
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report CSE02-014

MPC-based optimal coordination of
variable speed limits to suppress shock

waves in freeway traffic∗

A. Hegyi, B. De Schutter, and J. Hellendoorn

If you want to cite this report, please use the following reference instead:
A. Hegyi, B. De Schutter, and J. Hellendoorn, “MPC-based optimal coordination of
variable speed limits to suppress shock waves in freeway traffic,” Proceedings of the
2003 American Control Conference, Denver, Colorado, pp. 4083–4088, June 2003.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/02_014.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/02_014.html


MPC-based optimal coordination of variable speed limits to

suppress shock waves in freeway traffic
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Control Systems Engineering, Fac. ITS, Delft University of Technology

P.O. Box 5031, 2600 GA Delft, The Netherlands, {a.hegyi,b.deschutter,j.hellendoorn}@its.tudelft.nl

Abstract

At freeway bottlenecks shock waves may appear. These

shock waves result in longer travel times and in sudden,

large variations in the speeds of the vehicles, which could

lead to unsafe and dangerous situations. Dynamic speed

limits can be used to eliminate or at least to reduce the ef-

fects of shock waves. However, in order to prevent the oc-

currence of new shock waves and/or negative impacts on the

traffic flows in other locations, coordination of the variable

speed limits is necessary. In this paper we further extend our

results in connection with a model predictive control (MPC)

approach to optimally coordinate variable speed limits for

freeway traffic. First of all, we include a safety constraint

that prevents drivers from encountering speed limit drops

larger than, e.g., 10 km/h. Furthermore, to get a better cor-

respondence between the computed and the applied control

signals, we now consider discrete-valued speed limits.

1 Introduction

When using dynamic speed limits for congestion reduc-

tion two aspects are relevant: homogenization and preven-

tion of breakdown. The basic idea behind homogenization

[1, 4, 15, 13] is that speed limits reduce the speed differ-

ences between vehicles, by which a higher (and safer) flow

can be achieved. The homogenization approach typically

uses speed limits that are close to the critical speed (i.e. the

speed that corresponds to the capacity flow; see Figure 1).

The results in [15] indicate that the effect of homogenization

on freeway performance is small; however, a positive safety

effect can be expected. The traffic breakdown prevention

approach [3, 7] focuses more on preventing too high densi-

ties. We consider the use of variable speed limits to prevent

traffic breakdown.

In the literature several methods are described to synthe-

size suitable control laws for speed limit control, such as

multi-layer control [10], sliding-mode control [7], or opti-

mal control [1, 4]. This paper extends the results of our

previous paper [2], in which we have already demonstrated

the effectiveness of continuous-valued speed limits against

shock waves. In this paper we include a safety constraint

that prevents drivers from encountering speed limit drops

larger than, e.g., 10 km/h. Furthermore, to get a better cor-

respondence between the computed and the applied control

signals, we now consider discrete-valued speed limits.
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Figure 1: A typical example of the fundamental diagram, which

represents the relation between density and flow for a

given freeway section.

2 Problem statement

2.1 Shock waves in traffic flows

It is well known [5] that some types of traffic jams move

upstream with approximately 15 km/h. These moving jams

are called waves. As they can remain existent for a long

time, every vehicle that enters the freeway upstream of the

congested area will have to pass through the jammed area,

which increases the travel time. Besides the increased travel

time another disadvantage of the moving jams is that they

are potentially unsafe. To suppress shock waves1 speed lim-

its can be used as follows. On some sections upstream of a

shock wave speed limits are imposed and consequently the

inflow of the congested area is reduced. When the inflow

of the jammed area is smaller than its outflow, the jam will

eventually dissolve. In other words, the speed limits create

a low density wave (with a density lower than it would be

in the uncontrolled situation) that propagates downstream.

