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On Hybrid Systems and Closed-Loop MPC Systems

A. Bemporad∗, W.P.M.H. Heemels†, B. De Schutter‡

Abstract

The following five classes of hybrid systems were recently proven to be equivalent: linear
complementarity, extended linear complementarity, mixed logical dynamical, piecewise affine,
and max-min-plus-scaling systems. Some of the equivalences were obtained under additional
assumptions, such as boundedness of certain system variables. In this paper, for linear or hybrid
plants in closed-loop with a model predictive control (MPC) controller based on a linear model,
fulfilling linear constraints on input and state variables, and utilizing a quadratic cost criterion,
we provide a simple and direct proof that the closed-loop system is a subclass of any of the
former five classes of hybrid systems. This result is of extreme importance as it opens up the
use of tools developed for the mentioned hybrid model classes, such as (robust) stability and
safety analysis tools, to study closed-loop properties of MPC.

Keywords: hybrid systems, model predictive control, complementarity systems, piecewise affine systems,
mixed logical dynamical systems, equivalent models.

1 Introduction

Hybrid dynamical models describe systems where both analog (continuous) and logical (discrete)
components are relevant and interacting [1]. Recently, hybrid systems received a lot of attention
from both the computer science and the control community, but general analysis and control design
methods for hybrid systems are not yet available. For this reason, several authors have focused
on special subclasses of hybrid systems for which analysis and synthesis techniques are currently
being developed. Some examples of such subclasses are: linear complementarity (LC) systems [2,3],
extended linear complementarity (ELC) systems [4], mixed logical dynamical (MLD) systems [5,6],
piecewise affine (PWA) systems [7], and max-min-plus-scaling (MMPS) systems [8].

In [9] we showed that the above five subclasses of hybrid systems are equivalent. Some of the
equivalences were obtained under additional assumptions related to well-posedness (i.e., existence
and uniqueness of solution trajectories) and boundedness of (some) system variables. These results
are extremely important, as they allow to transfer all the analysis and synthesis tools developed
for one particular class to any of the other equivalent subclasses of hybrid systems.

The main result of this paper will show that all these hybrid tools can be used for the analysis of
closed-loop Model Predictive Control (cl-MPC) systems as well. Indeed, as we will prove that cl-
MPC systems can be written as LC and MLD systems, the transfer of the machinery is immediate.
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Related results were obtained in [10], where the authors showed that MPC control is equal to
a piecewise affine control law that can be computed off-line by using multiparametric quadratic
programming solvers (and, therefore, that the closed-loop system is a PWA system). Rather than
exploiting the equivalence results of [9] in combination with [10] to convert from PWA to LC
and MLD, which would require additional assumptions and would yield more complex models,
we provide a simple, direct, and constructive proof to rewrite cl-MPC systems as LC and MLD
systems.

Despite the fact that MPC schemes are typically designed so that they are intrinsically stable and
fulfill operating constraints, stability is usually guaranteed through the introduction of stability
constraints, which are often removed in practical MPC schemes as they typically deteriorate per-
formance or complicate the optimization problem. Moreover, such guarantees only hold when the
nominal model of the plant and the prediction model coincide and the full state is available at each
sample instant. An important issue is to analyze the behavior of the closed-loop system when the
nominal model and the plant model differ, e.g., because of the presence of nonlinearities, or when
an observer is used to estimate the state. Robust MPC techniques [11] partially solve this issue,
by taking into account a class of linear uncertain models rather than one single prediction model,
although this typically requires increased computation effort and, again, leads to deterioration of
performance. Now, based on the results of this paper, the (robust) stability analysis, well-posedness
results, and safety analysis tools available for any of the five mentioned classes of hybrid systems
(PWA, MLD, LC, ELC, MMPS) can be applied to any combination of a linear MPC controller
and a linear plant (possibly including disturbances and model uncertainties). The results can be
easily extended to arbitrary combinations of linear MPC controllers and hybrid plants, such as
hybrid approximations of complex nonlinear dynamic models of the process to be controlled. An
example will demonstrate the use of hybrid tools for stability analysis and verification in the setting
of cl-MPC systems.

