
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report CSE02-007

Complexity reduction in MPC for
stochastic max-plus-linear systems by

variability expansion∗

T.J.J. van den Boom, B. De Schutter, and B. Heidergott

If you want to cite this report, please use the following reference instead:
T.J.J. van den Boom, B. De Schutter, and B. Heidergott, “Complexity reduction in
MPC for stochastic max-plus-linear systems by variability expansion,” Proceedings
of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, pp. 3567–
3572, Dec. 2002.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/02_007

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/02_007


Complexity reduction in MPC for

stochastic max-plus-linear systems

by variability expansion

T.J.J. van den Boom‡, B. De Schutter‡ and B. Heidergott§

‡Control Systems Engineering, Faculty of Information Technology and Systems

Delft University of Technology, P.O.Box 5031, 2600 GA Delft, The Netherlands

§Department of Mathematics and Computing Science

Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands

email: {t.j.j.vandenboom,b.deschutter}@its.tudelft.nl, b.heidergott@tue.nl

Abstract

Model predictive control (MPC) is a popular controller
design technique in the process industry. Conventional
MPC uses linear or nonlinear discrete-time models. Re-
cently, we have extended MPC to a class of discrete
event systems that can be described by a model that
is “linear” in the max-plus algebra. In our previous
work we have considered MPC for the perturbations-
free case and for the case with noise and/or model-
ing errors in a bounded or stochastic setting. In this
paper we consider a method to reduce the computa-
tional complexity of the resulting optimization prob-
lem, based on variability expansion. We show that the
computational load is reduced if we decrease the level
of “randomness” in the system.

1 Introduction

Model predictive control (MPC) [7, 11] is a proven
technology for the control of multivariable systems in
the presence of input, output and state constraints and
is capable of tracking pre-scheduled reference signals.
These attractive features make MPC widely accepted
in the process industry. Usually MPC uses linear or
nonlinear discrete-time models. However, the attrac-
tive features mentioned above have led us to extend
MPC to discrete event systems. Typical examples of
discrete event systems (DES) are flexible manufactur-
ing systems, telecommunication networks, parallel pro-
cessing systems, traffic control systems, and logistic
systems. The class of DES essentially consists of man-
made systems that contain a finite number of resources
(such as machines, communications channels, or pro-
cessors) that are shared by several users (such as prod-
uct types, information packets, or jobs) all of which
contribute to the achievement of some common goal
(the assembly of products, the end-to-end transmission

of a set of information packets, or a parallel compu-
tation) [1]. There exist many different modeling and
analysis frameworks for DES such as Petri nets, finite
state machines, automata, languages, process algebra,
computer models, etc. [3, 9]. In this paper we consider
the class of DES with synchronization but no concur-
rency. Such DES can be described by models that are
“linear” in the max-plus algebra [1, 4], and therefore
they are called max-plus-linear (MPL) DES.

In [5, 6, 15] we have extended MPC to MPL systems.
In [14, 15] we have presented some results on MPL-
MPC in the presence of noise and/or modeling errors,
both in a bounded and stochastic setting. In contrast
to conventional linear systems, where noise and distur-
bances are usually modeled by including an extra term
in the system equations (i.e., the noise is considered to
be additive), the influence of noise and disturbances in
MPL systems is not max-plus-additive, but max-plus-
multiplicative (see [1] or the worked example of Section
5). A second important feature is modeling errors. Un-
certainty in the modeling or identification phase leads
to errors in the system matrices. It is clear that both
modeling errors, and noise/disturbances perturb the
system by introducing uncertainty in the system ma-
trices. Therefore, both features can be treated in one
single framework, as was already shown in [14, 15].
The characterization of the perturbation will then de-
termine whether it describes model mismatch or dis-
turbance. In [14] we have derived an MPC controller
for this framework and we have also shown that un-
der quite general conditions the resulting MPC opti-
mization problem is a convex optimization problem.
However, for many practical situations, the problem
complexity will grow fast for an increasing prediction
horizon and a higher system order. In this paper we
will approximate the predicted future outputs using the
method of variability expansion [8]. We introduce a pa-
rameter that allows us to control the level of random-



ness in the system, and letting the parameter go from
0 to 1 increases the level of stochasticity in the sys-
tem. We will show that by using this approximation
the MPC optimization problem can be solved very ef-
ficiently.