This low density wave meets the shock wave and compen-

sates its high density, which reduces or eliminates the shock

wave. A point of criticism could be that the above approach

reduces the shock wave, but at the cost of creating new

shock waves upstream of the sections controlled by speed

limits. However, if the speed limits are optimized properly,

1Lighthill and Whitham [8] introduced the term shock wave for waves

formed by several waves running together. At the shock wave fairly large

reductions in velocity occur very quickly. We use the term “shock wave”

for any wave (the moving congested areas) and we do not distinguish be-

tween waves and shock waves, because in practice any wave is undesired.



they will never create a shock wave that gives rise to higher

delays than in the uncontrolled case. This issue will be ad-

dressed by the coordinated MPC-based approach for vari-

able speed limit control presented in this paper.

2.2 Coordination and prediction

In practice, dynamic traffic management often still operates

based on local data only. However, considering the effect of

the measures on the network level has in general many ad-

vantages compared to local control. Hence, a network-wide

coordination of the control measures based on global data is

certainly useful. The coordination of the control signals is

obtained by reformulating the control design problem over

a given time horizon as an optimization problem that yields

the optimal speed limit settings (see Section 3).

Since we want to determine control signal settings that are

optimal for a given freeway network and since the effect of a

given control measure on more distant parts of the network

might only be visible/measurable after some time, an accu-

rate prediction of the future evolution of the traffic flows in

the network is also necessary. In particular, prediction is

needed for two reasons: first, if the formation or the arrival

of a shock wave in the controlled area can be predicted, then

preventive measures can be taken. Second, the positive ef-

fect of speed limits on the traffic flow can not be observed

instantaneously,2 so the prediction should be made at least

up to the point where the improvement can be observed. For

the prediction we will use a modified and extended version

of the METANET traffic flow model.

Besides prediction and coordination the speed limit control

problem has some other characteristics that impose specific

requirements to the control strategy:

• There is a direct relation between the outflow of a net-

work and the total time spent (TTS) in the network, as-

suming that the traffic demand is fixed. Papageorgiou

[11] showed that in a traffic network an increase of out-

flow of 5 % may result in an decrease of the total time

spent in the network of 20 %. This effect can be ex-

plained by the fact that the number of vehicles in the

network is equal to the accumulated net inflow of the

network. But the outflow is lower when the traffic is

congested3, so the queue grows faster, and consequently

congestion will last longer, and the outflow will be low

for a longer time (the time that the queue needs to dis-

solve). So we can conclude that any control method

that resolves (reduces) congestion will at best achieve a

flow improvement of approximately 5–10 %, but this im-

provement can decrease the TTS significantly. Further-

more, because this flow improvement is relatively small,

and there are always disturbances present in the traffic

flow feedback control is required. In this way impreci-

sions of control and traffic disturbances can be observed

and appropriate control actions can be taken.
2We will see that the speed limits have to slow down a part of the traffic

first in order to dissolve the shock wave.
3The congestion after a breakdown usually has an outflow that is (only

5–10 %!) lower than the available capacity; this is the so called capacity-

drop phenomenon.

• As the speed limit signs used in practice display speed

limits in increments of, e.g., 10 or 20 km/h, the controller

should produce discrete-valued control signals.

• For safety it is often required that the driver should not

encounter a decrease in the speed limit larger than a pre-

specified amount. The controller should be able to take

this kind of constraints into account.

The control strategy presented in the next section addresses

these issues.

3 MPC-based coordination of speed limits

3.1 Model predictive control

We will use a model predictive control (MPC) scheme to

solve the problem of optimal coordination of speed lim-

its. In MPC, at each time step k the optimal control signal

is computed (by numerical optimization) over a prediction

horizon Np. In order to reduce the number of variables and

to improve the stability of the system, in MPC a control

horizon Nc (< Np) is selected. After the control horizon has

been passed the control signal is usually taken to be con-

stant. In addition, a rolling horizon strategy is used, which

means that at each time step only the first sample of the op-

timal control signal is applied to the system; afterwards the

time axis is shifted one sample step, the model is updated,

and the procedure is restarted. The rolling horizon approach

results in an on-line predictive and adaptive control scheme

that allows us to take changes in the system or in the system

parameters into account by regularly updating the model of

the system or the predicted demands as new measurements

from the traffic sensors become available. For more infor-

mation on MPC we refer the interested reader to [9, 14] and

the references therein.

