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Model predictive control with repeated model fitting

for ramp metering
Tom Bellemans, Bart De Schutter, Bart De Moor

Abstract—In this paper we deal with model predictive control
for ramp metering on motorways. A discussion of the way ramp
metering tries to prevent, or postpone, congestion on a motorway
is presented. As an example, a real-life motorway in Belgium
is presented. We discuss a traffic flow model that is used in
a receding horizon framework and we argue that the quality
of the fit of the traffic flow model to the measurement data
has an impact on the quality of the optimised metering signals.
Therefore, we suggest to re-fit the most sensitive parameters of
the traffic flow model on a regular basis. We conclude this paper
with some simulation results.

Index Terms—Model predictive control, traffic control, ramp
metering, identification

I. INTRODUCTION

IN this paper we discuss optimal ramp metering as a means

to postpone or, ideally, prevent congestion on motorways.

As an example, we look at a real-life situation on the E17

motorway Ghent–Antwerp in Belgium. We present how ramp

metering tries to address the problems that can occur in this

network. Next, we discuss a model predictive approach for

ramp metering. After a description of the model and the

cost criterion used, we discuss model identification. Since

the traffic situation on motorways is influenced by various

factors that are not all incorporated into the model, we argue

that a regular re-fitting of the motorway model improves the

accuracy of the control. We illustrate this with some simulation

results.

II. PROBLEM DESCRIPTION

Recurrent congestion during rush hours is a common prob-

lem on motorways around the globe. In this section we discuss

how ramp metering can help to improve the traffic situation on

the motorways [1]. When no ramp metering is applied, cars

can try to enter the motorway as they wish. During rush hours,

cars that want to enter the motorway quite often form small

platoons (due to traffic lights, slower cars, ...). These platoons

cause important disturbances of the traffic on the motorway

because they have to merge in the traffic flow on the mainline.

Ramp metering is implemented by placing a traffic light at the

on-ramp that allows the vehicles to enter the motorway in a

controlled way and thus reduces the disturbance of the traffic

in the mainline.
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The idea behind ramp metering follows from observations

of the average traffic flow (throughput) and the average traffic

density in a motorway section. The observed relationship

between average traffic density and average traffic flow is

plotted in Figure 1. While the average density in the section

is smaller than a critical value ccr the flow increases with

increasing density. At ccr the flow is maximal and with further

increasing density, the traffic flow starts to decrease again. As

the maximal average density cjam is reached, the traffic comes

to a halt and the flow becomes zero. This relationship between

traffic density and traffic flow is known in traffic literature as

the fundamental diagram [2].
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Fig. 1. The flow–density relation of the traffic in a motorway section which
is also known as the fundamental diagram.

From Figure 1 we conclude that the traffic flow on the

motorway is optimal for the critical density ccr. A traffic

situation with a vehicle density larger than ccr is unstable, since

a disturbance that temporarily increases the density will result

in a reduced flow which in its turn causes a further increase

of the density. Ramp metering will try to keep the point of

operation in the stable region by limiting the metering rate in

an attempt to prevent the density on the motorway to grow

larger than ccr [3], [4].

Figure 2 presents a schematic representation of the real-

life motorway E17 Ghent–Antwerp in Belgium. The studied

motorway is approximately 15 kilometres long and counts

three lanes. There are four off-ramps and five on-ramps. In

these complex configurations, ramp metering can prevent or

delay grid locks by limiting the inflow into sections where
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congestion would occur if no ramp metering were applied.

Consider e.g. congestion on the motorway that is caused by

traffic from the third on-ramp. As congestion spills further and

further back, it eventually blocks the third off-ramp, which

in its turn causes the congestion to spill back even more. It

is clear that preventing this scenario can result in important

efficiency improvements. In Section V, we will simulate ramp

metering and investigate the impact of a model misfit on the

performance but first we will discuss model predictive control

of ramp metering in the next section.

III. MODEL PREDICTIVE CONTROL APPROACH

In this section we describe the model predictive control

[5], [6] based approach to ramp metering. The control signals

(metering rates) we find using model predictive control are

obtained by minimising a cost function over a prediction

horizon Np using a traffic flow model. In order to reduce

the computational complexity of the optimisation, we allow

the metering rates to change only during the control horizon

Nc (Nc ≤ Np). After the control horizon, the metering rate is

kept constant for the remainder of the prediction horizon. In

a receding horizon framework, only the first sample of the

calculated metering rates is implemented while the others are

discarded and recalculated during the next iteration. Once the

metering rate is implemented, the process starts all over again

with the control and the prediction horizon shifted one sample

forward.

