
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report CSE02-005

Model predictive control for perturbed
max-plus-linear systems: A stochastic

approach∗

T.J.J. van den Boom and B. De Schutter

If you want to cite this report, please use the following reference instead:
T.J.J. van den Boom and B. De Schutter, “Model predictive control for perturbed
max-plus-linear systems: A stochastic approach,” International Journal of Control,
vol. 77, no. 3, pp. 302–309, Feb. 2004. doi:10.1080/00207170310001656047

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/02_005.html

https://doi.org/10.1080/00207170310001656047
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/02_005.html


Model Predictive Control for

Perturbed Max-Plus-Linear Systems:

A Stochastic Approach

T.J.J. van den Boom and B. De Schutter

Control Systems Engineering, Faculty of Information Technology and Systems

Delft University of Technology, P.O.Box 5031, 2600 GA Delft, The Netherlands

Phone: +31-15-2784052/5113, Fax: +31-15-2786679

email: {t.j.j.vandenboom,b.deschutter}@its.tudelft.nl

Abstract

Model predictive control (MPC) is a popular controller design technique in the process
industry. Conventional MPC uses linear or nonlinear discrete-time models. Recently, we
have extended MPC to a class of discrete event systems that can be described by a model
that is “linear” in the (max,+) algebra. In our previous work we have only considered
MPC for the perturbations-free case and for the case with bounded noise and/or modeling
errors. In this paper we extend these results on MPC for max-plus-linear systems to a
stochastic setting. We show that under quite general conditions the resulting optimization
problems turns out to be convex and can thus be solved very efficiently.

Keywords: discrete event systems, model predictive control, max-plus-linear systems, noise
and modeling errors, stochastic setting.

1 Introduction

Discrete event systems (DES) are dynamic, asynchronous systems the state of which changes
due to the occurrence of events; this in contrast to continuous variable systems, whose behav-
ior is governed by the progression of time or the ticks of a clock and which can be modeled
by a system of differential or difference equations. Typical examples of DES are flexible man-
ufacturing systems, telecommunication networks, parallel processing systems, traffic control
systems, and logistic systems. An event corresponds to the start or the end of an activity. In
the case of a production system possible events are: the completion of a part on a machine, a
machine breakdown, or a buffer becoming empty. There exist many modeling frameworks for
DES such as queueing theory, (extended) state machines, formal languages, automata, tem-
poral logic models, generalized semi-Markov processes, Petri nets, and computer simulation
models (see [6, 13, 20, 28] and the references therein). In general, models that describe the
behavior of a DES are nonlinear in conventional algebra. However, there is a class of DES
that can be described by a model that is “linear” in the max-plus algebra [1, 8]. Such DES are
called max-plus-linear (MPL) DES. Essentially, they can be characterized as DES in which
only synchronization and no concurrency or choice occurs. So typical examples are serial
production lines, production systems with a fixed routing schedule, and railway networks.
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Model predictive control (MPC) [2, 4, 7, 11] is a proven technology for the control of
multivariable systems in the presence of input, output and state constraints and is capable of
tracking pre-scheduled reference signals. These attractive features make MPC widely accepted
in the process industry. Usually MPC uses linear or nonlinear discrete-time models. However,
the attractive features mentioned above have led us to extend MPC to MPL systems [9, 10, 22].
In [24] we have presented some results on MPL-MPC in the presence of bounded noise and/or
bounded modeling errors. In this paper we will extend these results to cases with noise
and/or modeling errors in a stochastic setting, where the noise and/or modeling errors are
not bounded a priori.