3.2 Prediction model

The MPC procedure includes a prediction of the network

evolution as a function of the current state and a given con-

trol input. For this prediction we use a slightly modified

version of the METANET model [6, 12]. The modifica-

tions are introduced for better modeling of shock waves and

the effect of speed limits. Note that the MPC approach is

generic and will find the optimal speed limits independent

from the model that is used (e.g., the way that speed lim-

its enter the model), so the modifications do not interfere in

any way with the effectivity of MPC. For the sake of brevity,

we will describe only those parts of the METANET model

that are relevant for interpreting and understanding the sim-

ulation results of our benchmark network (see Section 4).

3.2.1 Original METANET model: The META-

NET model represents a network as a directed graph with

the links corresponding to freeway stretches. Each free-

way link has uniform characteristics, i.e., no on-ramps or

off-ramps and no major changes in geometry. Where major

changes occur in the characteristics of the link or in the road

geometry (on/off-ramp), a node is placed. Each link m is di-

vided into Nm segments of length Lm (see Figure 2). Each
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Figure 2: In the METANET model a freeway link is divided into

segments.

segment i of link m is characterized by the traffic density

ρm,i(k) (veh/lane/km), the mean speed vm,i(k) (km/h), and

the traffic volume or flow qm,i(k) (veh/h), where k indicates

the time instant t = kT , and T is the time step used for the

simulation of the traffic flow (typically T = 10 s).

The following equations describe the evolution of the net-

work over time. The outflow of each segment is given by

qm,i(k) = ρm,i(k)vm,i(k)λm , (1)

where λm denotes the number of lanes of segment m. The

principle of conservation of vehicles yields:

ρm,i(k+1) = ρm,i(k)+
T

Lmλm

(

qm,i−1(k)−qm,i(k)
)

.

The mean speed depends on the previous speed plus a re-

laxation term, a convection term, and an anticipation term:

vm,i(k+1) = vm,i(k)+
T

τ

(

V
(

ρm,i(k)
)

− vm,i(k)
)

+

T

Lm

vm,i(k)
(

vm,i−1(k)− vm,i(k)
)

−

ηT

τLm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
, (2)

where τ , η and κ are model parameters, and with

V
(

ρm,i(k)
)

= vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

, (3)

with am a model parameter, and vfree,m the free-flow speed,

and ρcrit,m the critical density.

Origins are modeled with a simple queue model:

wo(k+1) = wo(k)+T
(

do(k)−qo(k)
)

.

with wo(k) the queue length for origin o, do(k) the demand,

and the outflow qo(k) given by

qo(k) = min

[

do(k)+
wo(k)

T
,Qo

ρmax −ρµ ,1(k)

ρmax −ρcrit,µ

]

, (4)

where Qo is the free-flow on-ramp capacity (veh/h), ρmax

the maximum density, and µ the index of the link to which

the on-ramp is connected.

3.2.2 Extensions to the METANET model: Since

the original METANET model does not describe the effect

of speed limits, we have slightly modified the equation for

the desired speed (3) to incorporate speed limits. The sec-

ond extension regards the modeling of the different nature of

a mainstream origin as opposed to an on-ramp origin. The

third extension considers the different effect of the down-

stream density gradient on the speed (cf. the anticipation

term in (2)) when this gradient is positive or negative.