2 Classes of Hybrid Dynamical Models

In this paper we consider discrete-time models of the form

x(k + 1) = f(x(k), u(k), w(k)) (1a)

y(k) = g(x(k), u(k), w(k)) (1b)

0 ≤ h(x(k), u(k), w(k)), (1c)

where the variables u(k) ∈ R
m, x(k) ∈ R

n and y(k) ∈ R
l denote the input, state and output,

respectively, at time k, and w(k) ∈ R
r is a vector of auxiliary variables (this notation also holds

for all the hybrid models introduced later), f : Rn × R
m × R

r 7→ R
n, g : Rn × R

m × R
r 7→ R

p,
h : Rn×R

m×R
r 7→ R

q, and the inequality (1c) should be interpreted componentwise. The evolution
of system (1) is determined as follows. Given the current state x(k) and input u(k) the collection of
inequalities (1c) is solved for w(k). By substitution of w(k) in (1a)-(1b), the state update x(k+1)
and the current output y(k) are obtained. Specific choices of the form of the functions f , g, h will
determine different classes of hybrid systems, as we will detail in the rest of this section.

Definition 1 Let Ω ⊆ R
n × R

m be a set of input+state pairs. A hybrid system of the form (1) is
called well-posed on Ω, if for all pairs (x(k), u(k)) ∈ Ω the equations (1) have a solution (x(k +
1), y(k), w(k)) and moreover, (x(k + 1), y(k)) are uniquely determined.

Definition 1 implies that x(k+1), y(k) are unique functions of (x(k), u(k)), and therefore that the
possible non-uniqueness of w(k) is removed through the mappings f , and g.
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Remark 1 The general formulation (1) allows some of the state, input, output, or auxiliary
variables to attain only discrete values, e.g., wi(k) ∈ {0, 1} can be represented by the two inequalities
max(wi(k)− 1,−wi(k)) ≥ 0, −max(wi(k)− 1,−wi(k)) ≥ 0, or by wi(k)(1−wi(k)) ≤ 0, wi(k) ≥ 0,
1− wi(k) ≥ 0. ✷

Remark 2 As will also be clarified later for PWA systems, for well-posedness of several instances
of (1) over compact sets of Rn × R

m, the inequalities in (1) should be split as strict inequalities
hi(x(k), u(k), w(k)) > 0, i ∈ I, and nonstrict inequalities hj(x(k), u(k), w(k)) ≥ 0, j ∈ J , I ∩J = ∅,
I ∪J = {1, . . . , q}. Although this would be important from a system theoretical point of view, it is
not of practical interest from a numerical point of view, as “>” cannot be represented in numerical
algorithms working in finite precision. Indeed, h > 0 can be only represented as h ≥ ǫ, and ǫ is
some pre-specified tolerance, e.g., the machine precision. ✷

2.1 Piecewise Affine (PWA) Systems

Piecewise affine (PWA) systems are described by

x(k + 1) = Aix(k) +Biu(k) + f i

y(k) = Cix(k) +Diu(k) + gi
for

[

x(k)
u(k)

]

∈ Ωi, (2)

where Ωi , {[ xu ] : H i
xx+H i

uu ≤ Ki}, i = 1, . . . , s, are convex polyhedra in the input+state space.
Ai, Bi, Ci, Di, H i

x and H i
u are real matrices of appropriate dimensions and f i and gi are real

vectors for all i = 1, . . . , s. PWA systems have been studied by several authors (see [6, 7, 12] and
the references therein) as they form the “simplest” extension of linear systems that can still model
non-linear and non-smooth processes with arbitrary accuracy and are capable of handling hybrid
phenomena.