In contrast to conventional linear systems, where noise and disturbances are usually mod-
eled by including an extra term in the system equations (i.e., the noise is considered to be
additive), the influence of noise and disturbances in MPL systems is not max-plus-additive,
but max-plus-multiplicative (see [1] or the worked example of Section 6). This means that the
system matrices will be perturbed and as a consequence the system properties will change.
Ignoring the noise can lead to a bad tracking behavior or even to an unstable closed loop.
A second important feature is modeling errors. Uncertainty in the modeling or identifica-
tion phase leads to errors in the system matrices. It is clear that both modeling errors, and
noise/disturbances perturb the system by introducing uncertainty in the system matrices.
Sometimes it is difficult to distinguish the two from one another, but usually fast changes in
the system matrices will be considered as noise and disturbances, whereas slow changes or
permanent errors are considered as model mismatch. Results for handling uncertainty of some
specific classes of DES are given in [5, 15, 19, 27] and the references therein. Note however,
that there are few results in the literature on noise and modeling errors in an MPL context.
Similar to the results in [24], we will show that both model mismatch and disturbances can be
treated in one single framework; the characterization of the perturbation will then determine
whether it describes model mismatch or disturbance. We will also show that under quite
general conditions the resulting MPC optimization problem can be solved very efficiently.

This paper is organized as follows. In Section 2 we first give a concise introduction to MPL
systems and MPC for MPL systems (without noise or modeling errors). Next, we present
a noise and uncertainty model for MPL systems in a stochastic framework. In Section 3
the MPC method for stochastic MPL systems is presented and we derive algorithms to make
predictions in this setting. In Section 4 we proof convexity of the MPL-MPC method. Section
5 discusses the computational aspects of the algorithm and in Section 6 we give a worked
example.

2 Max-plus algebra and stochastic max-plus-linear systems

2.1 Max-plus algebra

In this section we give the basic definition of the max-plus algebra and we present some results
on a class of (max,+) functions.

Define ε = −∞ and Rε = R∪{ε}. The max-plus-algebraic addition (⊕) and multiplication
(⊗) are defined as follows [1, 8]:

x⊕ y = max(x, y)

x⊗ y = x+ y
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for numbers x, y ∈ Rε and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε is the max-plus-algebraic zero

matrix: [ε]ij = ε for all i, j.
Let Smpns be the set of max-plus-nonnegative-scaling functions, i.e., functions f of the

form
f(z) = max

i
(αi,1z1 + . . .+ αi,nzn + βi)

with variable z ∈ R
n
ε and constants αi,j ∈ R

+ and βi ∈ R, where R
+ is the set of the

nonnegative real numbers. If we want to stress that f is a function of z we will denote this
by f ∈ Smpns(z).

Lemma 1 The set Smpns is closed under the operations ⊕, ⊗, and scalar multiplication by a
nonnegative scalar.

Proof : This is a consequence of the fact that for x, y, z, v ∈ Rε and ρ ∈ R
+ we have

max(x, y)⊕max(z, v) = max(max(x, y),max(z, v)) = max(x, y, z, v), max(x, y)⊗max(z, v) =
max(x, y) + max(z, v) = max(x+ z, x+ v, y + z, y + v) and ρmax(x, y) = max(ρx, ρy). ⋄

2.2 Max-plus-linear systems

In [1, 8] it has been shown that (time-invariant) discrete event systems (DES) in which there
is synchronization but no concurrency can be described by a model of the form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

y(k) = C ⊗ x(k) . (2)

DES that can be described by this model will be called time-invariant max-plus-linear (MPL).
The index k is called the event counter. The state x(k) typically contains the time instants at
which the internal events occur for the kth time, the input u(k) contains the time instants at
which the input events occur for the kth time, and the output y(k) contains the time instants
at which the output events occur for the kth time1.

2.3 Stochastic max-plus-linear systems

In this paper we proceed on the results of [24], in which we have extended the deterministic
model (1)–(2) to include uncertainty. Consider the following MPL system:

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) (3)

y(k) = C(k)⊗ x(k) (4)

1More specifically, for a manufacturing system, x(k) contains the time instants at which the processing
units start working for the kth time, u(k) the time instants at which the kth batch of raw material is fed to
the system, and y(k) the time instants at which the kth batch of finished product leaves the system.