In some publications the effect of the speed limit is ex-

pressed by scaling down the desired speed-density diagram

[1]. This changes the whole speed-density diagram, also for

the states where the speed would otherwise be lower than

the value of the speed limit. This means, e.g., that if the free

flow speed is 120 km/h and the displayed speed limit is 100

km/h then the speed and flow of the traffic are reduced even

when the vehicles are traveling at 80 km/h. Furthermore,

scaling down the desired speed also reduces the capacity,

while there is no reason to assume that a speed limit above

the critical speed (speeds where the flow has not reached ca-

pacity yet) would reduce the capacity of the road (see Figure

1). These assumptions are rather unrealistic, and they exag-

gerate the effect of speed limits.

To get a more realistic model for the effects of the speed

limits, we assume that the desired speed is the minimum of

the desired speed based on the experienced density, and the

desired speed caused by the variable speed limit vctrl:

V
(

ρm,i(k)
)

=

min

(

vctrl,m,i(k),vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

)

.

To express the different nature of a mainstream origin link o

compared to a regular on-ramp (the queue at a mainstream

origin is in fact an abstraction of the sections upstream of

the origin of the part of the freeway network that we are

modeling), we use a modified version of (4) with another

flow constraint, because the inflow of a segment (and thus

the outflow of the mainstream origin) can be limited by an

active speed limit or by the actual speed on the first segment

(when either of them is lower than the speed at critical den-

sity). Hence, we assume that the maximal flow equals the

flow that follows from the speed-flow relationship from (1)

and (3) with the speed equal to the speed limit or the actual

speed on the first segment whichever is smaller. So if o is

the origin of link µ , then we have

qo(k) = min

[

do(k)+
wo(k)

T
, qlim,µ ,1(k)

]

,

where qlim,µ ,1(k) is the maximal inflow determined by the

limiting speed in the first segment of link µ :

qlim,µ ,1(k) =


























λµ vlim,µ ,1(k)ρcrit,µ

[

−aµ ln

(

vlim,µ ,1(k)

vfree,m

)]
1

aµ

if vlim,µ ,1(k)<V (ρcrit,µ)

qcap,µ if vlim,µ ,1(k)>V (ρcrit,µ),

where vlim,µ ,1(k) = min(vctrl,µ ,1(k),vµ ,1(k)) limits the flow,

and qcap,µ = λµV (ρcrit,µ)ρcrit,µ is the capacity flow.



Since the effect of a higher downstream density is usually

stronger than the effect of a lower downstream density, we

distinguish between these two cases. The sensitivity of the

speed to the downstream density is expressed by parameter

η . In (2) η is a global parameter that has the same value

for all segments. However, here we take different values

for ηm,i(k) depending on whether the downstream density

is higher or lower than the density in the actual segment:

ηm,i(k) =

{

ηhigh if ρm,i+1(k)> ρm,i(k)

ηlow if ρm,i+1(k)< ρm,i(k).

3.3 Constraints

For the safe operation of a speed control system, it is re-

quired that the maximum decrease of speed limits that a

driver can encounter (vmaxdiff) is limited. There are 3 sit-

uations where a driver can encounter a different speed limit

value: (1) when the speed limit changes in the next time step

on a given segment (and there are more speed limit signs on

the same segment), (2) when a driver enters a new segment,

(3) when the driver enters a new segment and the speed limit

changes at that time step. The maximum speed difference

constraints in these 3 situations are formulated as follows:

vctrl,m,i(l −1)− vctrl,m,i(l)6 vmaxdiff for all (m, i) ∈ Ispeed

vctrl,m,i(l)− vctrl,m,i+1(l)6 vmaxdiff

for all (m, i) ∈ Ispeed such that (m, i+1) ∈ Ispeed,

vctrl,m,i(l −1)− vctrl,m,i+1(l)6 vmaxdiff

for all (m, i) ∈ Ispeed such that (m, i+1) ∈ Ispeed,

for l ∈ [k, . . . ,k+Nc], and with Ispeed the set of pairs of in-

dices (m, i) of the links and segments where speed control

is applied. In addition to the above safety constraints, the

speed limits are often subject to a minimum value vctrl,min:

vctrl,m,i(l)> vctrl,min for all (m, i) ∈ Ispeed and l ∈ L(k).