System (2) belongs to the general class (1) by letting f , g be PWA functions defined over Ω ,
∪s
i=1Ωi, and r = q = 0 (i.e., the auxiliary variable w(k) and the mapping h are not required). A

necessary and sufficient condition for the PWA system (2) to be well-posed over Ω is therefore that f ,
g are single-valued PWA functions. Therefore, typically the sets Ωi have mutually disjoint interiors,
and are often defined as the partition of a convex polyhedral set Ω. In case of discontinuities of
f , g over overlapping boundaries of the regions Ωi, to ensure well-posedness we should write some
of the inequalities in the form (Hx

i )
jx + (Hu

i )
ju < K

j
i (see Remark 2). In the following we shall

neglect this issue for the sake of compactness of notation and the fact that we will actually deal
with continuous piecewise affine systems, as we will see.

2.2 Mixed Logical Dynamical (MLD) Systems

In [5] a class of hybrid systems has been introduced in which logic, dynamics and constraints are
integrated. This lead to a description of the form

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (3a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (3b)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) 6 g5, (3c)

where x(k) = [ xr
′(k) xb

′(k) ]′, xr(k) ∈ R
nr and xb(k) ∈ {0, 1}nb (y(k) and u(k) have a similar

structure), and where z(k) ∈ R
rr and δ(k) ∈ {0, 1}rb are auxiliary variables. A, Bi, C, Di and Ei

denote real constant matrices and g5 is a real vector. The inequalities (3c) have to be interpreted
componentwise. Systems that can be described by model (3) are called Mixed Logical Dynamical
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(MLD) systems. By letting w(k) , [z′(k) δ′(k)]′, clearly (3) together with the integrality conditions
over δ, xb, yb, and ub (expressed as inequalities, see Remark 1), forms a subclass of (1).

The MLD formalism allows specifying the evolution of continuous variables through linear dynamic
equations, of discrete variables through propositional logic statements and automata, and the
mutual interaction between the two. The key idea of the approach consists of embedding the logic
part in the state equations by transforming Boolean variables into 0-1 integers, and by expressing
the relations as mixed-integer linear inequalities (see [5] and references therein). MLD systems are
therefore capable of modeling a broad class of systems, in particular those systems that can be
modeled through the hybrid system description language HYSDEL [13].

2.3 Linear Complementarity (LC) Systems

Linear complementarity (LC) systems are given in discrete-time by the equations

x(k + 1) = Ax(k) +B1u(k) +B2w(k) (4a)

y(k) = Cx(k) +D1u(k) +D2w(k) (4b)

v(k) = E1x(k) + E2u(k) + E3w(k) + g4 (4c)

0 ≤ v(k) ⊥ w(k) ≥ 0 (4d)

with v(k), w(k) ∈ R
s and where ⊥ denotes the orthogonality of vectors (i.e. v(k)⊥w(k) means that

v′(k)w(k) = 0). We call v(k) and w(k) the complementarity variables. A, Bi, C, Di and Ei are
real matrices and g4 is a real vector. Clearly, (4) is a subclass of (1).

In [2,3,14–16] (linear) complementarity systems in continuous time have been studied. Applications
include constrained mechanical systems, electrical networks with ideal diodes or other dynamical
systems with piecewise affine relations, variable structure systems, constrained optimal control
problems, projected dynamical systems, and so on [15, Ch. 2].

2.4 Equivalence of hybrid model classes

In [9] we discussed the relationships between the model classes mentioned above and two others:
min-max-plus-scaling (MMPS) and extended linear complementarity (ELC) systems. As ELC sys-
tems are of similar nature as LC systems, we will not define them here, but refer to [4, 9]. MMPS
systems are obtained by choosing f , g, h in (1) as (nested) combinations of the operations maxi-
mization, minimization, addition and scalar multiplication. More details on this class can be found
in [8, 9].

Fact 1 PWA systems, MLD systems, LC systems, and MMPS systems are equivalent (certain
equivalences require assumptions on the boundedness of input, state, and auxiliary variables or on
well-posedness), and form subsets of the general class of hybrid systems (1).

Proof: See [9] for full details on assumptions, relationships, and a constructive proof. ✷
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3 Closed-Loop Model Predictive Control (cl-MPC) Systems and
Hybrid Systems

Model Predictive Control (MPC) has become the accepted standard for complex constrained mul-
tivariable control problems in the process industries. Here at each sampling time, starting at the
current state, an open-loop optimal control problem is solved over a finite horizon. Only the first
computed control value in the sequence is implemented. At the next time step the computation
is repeated starting from the new state and over a shifted horizon, leading to a moving horizon
policy [17].