3



where A(k), B(k) and C(k) represent uncertain system matrices due to modeling errors or
disturbances. Usually fast changes in the system matrices will be considered as noise and
disturbances, whereas slow changes or permanent errors are considered as model mismatch.
In this paper both features will be treated in one single framework. The uncertainty caused by
disturbances and errors in the estimation of physical variables, is gathered in the uncertainty
vector e(k). In this paper we assume that the uncertainty has stochastic properties. Hence,
e(k) is a stochastic variable.

We assume that the uncertainty vector e(k) captures the complete time-varying aspect of
the system. Furthermore, the system matrices of an MPL model usually consist of sums or
maximizations of internal process times, transportation times, etc. (see, e.g., [1] or Section 6).
Since the entries of e(k) directly correspond to the uncertainties in these duration times, it
follows from Lemma 1 that the entries of the uncertain system matrices belong to Smpns:

A(k) ∈ Sn×n
mpns(e(k)), B(k) ∈ Sn×m

mpns(e(k)), C(k) ∈ S l×n
mpns(e(k)). (5)

3 Model predictive control for stochastic MPL systems

In [9, 10] we have extended the MPC framework to time-invariant MPL models (1)–(2) as
follows. Just as in conventional MPC [7, 11] we define a cost criterion J that reflects the input
and output cost functions (Jin and Jout, respectively) in the event period [k, k +Np − 1]:

J(k) = Jout(k) + λJin(k) (6)

where Np is the prediction horizon and λ is a weighting parameter. Possible choices for
Jout and Jin are given in [9, 10]. The aim is now to compute an optimal input sequence
u(k), . . . , u(k +Np − 1) that minimizes J(k) subject to linear constraints on the inputs and
outputs. Since the u(k)’s correspond to consecutive event occurrence times, we have the
additional condition ∆u(k+j) = u(k+j)−u(k+j−1) ≥ 0 for j = 0, . . . , Np−1. Furthermore,
in order to reduce the number of decision variables and the corresponding computational
complexity we introduce a control horizon Nc (≤ Np) and we impose the additional condition
that the input rate2 should be constant from the point k+Nc−1 on: ∆u(k+j) = ∆u(k+Nc−1)
for j = Nc, . . . , Np − 1, or equivalently ∆2u(k + j) = ∆u(k + j) − ∆u(k + j − 1) = 0 for
j = Nc, . . . , Np − 1.

MPC uses a receding horizon principle. This means that after computation of the optimal
control sequence u(k), . . . , u(k+Nc−1), only the first control sample u(k) will be implemented,
subsequently the horizon is shifted one event step, and the optimization is restarted with new
information of the measurements. Define the vectors

ũ(k) =







u(k)
...

u(k+Np−1)






ỹ(k) =







ŷ(k)
...

ŷ(k+Np−1)







2For a manufacturing system the input rate corresponds to the rate at which raw material or external
resources are fed to the system
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Now the MPL-MPC problem for event step k can be defined as:

min
ũ(k)

Jout(k) + λJin(k)

subject to

x(k+j)=A⊗x(k+j−1)⊕B⊗u(k+j) (7)

y(k + j) = C ⊗ x(k + j) (8)

∆u(k + j) ≥ 0 (9)

∆2u(k + ℓ) = 0 (10)

Ac(k)ũ(k) +Bc(k)ỹ(k) ≤ cc(k) (11)

for j = 0, . . . , Np−1, ℓ = Nc, . . . , Np−1

where (11) represents the linear constraints on the inputs and the outputs.
In this paper Jout and Jin are chosen as follows:

Jout(k) =
∑

i

IE[η̃i(k)] (12)

Jin(k) = −
∑

j

ũj(k) (13)

where IE[η̃i(k)] denotes the expectation of the i-th “tardiness” error η̃i(k), which is given by

η̃i(k) = max( ỹi(k)− r̃i(k) , 0 ) , (14)

where the due date signal r(k) is stacked in the vector

r̃(k) =







r(k)
...

r(k+Np−1)







and ỹi(k), ũi(k) and r̃i(k) denote the i-th element of ỹ(k), ũ(k) and r̃(k), respectively. Other
choices for Jout and Jin are given in [9, 10].