In practice, the variable speed limit signs display speed lim-

its in increments of, e.g., 10 or 20 km/h. Therefore, the con-

troller should produce discrete-valued control signals. This

is expressed by the constraint

vctrl,m,i(l) ∈ Vm,i for all (m, i) ∈ Ispeed and l ∈ L(k), (5)

where Vm,i is the set of discrete speed limit values.

3.4 Objective function

We consider the following objective function:

J(k) = T

k+Np−1

∑
l=k

{

∑
(m,i)∈Iall

ρm,i(l)Lmλm + ∑
o∈Oall

wo(l)

}

+

aspeed

k+Nc−1

∑
l=k

∑
(m,i)∈Ispeed

(

vctrl,m,i(l)− vctrl,m,i(l −1)

vfree,m

)2

,

where Iall and Oall are the sets of indices of all pairs of seg-

ments and links and of all origins respectively. This objec-

tive function contains a term for the TTS, and a term that

penalizes abrupt variations in the speed limit control signal.

The variation term is weighted by the nonnegative weight

parameter aspeed.

3.5 MPC-based speed limit control

3.5.1 Computing the optimal controls: Now the

optimal control signal can be computed by minimizing the

objective function J(k) subject to the model of the sys-

tem (which can be considered as a system of equality con-

straints) and subject to the safety constraints.

Let us first consider the case with real-valued control sig-

nals, i.e., without condition (5). This results in a nonlinear,

nonconvex optimization problem, which can be solved us-

ing, e.g., an SQP approach. Note that due to the rolling

horizon approach we can use the current optimal control

signal (i.e., for time step k) as a good initial guess for the

next optimization (i.e., for time step k+1).

If discrete-valued control signals are considered, nonlin-

ear integer programming is required. However, due to the

inherent complexity of integer optimization problems and

due to the large number of variables, such an approach is

not tractable in practice, especially as repeated on-line op-

timization is required in MPC. Hence, we propose to use a

rounded version of the continuous optimization result for

the discrete-valued control signals. In particular, for the

benchmark problem of Section 4 we will examine three dif-

ferent types of discretization: the first (“round”) rounds the

continuous control values to the nearest discrete value, the

second (“ceil”) to the nearest discrete value that is higher

than the continuous value, and the third (“floor”) to the near-

est discrete value that is lower than the continuous value.

After the discretization the first sample of the control signal

is applied to the traffic system and then the optimization–

discretization steps are repeated. It is important to note that

this way of rounding is not the same as rounding the contin-

uous signal of the whole prediction horizon at once, because

here the different traffic behavior caused by the discretiza-

tion is already taken into account in the next MPC iteration.

The above method of obtaining discrete control signals is

heuristic but fast. It is also possible to use discrete optimiza-

tion techniques such as tabu search, simulated annealing or

genetic algorithms, but since the discretization method is

very fast and usually results in a performance that is com-

parable to the continuous version (cf. Section 4), the dis-

cretization method is often sufficient.

4 A benchmark problem

In order to illustrate the control framework presented above

we will now apply it to benchmark set-up consisting of a

freeway link equipped with variable speed signs.

4.1 Set-up

The benchmark set-up consists of an origin, a freeway link,

and a destination, as in Figure 2. The mainstream origin

O1 has 2 lanes with a capacity of 2000 veh/h each. The

freeway link L1 has 2 lanes, is 12 km long, and consists

of N1 = 12 segments of 1 km each. Segments 1 up to 5
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Figure 3: The downstream density scenario.

and 12 are uncontrolled, segments 6 up to 11 are equipped

with a variable message sign where speed limits can be set.

The choice for the 5 uncontrolled upstream segments was

made to be sure that the boundary conditions do not play

any dominant role. Link L1 ends in destination D1. We

use the same network parameters as in [6]: T = 10 s, τ =
18 s, κ = 40 veh/lane/km, ρmax = 180 veh/lane/km, ρcrit =
33.5 veh/lane/km, am = 1.867 and vfree = 102 km/h.