For the discrete-time linear time-invariant system
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k),

(5)

where x(k) ∈ R
n, u(k) ∈ R

m, and y(k) ∈ R
p are the state, input, and output vector, respectively,

consider the problem of tracking the output reference signal r(k) ∈ R
p while fulfilling the constraints

D1x(k) +D2u(k) +D3∆u(k) ≤ d4 (6)

at all time instants k ≥ 0, where ∆u(k) , u(k)− u(k − 1) are the increments of the input.

Assume for the moment that a full measurement of the state x(k) and the previously implemented
control value xu(k) , u(k − 1) (which might be considered as an additional state) are available at
the current time k. Then, the optimization problem

min
U





Ny
∑

t=1

ǫ′k+t|kQǫk+t|k +

Nu−1
∑

t=0

∆u′k+tR∆uk+t





subj. to D1xk+t|k +D2uk+t +D3∆uk+t ≤ d4, t = 0, 1, . . . , Nc

xk+t+1|k = Axk+t|k +Buk+t, t ≥ 0

yk+t|k = Cxk+t|k, t ≥ 0

uk+t = uk+t−1 +∆uk+t, t ≥ 1
∆uk+t = 0, Nu ≤ t < Ny

xk|k = x(k), uk = u(k − 1) + ∆uk

(7)

is solved with respect to the column vector U , [∆u′k, . . . ,∆u′k+Nu−1]
′ ∈ R

s, s , mNu, at each time
k, where xk+t|k denotes the predicted state vector at time k + t, obtained by applying the input

sequence uk, . . . , uk+t−1 to model (5) starting from the state x(k), and ǫk+t|k , yk+t|k − r(k) is the
predicted tracking error1. In (7), we assume that Q = Q′ � 0, R = R′ ≻ 0 (“≻” denotes matrix
positive definiteness), Ny, Nu, Nc are the output, input, and constraint horizons, respectively, with
Nu ≤ Ny and Nc ≤ Ny − 1.

The MPC control law is based on the following idea: At time k compute the optimal solution
U∗(k) = [∆u∗′k , . . . ,∆u∗′k+Nu−1]

′ to problem (7), apply

u(k) = xu(k) + ∆u∗k (8)

as input to system (5), and repeat the optimization (7) at the next time step k + 1, based on the
new measured (or estimated) state x(k + 1). Note that

∆u∗k = I1U
∗(k), (9)

1If the reference is known in advance, one can replace r(k) with r(k+ t), with a consequent anticipative action of
the resulting MPC controller. Otherwise, we set r(k + t) = r(k) for t ≥ 0.
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Figure 1: Closed-loop model predictive control system

where I1 , [Im 0 . . . 0]. By substituting xk+t|k = Atx(k) +
∑t−1

j=0A
jBuk+t−1−j in (7), this can be

written as
min
U

1
2
U ′HU + ξ′(k)FU + 1

2
ξ′(k)Y ξ(k)

subj. to GU ≤ W + Sξ(k),

(10)

where ξ(k) , [x′(k) x′u(k) r
′(k)]′, H = H ′ ≻ 0, and H, F , Y , G, W , S are easily obtained from (7).

The optimization problem (10) is a quadratic program (QP), which depends on the current state
x(k), past input xu(k) = u(k − 1), and reference r(k).

Consider the closed-loop model predictive control system depicted in Fig. 1. The plant Σ is de-
scribed by the difference equations

Σ :

{

χ(k + 1) = Aχ(k) + Bu(k) +Hd(k)
y(k) = Cχ(k) +Dd(k),

(11)

where χ(k) ∈ R
n̄ is the state vector, and d(k) ∈ R

ℓ is a vector of unmeasured disturbances. We
distinguish between model Σ in (11), which is the actual plant, and model (5), which is the linear
model used for designing the MPC controller. Typically (5) is an approximation of (11), e.g., a
low-order approximation where only the relevant dynamics are kept. As the MPC optimization
problem (7) is based on model (5), it requires a state x(k) that is coherent with the same model (5).
A common solution consists of generating x(k) via the state observer

x(k + 1) = Ax(k) +Bu(k) +Ke(y(k)− Cx(k)). (12)

Now we prove that cl-MPC systems are a subclass of LC systems.