The next step is to make predictions. We collect the uncertainty over the event interval
[k, k +Np − 1] in one vector

ẽ(k) =







e(k)
...

e(k +Np − 1)






∈ R

nẽ .

We assume ẽ(k) to be a random variable with probability density function p(ẽ). Now it is
easy to verify that the prediction model, i.e., the prediction of the future outputs for the
system (3)–(4), is given by

ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) , (15)

in which C̃(ẽ(k)) and D̃(ẽ(k)) are given by

C̃(ẽ(k)) =







C̃1(ẽ(k))
...

C̃Np
(ẽ(k))






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D̃(ẽ(k)) =







D̃11(ẽ(k)) · · · D̃1Np
(ẽ(k))

...
. . .

...

D̃Np1(ẽ(k)) · · · D̃NpNp
(ẽ(k))






(16)

where
C̃m(ẽ(k)) = C(k +m− 1)⊗A(k +m− 1)⊗ . . .⊗A(k) (17)

and

D̃mn(ẽ(k)) =



















C(k+m−1)⊗A(k+m−1)⊗ . . .⊗A(k+n)⊗B(k+n−1) if m > n

C(k+m−1)⊗B(k+m−1) if m = n

ε if m < n .

(18)

We combine the material of previous subsections, and obtain

Jout(k) =
∑

i

IE
[

max
( {

[C̃(k)]i ⊗ x(k) ⊕ [D̃(k)]i ⊗ ũ(k)
}

− r̃i(k) , 0
)]

(19)

Jin(k) = −
∑

j

ũj(k) (20)

where [C̃(k)]i and [D̃(k)]i denote the i-th row of C̃(k) and D̃(k), respectively. Finally the
following problem is obtained:

min
ũ(k)

Jout(k) + λJin(k) (21)

subject to

Ac(k)ũ(k) +Bc(k)IE[ỹ(k)] ≤ cc(k) (22)

∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1 (23)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (24)

This problem will be called the stochastic MPL-MPC problem for event step k.
Recall that the MPC uses a receding horizon principle. This means that after computation

of the optimal control sequence u(k), . . . , u(k + Nc − 1), only the first control sample u(k)
will be implemented, subsequently the horizon is shifted one sample, and the optimization is
restarted with new information of the measurements.

4 Convexity of stochastic MPL-MPC

In order to compute the optimal MPC input signal, we need the expectation of the signals
η̃(k) and ỹ(k). In this section we present a method to compute IE[η̃i(k)] and IE[ỹ(k)] and
we show that these expectations are convex. As a consequence, the MPL-MPC problem is
convex.

Lemma 2 Define the vector z(k) as

z(k) =









−r̃(k)
x(k − 1)
ũ(k)
ẽ(k)








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Then, the future tardiness error η̃(k) and the future output signal ỹ(k) belong to Smpns(z(k)).

Proof : Equations (16)-(18) in combination with (5) and Lemma 1 show that the entries of
C̃(ẽ(k)) and D̃(ẽ(k)) belong to Smpns(ẽ(k)). Then, using (14), (15) and again Lemma 1 we
find that both η̃(k) and ỹ(k) belong to Smpns(z(k)). ⋄

Let v(k) ∈ Smpns(z(k)), where z(k) is as defined in Lemma 2. In the sequel of this section
we will derive how to compute the expectation IE[v(k)], and show that IE[v(k)] has some nice

convexity properties. Define w(k) =
[

−r̃T (k) xT (k − 1) ũT (k)
]T

to be the non-stochastic
part of z(k). Then, because of Lemma 2 and the definition of max-plus-nonnegative-scaling
functions, there exist scalars αj and non-negative vectors βj and γj , such that

v(k) = max
j=1,...,nv

(

αj + βT
j w(k) + γTj ẽ(k)

