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Abstract

This paper presents a new iterative approach to proba-
bilistic robust controller design, which is an alternative
to the recently proposed Subgradient Iteration Algo-
rithm (SIA). In its original version [12] the SIA pos-
sesses the useful property of guaranteed convergence in
a finite number of iterations, but requires that the ra-
dius of a non-empty ball contained in the solution set
is known a-priori. This rather restrictive assumption
was later on released in [3], but only at the expense
of an increased number of iterations. The approach in
this paper does also not require the knowledge of such
a radius, and offers a significant improvement even over
the original SIA in terms of the maximum number of
possible correction steps that can be executed before a
feasible solution is reached. Given an initial ellipsoid
that contains the solution set, the approach iteratively
generates a sequence of ellipsoids with decreasing vol-
umes, all containing the solution set. A method for
finding an initial ellipsoid containing the solution set is
also proposed. The approach is illustrated on a real-life
diesel actuator benchmark model.
keywords: probabilistic robustness, robust LMIs, ro-
bust control.

1 Introduction

The Subgradient Iteration Algorithm was recently pro-
posed in the literature for probabilistic design of LQ
regulators [12]. It was developed in parallel with [3],
which deals with general robust LMIs. The main ad-
vantage of this approach over the existing determinis-
tic approaches to robust controller design is that it can
handle very general uncertainty structures, where the
uncertainty can enter the system in any (possibly non-
linear) fashion. Additionally, this approach does not
solve simultaneously a number of LMIs, whose dimen-
sion grows exponentially with the number of uncertain
parameters, but rather “solves” one LMI at each iter-

1This work is sponsored by the Dutch Technology Foundation
(STW) under project number DEL.4506.

ation. This turns out to be a very powerful feature
when one observes that even for a small number of real
uncertain parameters most of the existing LMI solvers
will be unable to handle the resulting number of LMIs.
For an overview of the literature on probabilistic design
the reader is referred to [12, 3, 10, 9, 7, 13, 14, 11, 8],
and the references therein.

While enjoying these nice properties, the major draw-
back of the SIA is that the radius of a ball contained in
the solution set is required to be known a-priori. This
radius is used at each iteration of the SIA to compute
the size of the step that will be made in the direction
of the anti-gradient of a suitably defined function. As
shown later on, not knowing such a radius r may result
in the SIA failing to find a feasible solution. Knowledge
of r, on the other hand, guarantees that the algorithm
will terminate at a feasible solution in a finite number
of iterations with probability one, provided that the so-
lution set has a non-empty interior [12]. While a mod-
ification of the SIA was proposed in [3] that no longer
necessitates the knowledge of r, this was only achieved
at the expense of a significant increase in the number
of iterations performed. This paper provides an alter-
native method that offers a strong improvement in the
convergence speed even over the original SIA, while at
the same time assumes no knowledge of r.

The approach proposed in this paper is based on the
Ellipsoid Algorithm (EA) [2], and can be used for find-
ing exact or approximate solutions to LMI feasibility
problems, like those arising from many (robust) con-
troller/filter design problems. The uncertainty ∆ is
assumed to be bounded in the structured uncertainty
set ∆, and to be coupled with a probability density
function f∆(∆). It is further assumed that it is possi-
ble to generate samples of ∆ according to f∆(∆). The
interested reader is referred to [5, 6, 4] for more details
on the available algorithms for uncertainty generation.
Then at each iteration of EA two steps are performed.
At the first step a random uncertainty sample ∆(i) ∈ ∆
is generated according to the given probability den-
sity function f∆(∆). With this generated uncertainty
a suitably defined convex function is parametrized so



that at the second step of the algorithm an ellipsoid
is computed, in which the solution set is guaranteed
to lie. The EA thus produces a sequence of ellipsoids
with decreasing volumes, all containing the solution set.
Provided that the solution set has a non-empty interior,
it will be established that this algorithm converges to
a feasible solution in a finite number of iterations with
probability one. It is also shown that even if the so-
lution set has a zero volume, the EA converges to the
solution set when the iteration number tends to infin-
ity – a property not possessed by the SIA. In addition,
a method is presented for obtaining an initial ellipsoid
that contains the solution set.