The paper is organized as follows. In Section 2 we intro-
duce the max-plus algebra and the concept of stochastic
MPL systems. In Section 3 we give a short overview
of the MPC algorithm for MPL systems. Section 4
describes how the complexity of the problem can be
reduced by using the method of variability expansion.
Finally, Section 5 gives a worked example and a com-
parison in computational load.

2 Max-plus algebra and stochastic

max-plus-linear systems

2.1 Max-plus algebra

In this section we give the basic definition of the max-
plus algebra and we present some results on a class of
max-plus functions.

Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-
algebraic addition (⊕) and multiplication (⊗) are de-
fined as follows [1, 4]:

x⊕ y = max(x, y) x⊗ y = x+ y

for numbers x, y ∈ Rε, and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

Let Smpns be the set of max-plus-nonnegative-scaling
functions, i.e., functions f of the form

f(z) = max
i

(αi,1z1 + . . .+ αi,nzn + βi)

(in conventional algebra) with variable z ∈ R
n
ε and

constants αi,j ∈ R
+ and βi ∈ R, where R+ is the set of

the nonnegative real numbers. If we want to stress that
f is a function of z we will denote this by f ∈ Smpns(z).

Lemma 1 The set Smpns is closed under the opera-
tions ⊕, ⊗, and scalar multiplication by a nonnegative
scalar.

The proof is in [15].

2.2 Stochastic max-plus-linear systems

In [14, 15] we have studied discrete event systems
(DES) in which there is synchronization but no con-
currency and which include uncertainty. It has been

shown that these systems can be described by a model
of the form

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) (1)

y(k) = C(k)⊗ x(k) . (2)

DES that can be described by this model will be called
max-plus-linear (MPL). The index k is called the event
counter. The state x(k) typically contains the time in-
stants at which the internal events occur for the kth
time, the input u(k) contains the time instants at which
the input events occur for the kth time, and the out-
put y(k) contains the time instants at which the output
events occur for the kth time1. The entries of system
matrices A(k), B(k) and C(k) are uncertain due to
modeling errors or disturbances. Usually fast changes
in the system matrices will be considered as noise and
disturbances, whereas slow changes or permanent er-
rors are considered as model mismatch. In this paper
both features will be treated within one single frame-
work. The uncertainty caused by disturbances and er-
rors in the estimation of physical variables, is gathered
in the uncertainty vector e(k). In this paper we assume
that the uncertainty has stochastic properties. Hence,
e(k) is a stochastic variable.

We assume that the uncertainty vector e(k) captures
the complete time-varying aspect of the system. Fur-
thermore, the system matrices of an MPL model usu-
ally consist of sums or maximizations of internal pro-
cess times, transportation times, etc. (see, e.g., [1] or
Section 5). Since the entries of e(k) directly correspond
to the uncertainties in these duration times, it follows
from Lemma 1 that the entries of the uncertain system
matrices belong to Smpns:

A(k) ∈ Sn×n
mpns(e(k)), B(k) ∈ Sn×m

mpns(e(k)),

C(k) ∈ Sl×n
mpns(e(k)). (3)

Results for handling uncertainty for some other classes
of DES are given in [2, 10, 13, 17] and the references
therein.

3 Model predictive control for stochastic MPL

systems

In [5, 14, 15] we have extended the MPC framework
to MPL models (1)–(2) as follows. Just as in conven-
tional MPC [7, 11] we define a cost criterion J that
reflects the input and output cost functions (Jin and
Jout, respectively) in the event period [k, k +Np − 1]:

J(k) = Jout(k) + λJin(k) (4)

1More specifically, for a manufacturing system, x(k) contains
the time instants at which the processing units start working for
the kth time, u(k) the time instants at which the kth batch of
raw material is fed to the system, and y(k) the time instants at
which the kth batch of finished product leaves the system.



where Np is the prediction horizon and λ is a weighting
parameter and Jout and Jin are chosen as follows:

Jout(k) =
∑

i

Np−1
∑

j=0

IE[ηi(k + j)] (5)

Jin(k) = −
∑

ℓ

Np−1
∑

j=0

uℓ(k + j) (6)

where IE[ηi(k)] denotes the expected value of the ith
“tardiness” ηi(k), which is given by

ηi(k) = max( yi(k)− ri(k) , 0 ) , (7)

where r(k) is the due date signal. Other choices for
Jout and Jin are given in [5, 6].