)

Define the sets Φj(w(k)), j = 1, . . . , nv such that for all ẽ(k) ∈ Φj(w(k)) there holds:

v(k) = αj + βT
j w(k) + γTj ẽ(k)

and
nv
⋃

j=1

Φj(w(k)) = R
nẽ

Denote, for a given w(k), the expectation of v(k) by v̂(w(k)) = IE[v(k)], and the probability
density function of ẽ by p. Then

v̂(w(k)) = IE[v(k)] (25)

=

∫

∞

−∞

. . .

∫

∞

−∞

v(k) p(ẽ) dẽ (26)

=

∫

∞

−∞

. . .

∫

∞

−∞

max
j=1,...,nv

(

αj + βT
j w(k) + γTj ẽ

)

p(ẽ) dẽ (27)

=

nv
∑

j=1

∫

ẽ∈Φj(w(k))
. . .

∫

(

αj + βT
j w(k) + γTj ẽ

)

p(ẽ) dẽ (28)

where dẽ = dẽ1 dẽ2 . . . dẽnẽ
.

The following proposition shows that v̂(w(k)) is convex in the vector w(k).

Proposition 3 The function v̂(w(k)) as defined in (28) is convex in w(k) and a subgradient
gv(w(k)) is given by

gv(w(k)) =

nv
∑

ℓ=1

βT
ℓ

∫

ẽ∈Φℓ(w(k))
· · ·

∫

p(ẽ) dẽ (29)

Proof : Consider a vector wo(k) with the same structure as w(k). Recall that (cf. (28))

v̂(wo(k))) =

nv
∑

ℓ=1

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

(

αℓ + βT
ℓ wo(k) + γTℓ ẽ

)

p(ẽ) dẽ
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Then, using the fact that
⋃

Φℓ(wo(k)) = R
nẽ , there holds for any w(k):

v̂(w(k)) =

∫

∞

−∞

· · ·

∫

∞

−∞

max
j=1,...,nv

(

αj + βT
j w(k) + γTj ẽ

)

p(ẽ) dẽ (by (27))

=

nv
∑

ℓ=1

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

max
j=1,...,nv

(

αj + βT
j w(k) + γTj ẽ

)

p(ẽ) dẽ

≥

nv
∑

ℓ=1

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

(

αℓ + βT
ℓ w(k) + γTℓ ẽ

)

p(ẽ) dẽ

Note that the sets Φℓ(wo(k)) are computed for wo(k), where as v̂(w(k)) is computed for w(k).
Now we derive:

nv
∑

ℓ=1

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

(

αℓ + βT
ℓ w(k) + γTℓ ẽ

)

p(ẽ) dẽ

=

nv
∑

ℓ=1

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

(

αℓ + βT
ℓ wo(k) + γTℓ ẽ

)

p(ẽ) dẽ

+

nv
∑

ℓ=1

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

(

βT
ℓ (w(k)− wo(k))

)

p(ẽ) dẽ

=

nv
∑

ℓ=1

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

(

αℓ + βT
ℓ wo(k) + γTℓ ẽ

)

p(ẽ) dẽ

+

(

nv
∑

ℓ=1

βT
ℓ

∫

ẽ∈Φℓ(wo(k))
· · ·

∫

p(ẽ) dẽ

)

(

w(k)− wo(k)
)

= v̂(wo(k)) + gv(wo(k))
(

w(k)− wo(k)
)

and we conclude:
v̂(w(k)) ≥ v̂(wo(k)) + gv(wo(k))

(

w(k)− wo(k)
)

(30)

From [21] it follows that equation (30) proves that v̂ is convex in w(k) and that gv, defined
by (29), is a subgradient of v̂. ⋄

Now consider the MPC problem (21) – (24). First note that because of Lemma 3, IE[η̃i(k)]
and IE[ỹ(k)] are convex in w(k). This means that Jout(k) and J(k) are convex in ũ(k).