The remaining part of the paper is organized as fol-
lows. In the next Section the problem is formulated,
and the SIA is summarized. In Section 3 the EA is de-
veloped, its convergence is established and compared to
the convergence of the SIA. In Section 4 a method for
obtaining an initial ellipsoid containing the solution set
is presented. The complete EA method is illustrated in
Section 5 on the design of a robust H2 state-feedback
controller for a benchmark model, taken from [1]. Fi-
nally, Section 6 concludes the paper.

2 Introduction to the Problem

2.1 Notation and Problem Formulation
The notation used in this paper is standard besides that
‖.‖ denotes any matrix norm. The symbols • in LMIs
will be used to indicate entries that can be implied by
symmetry.

Denoting the cone of symmetric non-negative definite
matrices as C+ , {A : A = AT > 0}, we define
the projection Π+ that maps symmetric matrices to
the cone of symmetric non-negative definite matrices as
Π+A , arg minX∈C+ ‖A−X‖F . This projection can
be found explicitly as follows. Let the eigenvalue de-
composition of the symmetric matrix A be A = UΛUT ,
with Λ = diag{λ1, . . . , λn}. Then it can be shown
(see [12]) that Π+A = Udiag{λ+

1 , . . . , λ
+
n }UT , with

λ+
i = max(0, λi), i = 1, . . . , n.

In this paper we consider an uncertain system G∆(σ),
where the symbol σ represents the s-operator (i.e. the
time-derivative operator) for continuous-time systems,
and the z-operator (i.e. the shift operator) for discrete-
time systems. The uncertainty ∆ is characterized by an
uncertainty set ∆ and a probability distribution over
this uncertainty set f∆.

Many controller (and filter) design problems can be
represented in terms of LMIs of the form [2]

Control Problem: Find x ∈ X ⊆ R
N such that

U(x,∆) ≤ 0, for all ∆ ∈ ∆,

where U(x,∆) = UT (x,∆) is affine in x, and where the
set X is assumed to be convex. The controller is then
parametrized by any solution x∗. Such a controller is
called robust whenever the uncertainty set ∆ has more
than one element. The set of all feasible solutions to
the control problem is called the feasibility (solution)
set, and is denoted as

S , {x ∈ X : U(x,∆) ≤ 0, ∀∆ ∈ ∆}. (1)

Similarly to [12, 3] we define the following cost function

v(x,∆) , ‖Π+[U(x,∆)]‖ ≥ 0, (2)

which is such that

{x ∈ X : v(x,∆) = 0, ∀∆ ∈ ∆} ≡ S.

We can thus reformulate the initial control problem in
the form of an optimization problem as follows:

Find x∗ ∈ S. (3)

Since U(x,∆) is affine in x, it can be represented in the
form

U(x,∆) = U0(∆) +

N
∑

i=1

Ui(∆)xi,

where xi is the i-th element of the vector x. Then we
have the following result, taken from [3].

Lemma 1 The function v(x,∆), defined in Equation
(2), is convex in x ∈ X , and has a subgradient given
by

∇v(x,∆) =

























Tr (U1(∆)W (x,∆))
...

Tr (UN (∆)W (x,∆))






, if v(x,∆) 6= 0,

0, if v(x,∆) = 0,

where W (x,∆) , Π+[U(x,∆)]/v(x,∆).

2.2 The Subgradient Iteration Algorithm (SIA)
In this Subsection some facts about the recently pro-
posed SIA are summarized. In the original version of
the SIA [12], the following assumption is imposed.