The aim is now to compute an optimal input sequence
u(k), . . . , u(k + Np − 1) that minimizes J(k) subject
to linear constraints on the inputs and outputs. Since
the u(k)’s correspond to consecutive event occurrence
times, we have the additional condition ∆u(k + j) =
u(k + j) − u(k + j − 1) ≥ 0 for j = 0, . . . , Np − 1.
Furthermore, in order to reduce the number of de-
cision variables and the corresponding computational
complexity we introduce a control horizon Nc (≤ Np)
and we impose the additional condition that the input
rate2 should be constant from the point k+Nc − 1 on:
∆u(k+ j) = ∆u(k+Nc − 1) for j = Nc, . . . , Np − 1, or
equivalently ∆2u(k+j) = ∆u(k+j)−∆u(k+j−1) = 0
for j = Nc, . . . , Np − 1.

MPC uses a receding horizon principle. This means
that after computation of the optimal control sequence
u(k), . . . , u(k + Nc − 1), only the first control sample
u(k) will be implemented, subsequently the horizon is
shifted one event step, and the optimization is restarted
with new information of the measurements.

Define the vectors

ũ(k) =







u(k)
...

u(k+Np−1)






, r̃(k) =







r(k)
...

r(k+Np−1)







ỹ(k) =







ŷ(k)
...

ŷ(k+Np−1)






, ẽ(k) =







e(k)
...

e(k+Np−1)







Now the MPL-MPC problem for event step k can be

2For a manufacturing system the input rate corresponds to
the rate at which raw material or external resources are fed to
the system

defined as:

min
ũ(k)

Jout(k) + λJin(k) (8)

subject to

∆u(k + j) ≥ 0 (9)

∆2u(k + ℓ) = 0 (10)

Ac(k)ũ(k) +Bc(k)IE[ỹ(k)] ≤ cc(k) (11)

for j = 0, . . . , Np−1, ℓ = Nc, . . . , Np−1 .

In order to compute the optimal MPC input signal,
we need the expected value of the signals ηi(k + j)
and yi(k + j). We will now consider the computa-
tion of IE[ηi(k + j)] and IE[yi(k + j)]. In [14] we
have shown that ηi(k + j) and yi(k + j) are max-plus-
nonnegative-scaling functions in the variable w(k) =
[

−r̃T (k) xT (k − 1) ũT (k)
]T

.

The following proposition is given in [14]:

Proposition 2 Consider a signal v(k) which is a max-
plus-nonnegative-scaling function in w(k) and ẽ(k), so

v(k) = max
j=1,...,nv

(

αj + βT
j w(k) + γT

j ẽ(k)
)

where αj are scalars and βj and γj are non-negative
vectors and ẽ(k) ∈ R

nẽ is a stochastic variable
with probability density function p. Define the sets
Φj(w(k)), j = 1, . . . , nv such that for all ẽ(k) ∈
Φj(w(k)) there holds:

v(k) = αj + βT
j w(k) + γT

j ẽ(k)

and

nv
⋃

j=1

Φj(w(k)) = R
nẽ . The expected value of v(k) is

then given by

IE[v(k)] =

nv
∑

j=1

∫

. . .
∫

ẽ∈Φj(w)

(

αj+βT
j w(k)+γT

j ẽ
)

p(ẽ) dẽ (12)

where dẽ = dẽ1 dẽ2 . . . dẽnẽ
.

The function IE[v(k)] is convex in w(k) and a subgra-
dient gv(w(k)) is given by

gv(w(k)) =

nv
∑

ℓ=1

βT
ℓ

∫

ẽ∈Φℓ(w(k))

· · ·

∫

p(ẽ) dẽ . (13)

Now consider the MPC problem (8) – (11). First note
that because of Proposition 2, IE[ηi(k+j)] and IE[y(k+
j)] are convex in w(k). This means that Jout(k) and
J(k) are convex in ũ(k).