Theorem 1 Every cl-MPC system (7), (9)–(12) can be written as an LC system.

Proof: The proof follows from the first-order Karush-Kuhn-Tucker (KKT) conditions for
QP (10) [18, Ch. 10.6], which are necessary and sufficient for optimality of U∗(k):

HU∗(k) + F ′ξ(k) +G′λ(k) = 0, λ(k) ∈ R
q (13a)

λ′(k)(GU∗(k)−W − Sξ(k)) = 0 (13b)

λ(k) ≥ 0 (13c)

W + Sξ(k)−GU∗(k) ≥ 0. (13d)
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From (13a), it follows that

U∗(k) = −H−1F ′ξ(k)−H−1G′λ(k)

, Tx(k) + V xu(k) + Zr(k) + Λλ(k).
(14)

By letting Mx(k) + Nxu(k) + Lr(k) , Sξ(k), v(k) , W + Mx(k) + Nxu(k) + Lr(k) − GU∗(k),
w(k) , λ(k), and recalling (8) and (9) we can rewrite the closed-loop MPC system in the LC form





χ(k + 1)
x(k + 1)
xu(k + 1)



 =





A BI1T B(Im + I1V )
KeC A−KeC +BI1T B(Im + I1V )
0 I1T (Im + I1V )



 ·

·





χ(k)
x(k)
xu(k)



+





BI1Z H
BI1Z KeD
I1Z 0





[

r(k)
d(k)

]

+





BI1Λ
BI1Λ
Λ



w(k) (15a)

y(k) = Cχ(k) +Dd(k) (15b)

v(k) =
[

0 M −GT N −GV
]





χ(k)
x(k)
xu(k)



+

+ (L−GZ)r(k)−GΛw(k) +W (15c)

0 ≤ v(k)⊥w(k) ≥ 0, (15d)

where
[

χ
x
xu

]

, [ rd ] are the state and input vectors, respectively, of the LC system. ✷

Remark 3 In [10], by exploiting the fact that the coefficients of the linear term in the cost function
and the right-hand side of the constraints in (10) depend linearly on a vector ξ(k) of parameters,
the quadratic program (10) has been tackled as a multi-parametric quadratic program (mp-QP),
and it has been shown that the optimal solution is a continuous piecewise affine function of the
state. Consequently, the MPC controller admits the explicit continuous PWA form

u(k) = Fiξ(k) + gi if ξ(k) ∈ Ωξ
i , i = 1, . . . , N,

where Ωξ
i , {ξ : H i

ξξ(k) ≤ Ki
ξ}, and {Ωi}

N
i=1 is a partition of a given state+input+reference set

Ξ. Or stated differently, every cl-MPC system (7), (9)–(12) can be written as a continuous PWA
system. By applying Fact 1, one can now also show that cl-MPC systems can be equivalently rewrit-
ten as LC systems. However, this requires boundedness assumptions over some of the variables, as
the transformation through MLD is involved, plus a large number of complementarity pairs. An
alternative could be based on [19] in which continuous PWA functions are transferred into linear
complementarity problems [20] of the form (4c)-(4d). However, the proof presented above is more
direct, does not require any assumptions, and limits the number of required complementarity pairs.
✷

In order to show directly that cl-MPC systems are also a subclass of MLD systems, we prove the
following lemma.