Assumption 1 (Strong Feasibility Condition) A
scalar r > 0 is known for which there exists x∗ ∈ X
such that {x ∈ X : ‖x− x∗‖ ≤ r} ⊆ S.

Assumption 1 implies that the solution set S has a non-
empty interior, and that a radius r of a ball contained in
S is known. This is often is a rather restrictive assump-
tion due to the fact that usually no a-priori information
about the solution set is available.



Define the operator ΠX : RN 7→ X as

ΠXx , argmin
y∈X

‖x− y‖.

Then the (i+ 1)-th iteration of the SIA is summarized
as follows.

Algorithm 1 (Subgradient Iteration Algorithm)
Given x(i) and 0 < η < 2, perform the following steps.
Step 1: Generate a random sample ∆(i) with proba-
bility distribution f∆.
Step 2: Select the step-size

µk =

{

η v(x(i),∆(i))+r‖∇v(x(i),∆(i))‖
‖∇v(x(i),∆(i))‖2 if v(x(i),∆(i)) 6= 0

0 if v(x(i),∆(i)) = 0,

and compute

x(i+1) = ΠX [x(i) − µk∇v(x(i),∆(i))]. (4)

The following technical assumption needs to be addi-
tionally imposed

Assumption 2 For any x(i) 6∈ S there is a non-
zero probability to generate a sample ∆(i) for which
v(x(i),∆(i)) > 0, i.e. Prob(v(x(i),∆) > 0) > 0.

This assumption is not restrictive and is needed to
make sure that for any x(i) 6∈ S there is a non-
zero probability for a correction step to be executed.
By correction step it is meant an iteration (4) with
x(i+1) 6= x(i).

It is shown in [3] that for any initial condition x0 ∈ X ,
the SIA finds a feasible solution with probability one
in a finite number of iterations, provided that Assump-
tions 1 and 2 hold. It is also shown that the number

ISIA = ‖x0 − x∗‖2/(r2η(2− η)) (5)

provides an upper bound on the maximum number of
correction steps that can be executed.

A serious drawback of the SIA is that Assumption 1
is too restrictive as in most applications r is unknown.
The next example demonstrates how the SIA may ac-
tually result in divergence in cases that the radius r is
inappropriately selected.

Example 1 Consider the discrete-time system

M : xk+1 = xk + uk. (6)

and the cost function

JLQR(k) =
∞
∑

i=1

xT
k+iQxk+i + uT

k+iRuk+i.
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Figure 1: Performance of the Subgradient Iteration Algo-
rithm (SIA) for system M in Example 1.

Let X = XT > 0 and Y be such that
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R1/2Y 0 0 I









≥ 0.

Then it is a fact that the control law uk = Y X−1xk

achieves JLQR(k) ≤ xT
kX

−1xk [2]. Selecting Q = 1,
R = 10, r = 1, X0 = 0.1545, Y0 = −1.7073, the SIA
does not converge to the solution set, but rather begins
to oscillate, as it can be seen from Figure 1. The opti-
mum is represented by the innermost contour in Figure
1 (left). The contours in Figure 1 represent different
level sets. A level set LS(c,∆∗) of the function v(x,∆∗)
for a given ∆∗ ∈ ∆ and c ≥ 0 is defined as

LS(c,∆∗) , {x ∈ X : v(x,∆∗) ≤ c}. (7)

In [3] it is proposed that, whenever unknown, the ra-
dius r in the SIA is replaced by εs(i), where s(i) is the
number of correction steps performed before the i-th it-
eration, and εs > 0, εs → 0, and

∑∞
s=0 εs = ∞. While

this modification retains the convergence properties of
the SIA, it can significantly increase the number of cor-
rection steps, and thus the number of iterations that
need to be performed (see Equation (5)).

3 The Ellipsoid Algorithm (EA)

In this section an alternative approach to the SIA is
proposed that both requires no knowledge of r, and
retains the nice convergence properties of the SIA.