Property 3 If the linear constraints are monotoni-
cally nondecreasing as a function of IE[ỹ(k)] (in other
words, if [Bc]ij ≥ 0 for all i, j), the constraint (11)
becomes convex in ũ(k).



So, if the linear constraints are monotonically nonde-
creasing, the MPL-MPC problem turns out to be a
convex problem in ũ(k), and both a subgradient of the
constraints and a subgradient of the cost criterion can
easily be derived using Proposition 2. Note that con-
vex optimization problems can be solved using reliable
and efficient optimization algorithms, based on interior
point methods [12, 16].

In general, the computation of the predictions requires
a numerical integration. However, in the case of
piecewise polynomial probability density functions,
this numerical integration can be prevented and the
integrals can be computed analytically (see [14]).

4 Reducing complexity

The algorithm described in the previous section, has
a complexity that is growing fast with an increasing
number of stochastic variables nẽ due to the numerical
integration. In this section we will approximate the ex-
pected value of v(ẽ(k)) using the method of variability
expansion [8]. To this end, we assume that the entries
of ẽ(k) are i.i.d. and introduce an artificial parame-
ter θ. We now replace with probability 1 − θ the ith
entry of random vector ẽ(k) by its mean, denoted by
[ẽ0]i. The result is denoted by ẽθ(k). The parameter
θ allows controlling the level of randomness in the sys-
tem, and letting θ go from 0 to 1 increases the level of
stochasticity in the system.

The main result of [8] is the following. For any θ ∈
[0, 1], IE[v(ẽθ(k)))] can be developed into a Taylor se-
ries in θ whose domain of convergence is [0, 1], where
we take one-sided limits at the boundary points. In
particular, denote the limit of dm/dθm IE[v(ẽθ(k))] for
θ ↓ 0 by dm/dθm IE[v(ẽ0(k))], then IE[v(ẽθ(k))], the
“true” expected value of v(ẽ(k)), is given by

IE[v(ẽ(k)))] =

M
∑

m=0

1

m!

dm

dθm
IE[v(ẽ0(k))] +RM (k)

where, for M < nẽ,

RM ≤
1

(M + 1)!

∣

∣

∣

∣

dM+1

dθM+1
IE[v(ẽ0(k))]

∣

∣

∣

∣

and RM = 0 otherwise.

Expressions for the mth order derivative
dm/dθmIE[v(ẽ0(k)) are given in [8]. In this pa-
per we only give expressions for the first three
derivatives (m = 1, 2, 3). Set for 0 ≤ m ≤ nẽ and
i1 < i2 < . . . < im:

V (i1, i2, . . . , im) = IE[v(ẽθ(k, i1, i2, . . . , im))]

where [ẽθ(k, i1, i2, . . . , im)]j = [ẽ0(k)]j for j 6∈
{i1, i2, . . . , im} and V (0) = v(ẽ0(k)). This means that

V (i1, i2, . . . , im) is the estimation of v in the case where
only the elements ẽj for j ∈ {i1, i2, . . . , im} are stochas-
tic, and the elements ẽj for j 6∈ {i1, i2, . . . , im} are fixed
to their mean. Now the derivatives (m = 1, 2, 3) are
given by

d

dθ
IE[v(ẽ0(k))] =

nẽ
∑

i=1

(V (i)− V (0))

d2

dθ2
IE[v(ẽ0(k))] = 2

nẽ−1
∑

i1=1

nẽ
∑

i2=i1+1

(

V (i1, i2) + V (0)

− V (i1)− V (i2)
)

d3

dθ3
IE[v(ẽ0(k))] = 6

nẽ−2
∑

i1=1

nẽ−1
∑

i2=i1+1

nẽ
∑

i3=i2+1

(

V (i1, i2, i3)

+ V (i1) + V (i2) + V (i3)

− V (i1, i2)− V (i1, i3)

− V (i2, i3)− V (0)
)

By ignoring the error-term R4, the estimation of
v(ẽ(k)) can be approximated by a third-order Taylor
expansion:

IE[v(ẽ(k))] ≈ v(ẽ0(k)) +
d

dθ
IE[v(ẽ0(k))

+
1

2

d2

dθ2
IE[v(ẽ0(k)) +

1

6

d3

dθ3
IE[v(ẽ0(k))