The parameters Np and Nc are chosen with the following

trade-offs in mind. The larger Np, the larger the time horizon

we look ahead. This allows us to foresee certain events, e.g.

a queue spilling back in front of an off-ramp, ... but it also

increases the computational complexity. Taking into account

that we want to implement optimal ramp metering in an on-

line framework, we see that Np is limited from above by the

available time to do the calculations. For the length of the

control horizon Nc a similar trade-off needs to be made. Since

Nc determines the number of parameters (metering rates) that

need to be optimised and since the computational complexity

of the optimisation increases strongly with the number of

parameters, we need to find a trade-off between performance

and computational complexity.

It is important to note that the sampling rate of the controller

will in practice be lower than the discretisation step of the

discretised traffic flow model. As we will see in Section

III-A, a typical discretisation step for the traffic flow model

is one sample every 10 to 15 seconds (∆T = 10− 15 sec).

The metering rate does not need updating every 10 seconds

since the average dynamics of the traffic system change much

more slowly. Therefore we can choose the sampling rate of

the controller to be one sample per minute or even less.

In the remainder of this section, we discuss the motorway

traffic flow model and the cost function in more detail.

A. The motorway traffic flow model

The motorway traffic flow model that we discuss in this

section was originally designed by Payne [7] and some addi-

tions were made by Papageorgiou [8]. The model is a second

order traffic flow model that is discretised in both time and

space. E.g. in the case of the motorway Ghent–Antwerp from

Figure 2, the motorway is divided in 29 sections of 500 meter

and the discretisation step ∆T is chosen to be 10 seconds. For

more information regarding these choices we refer to [9].

The behaviour of each of the motorway sections can be

described using the following equations.

The first equation expresses the conservation of the number

of vehicles on the motorway. This conservation law states that

the density in section j at time k + 1 denoted as c j(k + 1)
depends on the density c j(k) in section j at time k and the net

inflow in section j during the time interval [k∆T,(k+1)∆T ):

c j(k+1) = c j(k)+
∆T

n jl j

[qin, j(k)−qout, j(k)] (1)

where qin, j(k) and qout, j(k) are the inflow and the outflow of

section j in the time interval [k∆T,(k + 1)∆T ) respectively,

while n j is the number of lanes and l j is the length of the

section.

The average speed v j(k + 1) in section j at time k + 1,

expressed by equation (2), is the average speed v j(k) at

the previous time k altered by three terms representing the

following phenomena: relaxation, convection and anticipation:

v j(k+1) = v j(k)

+
∆T

τ

[

V [c j(k)]− v j(k)
]

Relaxation

+
∆T

l j

v j(k)
[

v j−1(k)− v j(k)
]

Convection

−
ν∆T [c j+1(k)− c j(k)]

τl j[c j(k)+κ ]
. Anticipation (2)

The relaxation term in (2) expresses that vehicles in a motor-

way section tend to obtain a desired average speed V [c j(k)]
which depends on the traffic density c j(k) in the section. The

cars adapt to this desired average speed with time constant

τ . An empirical formula for the speed–density relationship is

given by [2]:

V [c j(k)] = vf exp

(

−
1

am

(

c j(k)

ccr, j

)am
)

. (3)

The convection term takes into account that vehicles that travel

from one section to the next need some time to adapt their

speed to the desired average speed in the new section. By

consequence, vehicles entering a section bias the value of

the average speed in their new section towards the average

speed in the previous section. This bias is proportional to

the difference in average speed between both sections and is

described by the convection term in (2).

If a driver sees a higher density ahead, he will decelerate. The

last term in (2) expresses this anticipation of the drivers to the

density that lies ahead. The anticipation term depends on the

density in the current and the first downstream section. The

model parameters τ , ν and κ can be fitted as discussed in

Section IV.

The flow q j(k) is expressed as the product of the density

c j(k), the average speed v j(k) and the number of lanes n j:
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Fig. 2. Schematic representation of the E17 motorway Ghent–Antwerp in Belgium.

q j(k) = c j(k)v j(k)n j. (4)

Equations (1), (2), (3) and (4) are a description of the

behaviour of the motorway sections. Since we will use the

model to optimise ramp metering, we also need a description

of the behaviour of traffic at the on-ramps. The on-ramps can

be modelled as a queue resulting in the following equation:

wm(k+1) = wm(k)+∆T (Dm(k)−qo,m(k)). (5)

The queue length wm(k) changes according to the difference

between the traffic demand Dm(k) and the service rate qo,m(k)
of the on-ramp. The service rate of the on-ramp is the

minimum of the number of cars that want to enter and the

number of cars that can enter the motorway. This leads to:

qo,m(k) = min

[

Dm(k)+
wm(k)

∆T
,

Qm min

(

rm(k),
ρmax, j −ρ j(k)

ρmax, j −ρcr, j

)]

, (6)

where Qm is the maximal capacity of the on-ramp (veh/h)

and ρmax, j is the maximal possible density in the section the

on-ramp feeds into (here section j). Through the metering

rate rm(k), we can limit the service rate of the on-ramp. The

metering rate rm(k) theoretically lies in the interval [0,1], but

often a lower bound is imposed on the metering rate such that

rm(k) ∈ [rmin,1].