Lemma 1 Let ξ , [x′ x′u r′]′ belong to a bounded set Ξ. Then, there exists an upper-bound λ+ ≥ 0
such that at least one vector of Lagrange multipliers λ satisfies the Karush-Kuhn-Tucker conditions
(13) and 0 ≤ λ ≤ λ+.
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Proof: Consider the combination I ⊆ {1, . . . , k} of active constraints GIU
∗ = WI + SIξ at

the optimum, where GI denotes the submatrix of G obtained by collecting the rows indexed by
the elements of I (similar for WI and SI), and assume that GI has full row rank. From the KKT
conditions (13), U∗ = −H−1(F ′ξ + G′

IλI(ξ)), where λI(ξ) ≥ 0 is a vector collecting the subset
of Lagrange multipliers relative to the active constraints (the remaining multipliers are zero due
to (13b)-(13d)). Substituting U∗, we obtain λI(ξ) = −(GIH

−1G′
I)

−1[WI + SIξ + GIH
−1F ′ξ],

which admits an upper-bound λ+
I , maxξ∈Ξ λi(ξ) ≥ 0. Take λ+ , maxλ+

I over all combinations
I of linearly independent active constraints. If for some ξ a linearly dependent combination of
constraints is active at the optimum, (i.e., the QP is primal degenerate, and λ is not unique), then
a subset of linearly independent constraints and a vector λ(ξ) ≤ λ+ can be chosen which provides
the same solution U∗ (cf. [15, Lemma 4.4.5] and [20, Theorem 2.6.12]).
An alternative proof follows by considering the KKT conditions (13) as a linear complementarity
problem [20] v = (GH−1G′)λ + [W + (GH−1F ′ + S)ξ], 0 ≤ v ⊥ λ ≥ 0, and directly applying [15,
Lemma 7.6.14], showing that, for all ξ ∈ Ξ such that the QP (10) is feasible, there exists a unique
least-norm solution λ(ξ) satisfying, for some scalar α ∈ R, ‖λ(ξ)‖ ≤ α‖W + (GH−1F ′ + S)ξ‖ ≤
α(‖W‖+ ‖GH−1F ′ + S)‖ ·maxξ∈Ξ ‖ξ‖). ✷

Remark 4 A more efficient way of computing λ+ than enumerating all possible combinations of
linearly independent active constraints (as proposed in the first part of the proof of Lemma 1)
consists of computing the solution to the mp-QP problem (10) by applying the algorithm of [10],
which provides all and only the combinations of linearly independent active constraints which are
optimal for some ξ ∈ Ξ (Ξ is partitioned into polyhedral cells, each one characterized by a different
combination). ✷

Using arguments similar to those used to prove the relationship between LC and MLD models of
Fact 1, we obtain the following result:

Proposition 1 Every cl-MPC system (7), (9)–(12) can be written as an MLD system, provided
that bounds on the states, inputs, and references, are specified.

Proof: Introduce a vector of binary variables δ(k) ∈ {0, 1}q. The idea is to represent vi(k) = 0,
wi(k) ≥ 0 with δi(k) = 1, and vi(k) ≥ 0, wi(k) = 0 with δi(k) = 0. This can be achieved by
introducing the constraints

w(k) ≤ Mwδ(k) v(k) ≤ Mv(e− δ(k))
w(k) ≥ 0 v(k) ≥ 0,

where Mw and Mv are diagonal matrices containing upper bounds on w(k) and v(k) (provided by
Lemma 1), respectively, and e denotes the vector for which all entries are equal to one. By setting
z(k) = w(k) and replacing v(k) as in (15c), it is easy to rewrite the MPC closed-loop system in the
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MLD form




χ(k + 1)
x(k + 1)
xu(k + 1)



 =





A BI1T B(Im + I1V )
KeC A−KeC +BI1T B(Im + I1V )
0 I1T (Im + I1V )



 ·





χ(k)
x(k)
xu(k)



+





BI1Z H
BI1Z KeD
I1Z 0





[

r(k)
d(k)

]

+





BI1Λ
BI1Λ
Λ



 z(k);

y(k) = Cχ(k) +Dd(k);






0 0 0
0 M −GT N −GV

0 0 0
0 −M +GT −N +GV











χ(k)
x(k)
xu(k)



+







0 0
L−GZ 0

0 0
−L+GZ 0







[

r(k)
d(k)

]

+







−Mw

Mv

0
0






δ(k) +







I

−GΛ
−I

GΛ






z(k) ≤







0
Mve−W

0
W






.