≈ c0v(ẽ0(k)) + c1

nẽ
∑

i=1

V (i)

+ c2

nẽ−1
∑

i1=1

nẽ
∑

i2=i1+1

V (i1, i2)

+ c3

nẽ−2
∑

i1=1

nẽ−1
∑

i2=i1+1

nẽ
∑

i3=i2+1

V (i1, i2, i3) (14)

where the coefficients are given by c0 = 1
6 (−n3

ẽ+6n2
ẽ−

11nẽ + 6), c1 = 1
2 (n

2
ẽ − 5nẽ + 6), c2 = 3 − nẽ, c3 = 1.

Expression (14) can also be used for the approximation
withM = 0, M = 1 andM = 2. ForM = 0 we find the
coefficients c0 = 1, c1 = c2 = c3 = 0, for M = 1 we find
the coefficients c0 = 1 − nẽ, c1 = 1, c2 = c3 = 0, and
for M = 2 we find the coefficients c0 = 1

2 (n
2
ẽ−3nẽ+2),

c1 = 12− nẽ, c2 = 1, c3 = 0.

The subgradient ∇ũIE[v(ẽ(k))] can be computed using
the same weighted summation. For example, the ap-
proximate subgradient for M ≤ 3 becomes:

∇ũIE[v(ẽ(k))] ≈ c0∇ũv(ẽ0(k)) + c1

nẽ
∑

i=1

∇ũV (i)

+ c2

nẽ−1
∑

i1=1

nẽ
∑

i2=i1+1

∇ũV (i1, i2)

+ c3

nẽ−2
∑

i1=1

nẽ−1
∑

i2=i1+1

nẽ
∑

i3=i2+1

∇ũV (i1, i2, i3)



with the corresponding coefficients c0, c1, c2 and c3.
The values of V and ∇ũV can be computed using
Proposition 2. Because of the dramatic reduction in
number of stochastic variables, these values are com-
puted much faster than a full estimation of v(ẽ(k)) and
∇ũIE[v(ẽ(k))].

Note that because of the approximations, full con-
vexity might be lost. However, if the approximations
are close to the original functions, we still have a
well-conditioned optimization problem.

5 Example

M1 M2

d1(k) d2(k)

✲ ✲ ✲u(k) y(k)
x1(k) x2(k)

t1(k) t2(k) t3(k)

Figure 1: A production system.

Consider the production system in Figure 1. This sys-
tem consists of two machines M1 and M2 and operates
in batches. The raw material is fed to machine M1

where preprocessing is done. Afterwards the interme-
diate product is fed to machine M2 and finally leaves
the system. We assume that each machine starts work-
ing as soon as possible on each batch, i.e., as soon as
the raw material or the required intermediate product
is available, and as soon as the machine is idle (i.e., the
previous batch of products has been processed and has
left the machine). Define:

u(k) : time instant at which the system is fed for

the kth time

y(k) : time instant at which the kth product

leaves the system

xi(k) : time instant at which machine i starts for

the kth time

tj(k) : transportation time on link j for the kth

batch.

di(k) : processing time on machine i for the kth

batch.

The system equations are given by

x1(k) = max(x1(k−1) + d1(k−1), u(k) + t1(k))

x2(k) = max(x1(k) + d1(k) + t2(k),

x2(k−1) + d2(k−1))

= max(x1(k−1) + d1(k−1) + d1(k) + t2(k),

u(k) + d1(k) + t1(k) + t2(k),

x2(k−1) + d2(k−1))

y(k) = x2(k) + d2(k) + t3(k)

In matrix notation we obtain (1)-(2) where the system
matrices A, B and C are given by

A =

[

d1(k−1) ε
d1(k−1) + d1(k) + t2(k) d2(k−1)

]

B =

[

t1(k)
d1(k) + t1(k) + t2(k)

]

C =
[

ε d2(k) + t3(k)
]