Assume that an initial ellipsoid E(0) that contains the
solution set S is given

E(0) = {x ∈ X : (x− x(0))TP−1
0 (x− x(0)) ≤ 1} ⊇ S

with center x(0) ∈ X and P0 ∈ R
N×N such that P0 =

PT
0 > 0. The problem of finding such an initial ellipsoid



will be discussed in the next section. Define the half-
space

H(0) , {x ∈ X : ∇T v(x(0),∆)(x− x(0)) ≤ 0}.

Due to the convexity of the function v(x,∆) we know
that H(0) also contains the solution set S, and there-
fore S ⊆ H(0) ∩ E(0). We can then construct a new
ellipsoid, E(1), as the minimum volume ellipsoid such
that E(1) ⊇ H(0)∩E(0) ⊇ S, and such that the volume
of E(1) is less than the volume of E(0). This, repeated
iteratively, represents the main idea behind the Ellip-
soid Algorithm [2]. Suppose at iteration (i+1) we have
x(i) ∈ X and Pi = PT

i > 0 such that

E(i) = {x ∈ X : (x− x(i))TP−1
i (x− x(i)) ≤ 1} ⊇ S.

The (i+ 1)-th iteration of the EA is then summarized
as follows.

Algorithm 2 (Ellipsoid Algorithm) Given x(i) ∈
X ⊆ R

N and Pi = PT
i > 0, perform the following

two steps
Step 1: Generate a random sample ∆(i) with probabil-
ity distribution f∆.
Step 2: Form the ellipsoid

E(i+1) = {x ∈ X : (x−x(i+1))TP−1
i+1(x−x(i+1)) ≤ 1} ⊇ S.

with

x(i+1) = x(i) − 1
N+1

Pi∇v(x(i),∆(i))√
∇T v(x(i),∆(i))Pi∇v(x(i),∆(i))

,

Pi+1 = N2

N2−1

(

Pi − 2
N+1

Pi∇v(x(i),∆(i))∇T v(x(i),∆(i))PT

i

∇T v(x(i),∆(i))Pi∇v(x(i),∆(i))

)

if v(x(i),∆(i)) 6= 0, and x(i+1) = x(i) and Pi+1 = Pi if
v(x(i),∆(i)) = 0.

The convergence of the approach is established in the
following lemma.

Lemma 2 (Convergence of the EA) Consider the
EA, and suppose that Assumption 2 holds. Let
(i) vol(S) > 0. Then a feasible solution will be found
in a finite number of iterations with probability one.
(i) vol(S) = 0. Then lim

i→∞
x(i) = x∗ ∈ S with probabil-

ity one.

Proof: The EA generates ellipsoids with geometri-
cally decreasing volumes [2], i.e.

vol(E(i)) ≤ e−
s(i)
2N vol(E(0)),

where s(i) is the number of correction steps performed
before iteration i. Thus, under Assumption 2 we can
write

lim
i→∞

vol(E(i)) = 0. (8)

(i) If we now suppose that the solution set S has a non-
empty interior, i.e. vol(S) > 0, then from Equation (8)
and due to the fact that E(i) ⊇ S for all i = 0, 1, . . . , it
follows that in a finite number of iterations with prob-
ability one the algorithm will terminate at a feasible
solution.
(ii) If we now suppose that vol(S) = 0, then due to the
convexity of the function, and due to Equation (8), the
algorithm will converge to a point in S with probability
one.

Thus, the newly proposed EA converges to a feasible
solution even in the case that the set S has an empty
interior, a property not possessed by the SIA.

Finally, similarly to the bound ISIA (5) on the max-
imum number of correction steps for the SIA, we can
derive such an upper bound for the proposed EA.

Lemma 3 Consider the EA, and suppose that As-
sumption 2 holds. Suppose further that the solution
set has a non-empty interior, i.e. vol(S) > 0. Then
the number

IEA = 2N

[

ln
vol(E(0))

vol(S)

]

+

(9)

is an upper bound on the maximum number of correc-
tion steps that can be performed starting from any el-
lipsoid E(0) ⊇ S, where [a]+, a ∈ R, denotes the mini-
mum integer number larger than or equal to a.