Property 4 If the linear constraints are monotonically nondecreasing as a function of IE[ỹ(k)]
(in other words, if [Bc]ij ≥ 0 for all i, j), the constraint (22) becomes convex in ũ(k).

So, if the linear constraints are monotonically nondecreasing, the MPL-MPC problem
turns out to be a convex problem in ũ(k), and both a subgradient of the constraints and
a subgradient of the cost criterion can easily be derived using Lemma 3. Note that convex
optimization problems can be solved using reliable and efficient optimization algorithms, based
on interior point methods [18, 26].
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5 Piecewise affine and piecewise polynomial probability den-

sity functions

So far, we did not make any assumption on the characterization of probability function p(ẽ).
For the computation of the cost criterion and the constraints we need the values of IE[ỹ(k)]
and IE[η̃(k)]. If we choose for example a Gaussian distribution, they can be calculated from
(28) using numerical integration. Numerical integration is usually time-consuming and cum-
bersome, but can be avoided by choosing piecewise affine or piecewise polynomial probability
density functions (possibly as an approximation of the real probability density function).

Let p(ẽ) be piecewise affine functions, so consider sets Pℓ , ℓ = 1, . . . , np, such that for
ẽ ∈ Pℓ the probability density function is given by:

p(ẽ) = µℓ + ζTℓ ẽ

Consider a signal v(k) ∈ Smpns(z(k)) and let w(k) be its non-stochastic part. Let
Ejℓ(w(k)) = Φj(w(k)) ∩ Pℓ for j = 1, . . . , nv, ℓ = 1, . . . , np, then v̂(w(k)) is given by

v̂(w(k)) =

np
∑

ℓ=1

nv
∑

j=1

∫

ẽ∈Ejℓ(w(k))
· · ·

∫

(

αj + βT
j w(k) + γTj ẽ

)

(µℓ + ζTℓ ẽ) dẽ

This is an integral of a quadratic function in ẽ and can be solved analytically for all regions
Ejℓ. In general, for piecewise polynomial probability density functions, the integral will be a
polynomial function in ẽ, and can be solved analytically for all regions Ejℓ [3, 14].

If piecewise affine or polynomial probability density functions are used as an approxima-
tion of “true” non-polynomial probability functions, the quality of the approximation can be
improved by increasing the number of sets np.

6 Example

M1 M2

d1=5+e(k) d2=1

✲ ✲ ✲u(k) y(k)
x1(k) x2(k)

t1=0 t2=1 t3=0

Figure 1: A production system.

Consider the production system of Figure 1. This system consists of two machines M1

and M2 and operates in batches. The raw material is fed to machine M1 where preprocessing
is done. Afterwards the intermediate product is fed to machine M2 and finally leaves the
system. We assume that each machine starts working as soon as possible on each batch, i.e.,
as soon as the raw material or the required intermediate product is available, and as soon as
the machine is idle (i.e., the previous batch of products has been processed and has left the
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machine). Define:

u(k) : time instant at which the system is fed for the kth time

y(k) : time instant at which the kth product leaves the system

xi(k) : time instant at which machine i starts for the kth time

tj(k) : transportation time for the kth batch.

di(k) : processing time on machine i for the kth batch.