B. Control objective and receding horizon control

Now that we have a description of the motorway system

including the on-ramps, we need to define a cost function

that expresses the performance of the traffic situation on the

motorway.

We suggest to use the total time spent by all the vehicles

in the system under study combined with a penalty term for

variations of the control signal [10]. The total time spent takes

the vehicles in the different sections of the motorway as well

as the vehicles in the queues at the on-ramps into account.

This way, we try to make a fair trade-off between the time

spent by vehicles in the queues at the on-ramps and the time

spent by vehicles on the motorway. Since we are using model

predictive control, we work in a receding horizon framework

resulting in the following definition of the cost function: the

cost function at time k0 is the total time spent by the cars in

the network during the time interval [k0∆T,(k0 +Np)∆T ) plus

a penalty term for the variations of the control signal during

the same interval.

This definition of the cost function leads to the following

expression:

J(k0) =
k0+Np−1

∑
k=k0

[

∑
j∈Is

c j(k)l jn j +α ∑
m∈Io

wm(k)

+αramp

(

r(k)− r(k−1)
)2

]

∆T (7)

with Is the set of the indices of the motorway sections and

Io the set of indices of the on-ramps. The parameter α is

a weighing factor that allows to put more or less emphasis

on the occurrence of queues at the on-ramps. The parameter

αramp determines the relative importance of the penalty term

for variations of the control signal. By increasing αramp we

obtain a smoother control signal.

IV. IDENTIFICATION

Equations (1), (2), (3), (4), (5) and (6) completely define

the traffic flow model. In the study case of the E17 motorway

in Belgium we need to determine the parameters: vf, ccr, am,

τ , ν and κ for every one of the 29 motorway sections. For

every on-ramp, we also need to determine its capacity Qm and

the maximal possible density cmax, j in the section fed by the

on-ramp. For the studied E17 motorway stretch this adds up

to a total of 186 parameters that need to be fitted.

The available data to fit the model to is available through

cameras that are installed every 500 m along the E17 motor-

way stretch under study. The camera images are processed into

measurements of the flow and the average speed on a minutely

basis. The flow and the average speed in a section vary in time

as can be seen in Figure 3 where the measurements over a day

are presented.

The parameter estimation problem can be formulated as

a nonlinear least squares problem where the set of model

parameters β that minimises the following cost criterion:

I(β ) =
K

∑
k=0

[

∑
j∈Is

(

q j(k)− q̂ j(k)
)2

+ γ ∑
j∈Is

(

v j(k)− v̂ j(k)
)2

]

(8)

is sought [11].

In the cost function for identification (8), the simulated flow

q j(k) and the average speed v j(k) in every section are com-

pared to the measured values q̂ j(k) and v̂ j(k) respectively.

The squared error signals are summed over the K+1 samples

present in the identification data set.

One approach to the identification of a model to use in

the model predictive control framework could be to collect
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Fig. 3. Evolution of the traffic flow and the average speed (average over a
minute) as measured by a camera detector on the E17 Ghent–Antwerp.

sufficient data and identify the model using this extensive

dataset. The obtained model can then be used to optimise the

ramp metering signals as discussed in Section III. Since not

all parameters come to expression in every traffic operation

mode, it is important to include traffic measurements from the

different traffic operation modes in the identification dataset.

Even if we include data from the different traffic operation

modes in our identification dataset, the resulting model is still

not capable of mimicking the changing traffic behaviour due

to external, non-modelled influences and disturbances such as

the weather, an obstruction on the motorway, ... Therefore,

we suggest an adaptive approach where the traffic model is

re-fitted to the traffic measurement data on a regular basis.

This way, changes in the model parameters due to the non-

modelled influences are incorporated in the model that is used

to determine the control signals. In the remainder of this

section, we discuss some issues that need to be addressed when

repeatedly re-fitting the nonlinear traffic flow model for use in

the model predictive control framework.

As mentioned before, we need to estimate 186 parameters

in the example of the E17 Ghent–Antwerp. This is a computa-

tionally very demanding task for an on-line traffic control sys-

tem. This computational challenge is alleviated since we do not

need to re-fit the model at the same pace as the control signals

are calculated since we assume that the dynamic behaviour of

the variations of the model parameters (e.g. weather changes)

is slower than the dynamic behaviour of the traffic flows. By

consequence, we can reduce the computational complexity by

re-fitting the traffic flow model every 30 to 60 minutes. Since

we can always use the old parameters as the starting point

for the optimisation process when re-fitting the model, we can

expect fast convergence towards the optimal parameters and

thus a moderate computational complexity.