(16)

✷

Note that the number q of integer variables equals the number of constraints of the MPC optimiza-
tion problem (10). Hence, if the MLD system were translated into PWA form as in [6], the resulting
PWA system would have at most 2q regions. This confirms the result of [10], where the explicit
PWA form of the MPC controller (obtained by using multiparametric programming) is defined over
a polyhedral partition of the state space composed by at most 2q regions (note that 2q equals the
number of all possible combinations of active constraints). Since many of such combinations are
infeasible, in general the resulting number of regions is much lower than 2q.

Remark 5 For each weight matrix R ≻ 0, the cl-MPC system (7), (9)–(12) is well-posed on
the set of x(k), xu(k), r(k) where (10) is feasible. In fact, the Hessian matrix H ≻ 0 in (10),
and therefore ∆u∗k is uniquely determined once x(k), r(k), xu(k) are assigned. Consequently, the
equivalent LC form (15) and MLD model 16 is well-posed on the feasible set, despite the fact that
w(k) might not be uniquely defined by the KKT conditions (e.g., in case of primal degeneracy of
the QP problem (10)), and the fact that for MLD systems the variable δi(k) is non-unique, when
vi(k) = wi(k) = 0 in the proof of Proposition 1 (i.e., a constraint is active and the corresponding
Lagrange multiplier in (13) is zero). ✷

Note that the result of Theorem 1 and Proposition 1 also holds when model (11) is replaced by any
of the hybrid models described in the previous sections. Consequently, stability, feasibility/safety,
constraint fulfillment and performance properties of cl-MPC where a simple linear model is used (a
common choice for obtaining an easily implementable controller) in the synthesis of the controller,
and a more accurate hybrid model approximating the plant dynamics is used for analysis, can be
tested using tools developed for hybrid systems. The hybrid model can be for instance a PWA
system obtained by linearizing a nonlinear process model at different operating points, an LC
system obtained by a discretizing a mechanical model, or an MLD system obtained by using the
description language HYSDEL [13]. These considerations prove immediately the following corollary.

Corollary 1 The cl-MPC system formed by an LC (MLD, PWA) system in feedback with a MPC
controller of the form (7), (9), (12) is an LC (MLD, PWA) system.
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Figure 2: Example 1

4 Application of the Results

Based on the above results, a long list of available hybrid tools developed for PWA, LC, MLD,
MMPS and ELC systems can now be applied to analyze cl-MPC systems: controller synthesis based
on MPC for MLD [5], MMPS [8] and ELC systems [21], PWA control / observer techniques for
nonlinear plants [7], state estimation and fault detection [22], verification and safety analysis [23]
for MLD systems, stability results for PWA systems [12, 24], controllability and observability for
PWA and MLD systems [6], well-posedness of LC systems [2,3,15,16], simulation and discretization
of continuous-time LC systems [14, 15], hybrid modeling languages [13]. The use of some of the
above tools will be immediately shown in the following example.

Example 1 Consider the second order open-loop unstable system

y =
s+ 1

s2 − 0.3s+ 1
u,

which is sampled with a sample time of T = 0.3 s to obtain the state-space representation

{

x(k + 1) =
[

1.0467 −0.30923
0.30923 0.95397

]

x(k) + [ 0.095004
0.00060418 ]u(k)

y(k) = [ 1 1 ]x(k).
(17)

The task is to regulate the system to the origin while fulfilling the output constraint

y(k) ≥ −3, ∀k ≥ 0. (18)

To this aim, we design an MPC controller based on the optimization problem

min
uk,uk+1

x′k+3|kPxk+3|k +
2

∑

t=0

[

y′k+t|kyk+t|k + u2k+t

]

subj. to yt+k ≥ −3, k = 1, 2
xk|k = x(k),

(19)

where P solves the Riccati equation P = (A + BKLQ)
′P (A + BKLQ) + K ′

LQRKLQ + Q, KLQ =

−(R+B′PB)−1B′PA is the LQ gain, R = 1, Q = [ 1 1
1 1 ]. Fig. 2(a) depicts the closed-loop trajectories

obtained when (17) is in feedback with the MPC controller based on (19) (nominal cl-MPC system),
for the initial condition x(0) = [0 20]′.
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We want to obtain the equivalent PWA, LC, and MLD form of the cl-MPC system that results
from connecting the MPC controller based on (19) with the plant model