The system equations are given by

x1(k) = max(x1(k−1) + d1(k−1), u(k) + t1(k))

x2(k) = max(x1(k) + d1(k) + t2(k), x2(k−1) + d2(k−1))

= max(x1(k−1) + d1(k−1) + d1(k) + t2(k),

u(k) + d1(k) + t1(k) + t2(k), x2(k−1) + d2(k−1))

y(k) = x2(k) + d2(k) + t3(k)

In matrix notation this becomes

x(k) = A(k)⊗ x(k−1)⊕B(k)⊗ u(k)

y(k) = C(k)⊗ x(k) .

where the system matrices A, B and C are given by

A =

[

d1(k−1) ε
d1(k−1) + d1(k) + t2(k) d2(k−1)

]

B =

[

t1(k)
d1(k) + t1(k) + t2(k)

]

C =
[

ε d2(k) + t3(k)
]

Let us now solve the stochastic MPC problem for this perturbed MPL system. Assume that
the transportation times are constant: t1(k) = 0, t2(k) = 1, t3(k) = 0, that the production
time of the second machine is constant: d2(k) = 1, and that the processing time of the second
machine is corrupted by noise:

d1(k) = 5 + e(k)

where e(k) is a random signal with probability density function

p(e) =







0 for e < −1
1/2 for −1 ≤ e ≤ 1
0 for e > 1

(31)

Assume that the due date signal is given by

r(k) = 10 + 5 · k , (32)

the initial state is equal to x(0) = [ 0 10 10 ]T , and the cost criterion (21) is optimized for
Np = 3 and Nc = 2. With the above choice of the cost criterion, we can rewrite the stochastic
MPC problem into a convex optimization problem. The optimal input sequence is computed
for k = 1, . . . , 100, and at for each k, the first element u(k) of the sequence ũ(k) is applied
to the perturbed system (due to the receding horizon strategy). In the experiment, the true
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Figure 2: The difference y(k)− r(k) between the output date signal y and the due date signal
r for different values of λ).

system is simulated for a random sequence e(k), k = 1, . . . , 100, satisfying probability density
function (31).

Figure 2 gives the difference between the output date signal y and the due date signal r.
To see the influence of the parameter λ, the design is done for different values (λ makes a
trade-off between minimization of the due-date violation and the just-in-time feeding). For
λ = 10−5, the input sequence is hardly weighted, and for k > 3 all due dates are satisfied.
For λ = 0.5, the values of the input dates are taken into account, and the scheme leads to a
frequent violation of the due dates. For λ = 0.95 the input cost criterion Jin will be dominant
in the optimization, which results in a maximization of the control input (last-moment feed).
Consequently, the due date is continuously violated (y(k)− r(k) > 0 for all k).

7 Discussion

In this paper we have extended the work on analysis and control of uncertain discrete-event
systems. Instead of a deterministic approach ([15, 19, 24, 27]), we have considered the un-
certainties in a stochastic setting. Further we have introduced an MPC framework for the
control of these stochastic max-plus-linear discrete event systems. We have shown that, if the
constraints are a nondecreasing function of the output, the resulting optimization problem is
a convex optimization problem, and thus can be solved very efficiently. In general, the com-
putation of the predictions requires a numerical integration. However, in the case of piecewise
polynomial probability density functions, this numerical integration can be prevented and the
integrals can be computed analytically.

Topics for future research are: determination of rules of thumb for appropriate values for
the tuning parameters (control horizon Nc, prediction horizon Np, and performance weighting
parameter λ) in the stochastic case, and complexity reduction and approximation to further
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improve the efficiency of our approach. In the following paragraphs we will discuss both topics
in more detail.

In [22] we derived rules of thumb for determining appropriate values for the MPC tuning
parameters in the case of deterministic max-plus-linear discrete event systems. Although our
first implementations do not show a different behavior with respect to the advised initial
parameter settings of [22], we will need further study on the question if and how much these
settings will change in the stochastic case. This research will be done by considering the
optimal tuning parameters for a large number of generic simulation examples.

Problem complexity may lead to an excessive computation time or memory overflow. In
practical applications the computation time and memory capacity are always limited, and
therefore a high problem complexity will not be acceptable. A possible solution to this
problem may be the concept of variability expansion [12], in which approximate calculation
is done of the stochastic integrals. A first implementation of this approximation was done in
[25], in which it was shown that the complexity of the MPC optimization problem may be
reduced drastically. Further research on this topic is necessary.
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