In literature [12], the sensitivity of the model quality on

the different parameters was already investigated. The most

important parameters of the traffic flow model were found to

be vf and ccr. By only updating the parameters with the high-

est sensitivity, we can reduce the computational complexity

substantially. E.g. for the presented motorway E17 Ghent–

Antwerp, this approach reduces the number of parameters

to be estimated from 186 to 70. In [12], it was claimed

that the difference in sensitivity is so high that parameter

values carefully chosen from literature can suffice for the least

sensitive parameters.

V. SIMULATION RESULTS

In this section we use computer simulation to illustrate the

importance of a good fit of the model parameters.

We implemented the traffic flow model discussed in Section

III-A for the motorway E17 Ghent–Antwerp and we assumed

that there is a ramp metering setup present at the fourth

on-ramp. We also assume that we know the parameter set

βref which, combined with the traffic flow model, perfectly

describes the real-life behaviour of the motorway. The traffic

flow model with parameter set βref will be used to assess the

performance of the developed controllers.

Two model predictive control based ramp metering con-

trollers are developed and tested on the traffic flow model with

parameter set βref. The first controller uses the traffic flow

model with parameter set βref in order to make predictions

of the traffic situation over the prediction horizon Np. The

second controller uses a perturbed parameter set βpert to make

predictions over the prediction horizon. We chose the free

flow speeds and the critical densities in parameter set βpert

about ten percent larger than those in the reference set βref.

This results in a model that overestimates the capacity of the

motorway. The prediction horizon Np is seven minutes and

the control horizon Nc is five minutes for both controllers.

The control signal is only allowed to change every minute

and the parameters α and αramp in (7) are chosen to be 1 and

10 respectively.

The simulation experiment covers four hours and the traffic

demands on the mainline and at the fourth on-ramp are pre-

sented in Figure 4. The mainline traffic demand is considered

to be constant and equal to 5500 vehicles an hour, while the

capacity of the motorway is 6000 vehicles an hour. At the

fourth on-ramp we assume a demand peak with a maximal

demand of 750 vehicles an hour.

Since the total traffic demand on the mainline during the

peak period is larger than the capacity of the motorway,

congestion or a queue (or both) will occur. In Figure 5 we

see the evolution of the density in the section that is fed by

the fourth on-ramp and the queue length at the fourth on-ramp

for both controllers. The solid line in the upper plot represents

the evolution of the density realised by the first controller

(βref). The density increases gradually but once the density

becomes too high, the metering rate drops to a lower value as

presented in Figure 6. The controller starts metering the on-

ramp, resulting in the build-up of a queue. If we look at the

performance of the second controller (βpert, dashed line), we

see in Figure 5 that no queue is formed at the fourth on-ramp.

However, the rush hour traffic density in the section fed by the

fourth on-ramp is higher for the second controller, resulting in

a lower traffic flow. This is due to the fact that the model used
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by the second controller overestimates the motorway capacity

what results in a metering rate that is too high for the capacity

of the motorway (Figure 6).
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Fig. 5. Plot of the evolution of the density in the section fed by the fourth
on-ramp and the queue at the first on-ramp for two model predictive control
based ramp metering controllers. The solid line represents the controller using
the correct model parameters (βref). The dashed line represents the controller
using the perturbed parameter set (βpert).

Given the traffic demands, we can calculate the total time

spent associated with both controllers over the simulation

interval using (7) with αramp = 0. The first controller (Jβref
=

4102) outperforms the second (Jβpert
= 4140). We can see

from Figure 5 and Figure 6 that the mode of traffic operation

realised by both controllers is totally different. The first

controller keeps traffic on the mainline flowing smoothly at

the cost of a queue at the fourth on-ramp while the second

controller does not cause a queue at the fourth on-ramp but at

the cost of a higher traffic density and delays on the mainline.
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Fig. 6. Plot of the evolution of the metering rate as presented by both
controllers. The solid line represents the controller using the correct model
parameters (βref). The dashed line represents the controller using the perturbed
parameter set (βpert). Note that the controller with the perturbed parameter set
never becomes active.

VI. CONCLUSIONS

We have presented ramp metering in a receding horizon

framework. As an example, we studied the real-life motorway

E17 Ghent-Antwerp in Belgium. We discussed a traffic flow

model that needs to be fitted to measurement data for use in

a model predictive control based ramp metering setup. Since

unpredictable external factors influence the traffic situation on

the motorway, we argued that a regular re-fitting of the model

parameters improves the quality of the controller. This was

illustrated with some simulation results.
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