs down to zero).

Following the convention of Section 2 the time instants at

which the kth batch of raw material from the controllable

source and the external source arrives at the system are de-

noted by u(k) and v(k) respectively. The raw material from

both sources can processed by either M1 or M2, which per-

form similar tasks. However, M2 is slower than M1. There-

fore, the first part of the raw material for the kth product is



processed on M2 and the second part on M1
6. This implies

that the kth batch of raw material destined for M1 arrives

at the production unit at time instant t = max(u(k),v(k),
and that the kth batch destined for M2 arrives at time instant

t = min(u(k),v(k). The intermediate components generated

by M1 and M2 are sent to M3 where assembly takes places.

We assume that the transportation times in the manufac-

turing system are negligible, and that in between the pro-

duction units there are storage buffer with a sufficiently

large capacity, so that no buffer overflows occur. The time

instant at which processing unit Mi starts processing the kth

batch is denoted by xi(k), and y(k) is the time instant at

which the kth finished product leaves the system. Assume

that each production unit starts working for the kth time as

soon as the raw material is available and as soon as the

production unit has finished processing the previous part.

Hence,

x1(k) = max
(

x1(k−1)+d1, max(u(k),v(k))
)

= max
(

x1(k−1)+d1, u(k), v(k)
)

x2(k) = max
(

x2(k−1)+d2, min(u(k),v(k))
)

x3(k) = max
(

x3(k−1)+d3, x1(k)+d1, x2(k)+d2

)

y(k) = x3(k)+d3 .

Now assume for the sake of simplicity that d3 ≪ d1,d2 and

that M3 never is a bottleneck (i.e., we always have x3(k−
1)+d3 6 x1(k)+d1 and x3(k−1)+d3 6 x2(k)+d2). Then

the model description reduces to:

x1(k) = max
(

x1(k−1)+d1, u(k), v(k)
)

x2(k) = max
(

x2(k−1)+d2, min(u(k),v(k))
)

y(k) = max
(

x1(k)+d1 +d3, x2(k)+d2 +d3

)

.

We will apply MPC to this system. Let7 Nc = Np = 2, and
assume that the MPC objective function J(k) is given by

J(k)= Jout,∞(k)−λJin,1(k)

= max(max(y(k)− r(k), 0), max(y(k+1)− r(k+1), 0))

−λ (u(k)+u(k+1))

= max(y(k)− r(k), y(k+1)− r(k+1), 0)

−λu(k)−λu(k+1)

= max(y(k)− r(k)−λu(k)−λu(k+1), y(k+1)− r(k+1)

−λu(k)−λu(k+1),−λu(k)−λu(k+1)) ,

where λ > 0 is a weighting parameter and r(k) the due date

signal. Furthermore, we have assumed that the first release

6So if v(k)< u(k), then the kth batch of raw material coming from the

external (uncontrollable) source is processed on M2 and the raw material

coming from the controllable source on M1; if u(k) < v(k), the reverse

holds.
7We take such low values for Nc and Np so that the size of the analytical

expression for the MPC objective function J(k) is still small so that it can

be listed explicitly. In practice, larger values would be more appropriate.

time for the controllable input source occurs after time in-

stant t = 0 (Hence, u(k) > 0 for all k). Note that the ob-

jective function J(k) = Jout,∞(k)−λJin,1(k) corresponds to

a trade-off between minimizing the maximal tardiness and

maximizing the (controllable) input time instants.
Now it is easy to verify that y(k) and y(k + 1) can be

expressed as the following functions of the current state
x(k−1) and the future inputs u(k), v(k), u(k+1), v(k+1):

y(k)=max
(

x1(k−1)+2d1 +d3, u(k)+d1 +d3,

v(k)+d1 +d3,x2(k−1)+2d2 +d3,

min(u(k)+d2 +d3, v(k)+d2 +d3)
)

y(k+1)=max
(

x1(k−1)+3d1 +d3, u(k)+2d1 +d3,

v(k)+2d1 +d3, u(k+1)+d1 +d3,

v(k+1)+d1 +d3, x2(k−1)+3d2 +d3,

min(u(k)+2d2 +d3, v(k)+2d2 +d3),

min(u(k+1)+d2 +d3, v(k+1)+d2 +d3)
)

.