Σ :







χ(k + 1) =
[

1.0567 −0.32923
0.31923 0.93397

]

χ(k)
+ [ 0.31923

0.036032 ]u(k) + [ 01 ] d(k)
y(k) = [ 1 1 ]χ(k),

(20)

where d(k) ∈ R is an additive, norm-bounded, input disturbance. We assume that the state vector is
measurable, so that no state observer is used (χ(t) = x(t)). Note that this setting differs somewhat
from the description given before in the sense that we now consider a regulation problem instead
of a tracking problem (hence, there is no reference r and an endpoint penalty x′

k+3|kPxk+3|k is

added to the quadratic cost criterion) and no constraints on the increments ∆u(k). Moreover, the
observer is a static one instead of (12). In this way we obtain a QP (10) depending on ξ(k) = x(k)
(and not on u(k − 1), r(k) ≡ 0). The controller is a function of x(k) and the closed-loop system
will turn out to have a state dimension of 2.

In order to obtain the PWA equivalent of the closed-loop MPC, we use the mp-QP Algorithm [10]
to compute the explicit MPC control law, which provides the polyhedral partition (in the x-space)
with 22 = 4 regions as depicted in Fig. 2(b). It can a posteriori be verified that the optimal control
value u∗(k), being equal to the first computed control value out of the QP similar to (9), coincides
in two regions, so that the PWA system has in fact 3 regions.

An LC equivalent of the cl-MPC system is obtained according to (15). In order to compute the MLD
equivalent, we use Lemma 1 on Ξ = {x : ‖x‖∞ ≤ 100} to obtain Mw = diag[92.0965, 15.3846],
and then we compute maxx∈Ξ |(M −GT )x|i +maxx∈Ξ |GΛλ(x)|i ≥ maxx∈Ξ |vi(x)|, i = 1, 2, which
provides Mv = diag[62.14330, 51.1102].

In order to test if the autonomous (d(k) ≡ 0) closed-loop MPC system is asymptotically stable,
we compute a common quadratic Lyapunov function according to the LMI-based algorithm of [24],
obtaining PLyap(x) = x′ [ 20.7804 10.8968

10.8968 37.3396 ]x, which proves quadratic stability of the hybrid system.

Finally, when the plant (20) is in closed-loop with the MPC controller, for the set of initial states
x(0) such that ‖x(0)− [0 20]′‖∞ ≤ 2, and when the disturbance d(k) arbitrarily varies between -1
and 1, we want to compute the worst violation of the constraint (18). To this end, we use the MLD
equivalent model and mixed-integer programming to run a verification algorithm based on the ideas
of [23]. The worst violation is obtained at t = 4 from the initial state x(0) = [−0.7289 22]′, by
applying the disturbance sequence shown in Fig. 3 (we arbitrarily set d(k) = 0 for k > 4). Fig. 3
depicts also the corresponding output trajectory. ✷

5 Conclusions

In this paper we showed that closed-loop MPC systems can be treated and analyzed as hybrid
systems, in particular as linear complementarity (LC) systems, mixed logical dynamical (MLD)
systems, piecewise affine (PWA) systems, and indirectly, by exploiting the equivalences of [9], also
as extended linear complementarity (ELC) systems and max-min-plus-scaling (MMPS) systems.
The result is of paramount importance for applying the tools developed for such subclasses of hybrid
systems to study any closed-loop combinations of a linear MPC controller, a linear observer, and a
linear plant. This can be easily extended to any feedback interconnection of a linear MPC controller
and a hybrid plant, such as hybrid approximations of complex nonlinear dynamic models of the
process under control. Here we only demonstrated through a very simple example the application of
the presented results for stability and safety analysis. We believe, however, that the development of
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a theory and tools for hybrid systems is still in its early stages, and therefore that the full potential
of the results is still to be exploited.
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