Proof: It is shown in [2] that

vol(E(i)) ≤ e−
s(i)
2N vol(E(0)).

Since the volume of the consecutive ellipsoids tends to
zero, and since vol(S) > 0, there exists a number IEA

such that

e−
s(i)
2N vol(E(0)) ≤ vol(S), ∀s(i) ≥ IEA.

Therefore, we could obtain the number IEA from the
following relation

vol(S)
vol(E(0))

≥ e−
s(i)
2N ⇐= s(i) ≥ IEA

Now, by taking the natural logarithm on both sides one
obtains

ln
vol(S)

vol(E(0))
≥ −s(i)

2N
⇐= s(i) ≥ IEA

or

s(i) ≥ 2N ln
vol(E(0))

vol(S) ⇐= s(i) ≥ IEA

Therefore, Equation (9) is proven.

We would like to point out that usually IEA ≪ ISIA.
This is demonstrated in the following example.
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Figure 2: Comparison between the upper bounds IEA and
ISIA for the algorithms SIA and EA.

Example 2 (Comparison between IEA and ISIA)
Let us suppose that the dimension of our vector of
unknowns is 10 (i.e. N = 10), and that the solution
set is a ball of radius 1.1 and center x∗ ∈ R

10, i.e.
S = {x ∈ R

10 : ‖x − x∗‖ ≤ 1.1}. To make a fair
comparison between the SIA and the newly proposed
EA we assume that the initial condition x(0) for the
SIA is at a distance d from the center of S, i.e.
‖x(0) − x∗‖ = d, and that the initial ellipsoid for the
EA is a ball of radius d. Since for SIA the number r in
Assumption 1 should be known, we will make several
experiments with r = {0.001, 0.01, 0.1, 1}. For these
values of r, and for d = {10, 102, 103, 104, 105} the two
upper bounds IEA and ISIA on the maximum numbers
of possible correction steps for the two algorithms were
computed. Figure 2 represents the results (note that
all the three axes are in logarithmic scale). Clearly,
IEA ≪ ISIA.

4 Finding an Initial Ellipsoid E(0)

This section presents a method for obtaining an ini-
tial ellipsoid that contains the solution set. Using the
level set definition given in Example 1 and due to the
convexity of the function v(x,∆), it is clear that the
solution set S is contained in any level set LS(c,∆) for
any c ≥ 0 and any ∆ ∈ ∆. In fact, we have that

S =
⋂

∆∈∆

LS(0,∆).

Thus, LS(c,∆) ⊇ LS(0,∆) ⊇ S for any c ≥ 0 and
any ∆ ∈ ∆. Therefore, S is also contained in LS(0, 0),
i.e. S ⊆ LS(0, 0). The idea is then to find an initial
ellipsoid that contains the level set LS(0, 0), under the
assumption that this is a bounded set1. To this end
we will first bound the set LS(0, 0) with a rectangular
parallelepiped, and then we build an ellipsoid around

1Note that unbounded solutions are clearly of no practical
interest here since these would lead to physically unrealizable
controllers/filters. It thus might be reasonable for some applica-
tions to put hard bounds on the entries of x.

Figure 3: Initial ellipsoid computation.

it as shown in Figure 3, which we will use as an initial
ellipsoid to start the EA. In order to find a bounding
rectangular parallelepiped, we need to find solutions to
the following constrained optimization problems

x̄i = max
x∈X

xi, subject to x ∈ LS(0, 0), i = 1, 2, . . . , N,

xi = min
x∈X

xi, subject to x ∈ LS(0, 0), i = 1, 2, . . . , N,

These can be rewritten as LMI problems by noting that

{x ∈ LS(0, 0)} ≡ {x ∈ X : v(x, 0) = 0} ≡ {x ∈ X : U(x, 0) ≤ 0}.