Hence,

J(k)=max
(

x1(k−1)+2d1 +d3 − r(k)−λu(k)−λu(k+1),

d1 +d3 − r(k)+(1−λ )u(k)−λu(k+1),

v(k)+d1 +d3 − r(k)−λu(k)−λu(k+1),

x2(k−1)+2d2 +d3 − r(k)−λu(k)−λu(k+1),

x1(k−1)+3d1 +d3 − r(k+1)−λu(k)−λu(k+1),

2d1 +d3 − r(k+1)+(1−λ )u(k)−λu(k+1),

v(k)+2d1 +d3 − r(k+1)−λu(k)−λu(k+1),

d1 +d3 − r(k+1)−λu(k)+(1−λ )u(k+1),

v(k+1)+d1 +d3 − r(k+1)−λu(k)−λu(k+1),

x2(k−1)+3d2 +d3 − r(k+1)−λu(k)−λu(k+1),

−λu(k)−λu(k+1),

min
(

d2 +d3 − r(k)+(1−λ )u(k)−λu(k+1),

v(k)+d2 +d3 − r(k)−λu(k)−λu(k+1)
)

,

min
(

2d2 +d3 − r(k+1)+(1−λ )u(k)−λu(k+1),

v(k)+2d2 +d3 − r(k+1)−λu(k)−λu(k+1)
)

,

min
(

d2 +d3 − r(k+1)−λu(k)+(1−λ )u(k+1),

v(k+1)+d2 +d3 − r(k+1)−λu(k)−λu(k+1)
)

)

. (22)

Note that this is an MMPS expression in max-min canonical
form. In order to be able to apply the method of Section
5.2 we have to rewrite J(k) into min-max canonical form.
Equation (22) can be written compactly as

J(k)=max(t1, t2, . . . , t11,min(t12, t13),min(t14, t15),min(t16, t17))

where t1, . . . , t17 are appropriately defined affine functions
of x1(k− 1), x2(k− 1), r(k), u(k), v(k), u(k+ 1), v(k+ 1).
The min-max canonical form of J(k) is then given by

J(k)=min
(

max(t1, t2, . . . , t11, t12, t14, t16),
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Figure 2. The closed-loop MPC output signal

y, the due date signal r, the inputs signals u

and v, and the difference signals y−r and u−v.

max(t1, t2, . . . , t11, t12, t14, t17), max(t1, t2, . . . , t11, t12, t15, t16),

max(t1, t2, . . . , t11, t12, t15, t17), max(t1, t2, . . . , t11, t13, t14, t16),

max(t1, t2, . . . , t11, t13, t14, t17), max(t1, t2, . . . , t11, t13, t15, t16),

max(t1, t2, . . . , t11, t13, t15, t17)
)

.

Hence, the optimal MPC strategy for step k can be com-

puted by solving 8 linear programming problems, and by

selecting the overall optimum.

Let us now compute the closed-loop MPC input signal

over a simulation period [1,12] with λ = 0.1, d1 = 10, d2 =
15, d3 = 1, x1(0) = x2(0) = −20 (this corresponds to all

production units being idle at the beginning of step k = 1

since u(k),v(k)> 0 for all k), with

{r(k)}12
k=1 = 18, 43, 52, 69, 83, 105, 121, 132, 139,

165, 172, 188

{v(k)}12
k=1 = 10, 35, 45, 60, 70, 95, 105, 120, 130,

155, 165, 180,

and with the constraints u(1) > 0 and 5 6 ∆u(k) 6 20 for

k = 1, . . . ,12. In Figure 2 we have plotted the closed-loop

MPC input signal u, the uncontrollable input signal from

the external source, the output signal y, the due date signal

r, and the difference signals y− r and u− v.

7 Conclusions

We have considered model predictive control (MPC) for

max-min-plus-scaling (MMPS) systems. In general, this

leads to nonlinear nonconvex optimization problems. We

have presented a method based on canonical forms for

MMPS functions and similar to the cutting-plane convex

optimization algorithm to solve these optimization prob-

lems. More specifically, the approach consists in solving

several linear programming problems and afterward select-

ing the solution that yields the smallest objective function.

This yields a method that is more efficient than just applying

nonlinear optimization as was done in previous research.
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