Let us now solve the stochastic MPC problem for this
perturbed MPL system. Assume that two of the trans-
portation times are constant: t1(k) = 0, t3(k) = 0,
and that transportation time t2(k) and the production
times d1(k) and d2(k) are corrupted by noise:

d1(k) = 5 + 0.1 e1(k)

d2(k) = 1 + 0.1 e2(k)

t2(k) = 1 + 0.1 e3(k)

where e(k) =
[

e1(k) e2(k) e3(k)
]T

is a random
signal with probability density function

p(e) =







1/8 for max
i=1,2,3

(|ei|) ≤ 1

0 for max
i=1,2,3

(|ei|) > 1
(15)

Assume that the initial state is equal to x(0) = [ 0 6 ]T ,
the due date signal is given by r(k) = 4 + 6 · k and
the cost criterion (8) is optimized for Np = 3, Nc = 2
and λ = 0.1. With the choice of the cost criterion
(5)-(6), we can rewrite the stochastic MPC problem
into a convex optimization problem. For the computa-
tion of the cost criterion we use a Taylor approxima-
tion with M = 0, 1, 2, 3. The optimal input sequence
is computed for k = 1, . . . , 40, and for each k, the first
element u(k) of the sequence ũ(k) is applied to the per-
turbed system (due to the receding horizon strategy).
In the experiment, the true system is simulated for a
random sequence e(k), k = 1, . . . , 40, satisfying proba-
bility density function (15).

5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

M = 0
M = 1
M = 2
M = 3

k −→

y
(k
)−

r
(k
)
−
→

Figure 2: The difference y(k)− r(k) between the output
date signal y and the due date signal r for the
M -th order approximation, M ∈ {0, 1, 2, 3}.

Figure 2 gives the difference between the output date
signal y and the due date signal r for approximations



with M ∈ {0, 1, 2, 3}. The zero-th order approximation
is in fact equal to the case where no disturbance is
taken into account. We see that the scheme leads to a
frequent violation of the due dates (i.e. the difference
signal y(k) − r(k) is frequently positive). The same
holds for the first order approximation. The second
order approximation already gives a better result and
in the third-order case nearly all due dates are satisfied.
In Table 1 the (scaled) CPU-times are given for the
computation of the cost-criterion and its subgradient
for M ∈ {0, 1, 2, 3}.

M=0 M=1 M=2 M=3
cpu-time 1 3.07 203 1104

Table 1: (scaled) CPU-times for different levels in approx-
imation

From Table 1 we see that computation-time grows dra-
matically with increasing M . Depending on the appli-
cation and the computation-interval, available between
two events, we can choose the level of approximation.
In general, the above trade-off will give us the best pos-
sible approximation of the optimal solution, given the
constraints in computation time.

6 Discussion

We have discussed complexity reduction in MPC for
max-plus-linear discrete event systems with stochastic
uncertainties. From the MPC framework, a convex
optimization problem results, if the constraints are
a nondecreasing function of the output. With an
increasing number of stochastic variables, the com-
putational complexity of the optimization problem
increases dramatically due to the numerical integra-
tions required to evaluate the objective function. To
tackle this increase of complexity, we use the method
of variability expansion. The key idea of this method
is to introduce a parameter θ, which controls the level
of stochasticity in the system. Based on a Taylor
expansion of this parameter θ, good approximations
for the expectations of cost-criterion and constraints
can be computed, which leads to a significant reduction
of the computational complexity of our approach.

References

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P.
Quadrat, Synchronization and Linearity. New York:
John Wiley & Sons, 1992.

[2] J. Cardoso, R. Valette, and D. Dubois, “Pos-
sibilistic Petri nets,” IEEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics, vol. 29,
no. 5, pp. 573–582, 1999.

[3] C.G. Cassandras and S. Lafortune, “Introduction

to Discrete Event Systems”, Kluwer Academic Publish-
ers, Boston, 1999.

[4] R.A. Cuninghame-Green, Minimax Algebra,
vol. 166 of Lecture Notes in Economics and Mathemat-
ical Systems. Berlin, Germany: Springer-Verlag, 1979.

[5] B. De Schutter and T.J.J. van den Boom, “Model
predictive control for max-plus-linear discrete event
systems,” Automatica, vol. 37, no. 7, pp. 1049–1056,
July 2001.

[6] B. De Schutter and T.J.J. van den Boom, “Model
predictive control for max-plus-linear systems,” in Pro-
ceedings of the 2000 American Control Conference,
Chicago, Illinois, pp. 4046–4050, June 2000.
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