As a result, the following algorithm is proposed for fast
initial ellipsoid selection.

Algorithm 3 (Initial Ellipsoid Computation)
(a) Find solutions to the LMI problems

x̄i = max
x∈X

eTi x, subject to U(x, 0) ≤ 0, i = 1, 2, . . . , N,

xi = min
x∈X

eTi x, subject to U(x, 0) ≤ 0, i = 1, 2, . . . , N,

with ei = [01×(i−1), 1, 01×(n−i)]
T .

(b) Take x̄ = [x̄1, . . . , x̄N ]T and x = [x1, . . . , xN ]T ,
and define the box

R = {x : x ≤ x ≤ x̄} ⊇ LS(0, 0) ⊇ S.
(c) Next, find an ellipsoid that encircles the box R.
This can easily be done by first finding an ellipsoid in-
side R and then stretching it to embrace R. The ellip-
soid

Ein = {x ∈ X : (x− xc)
TP−1(x− xc) ≤ 1}

with xc = 1
2 (x̄ + x) and P = diag 1

2 (x̄− x)
2
is inside

R. By defining A = P−1/2 and b = −P−1/2xc, this
ellipsoid can be equivalently represented as

Ein = {x ∈ X : ‖Ax+ b‖22 ≤ 1}.
(d) Stretching the ellipsoid Ein by α2 with α > 1 results
in

Eout = {x ∈ X : α−2‖Ax+ b‖22 ≤ 1},
which we need to be such that it contains both x̄ and
x. Therefore we take α = maxx∈{x̄,x} ‖Ax + b‖2. The
initial ellipsoid can then be taken as

E0 = {x ∈ X : (x− xc)
T (α2P )−1(x− xc) ≤ 1}.



5 An Illustrative Example

Next, we present an example illustrating the proba-
bilistic approach developed in this paper. We consider
the problem of designing a robust H2 state-feedback
controller for a model, representing a real-life diesel ac-
tuator benchmark system, taken from [1]. The model,
which will not be reported here due to lack of space,
has four real uncertain parameters. The goal is to de-
sign a robust state-feedback controller for the uncertain
system that achieves an upper bound γUB = 1 for the
worst case H2-norm of the closed-loop system. This
problem can be represented as the following LMI fea-
sibility problem: Find Q, R, and L such that

trace(R) < 1
[

R Cz,iQ+Dzu,iL
• Q

]

> 0
[

−AiQ−QAT
i −Bu,iL− LTBT

u,i Bξ,i

• I

]

> 0

Then F = LQ−1 is the desired state-feedback gain ma-
trix.

Application of the proposed approach resulted in the
state-feedback gain matrix

F =
[

−0.81508 −0.64339 −3.2121× 10−2
]

.

This solution was found by the EA method in less than
100 iterations. Starting from the same initial condi-
tions, the SIA was terminated after 500 iterations hav-
ing found no feasible solution (it was run for r = 1,
r = 0.1, and r = 0.01).

6 Conclusions

In this paper a new probabilistic approach was pro-
posed to robust controller design via LMIs, based on
the Ellipsoid Algorithm. It features a number of ad-
vantages over the probabilistic Subgradient Iteration
Algorithm, recently proposed in [12, 3]. In its original
version [12] the SIA relies on the restrictive assumption
that a radius r of a ball contained in the solution set
is known. This assumption was later on released in a
modification of the SIA in [3], but only at the expense
of reduced computational speed. The approach in this
paper is an alternative to this modified SIA that does
not rely on knowledge of r, while at the same time
enjoying increased computational speed compared to
the original SIA. It was shown that it converges to a
feasible solution in a finite number of iterations with
probability one provided that the solution set has a
non-empty interior. The approach was demonstrated
on the design of a robust H2 state-feedback controller
for a benchmark example.
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