Furthermore, we take ηhigh = 65 km2/h, ηlow = 30 km2/h,

and aspeed = 2. For the variable speed limits we have as-

sumed that they can change only every minute, and that they

cannot be less than vctrl,min = 50 km/h. This is imposed as

a hard constraint in the optimization problem. If there is a

safety constraint, then we take vmaxdiff = 10 km/h. The input

of the system is the traffic demand at the upstream end of the

link and the (virtual) downstream density at the downstream

end of the link. The traffic demand (inflow) has a con-

stant value of 3850 veh/h, close to capacity (4000 veh/h).

The downstream density equals the steady-state value of

27.4 veh/km, except for the pulse that represents the shock

wave (see Figure 3). The pulse was chosen large enough

to cause a backpropagating wave in the segments (see Fig-

ure 4 (top)). In the discrete-valued control case, the control

values vctrl,m,i are in the set {50, 60, 70, 80, 90, 100, 110}.

4.2 Results

The results of the simulations of the no control and the con-

trol with continuous speed limits without constraints are dis-

played in Figure 4. In the controlled case the shock wave

disappears after approximately 90 min, while in the no con-

trol case the shock wave travels through the whole link. The

active speed limits start to limit the flow at t = 5 min and

create a low density wave traveling downstream (the small

dip in Figure 4 (bottom) and Figure 5). This low density

wave meets the shock wave traveling upstream and reduces

its density just enough to stop it. So, the tail of the shock

wave has a fixed location while the head dissolves into free

flow traffic as in the uncontrolled situation, which means

that the shock wave eventually dissolves completely.

The speed limits persist until the shock wave (to be precise,

the high density region) is completely dissolved. The speed

limits in Figure 6 (top) start to increase after t = 35 min and

return gradually to a high value that is not limiting the flow

anymore. The TTS was 1835.3 veh.hours in the no control

case and 1466.7 veh.hours in the controlled (continuous, un-
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Figure 4: The shock wave propagates backwards through the link

in the no control case (top). In the coordinated con-

trol case (bottom) the shock wave does not propagate

through the entire link and completely disappears after

approximately 90 min.

Relative improvement (%)

continuous round ceil floor

20.1 15.2 18.3 5.9

Table 1: The relative improvement of TTS for the continuous-

valued speed limits and the three discrete-valued speed

limits (without safety constraints).

constrained) case, which is an improvement of 20.1 %. We

have chosen Np = 10 and Nc = 8 (cf. tuning rules of [2]).

The results for the several types of discretization are shown

in Table 1. The performance loss caused by the discretized

speed limits is small in the “round” and “ceil” cases, but

large for “floor”. If the safety constraints are included, the

results are comparable to Table 1. The performance im-

provement in the constrained “ceil” case is 17.3 %, com-

pared to 20.1 % in the unconstrained continuous case. Fig-

ure 6 (bottom) shows the values of the optimal speed limits

discrete (“ceil”) case with safety constraints.

5 Conclusions and future research

We have presented a model predictive control approach to

optimally coordinate variable speed limits. The purpose

of the control was to minimize the total time that vehi-

cles spend in the network. We have applied the developed

control framework to a benchmark network. It was shown

that coordinated control with continuous-valued speed lim-
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Figure 5: Zoom in on the dip for the coordinated control case.

Figure 6: The speed for the continuous case without safety con-

straints and Np = 11, Nc = 8 (top). The speed limits

for the discrete (“ceil”) case with safety constraints and

Np = 11, Nc = 8 (bottom).

its (base case) is effective against shock waves. The perfor-

mance loss caused by discrete-valued speed limits and the

inclusion of safety constraints was examined. The perfor-

mance of the discrete-valued, safety constrained speed lim-

its was comparable with the base case if the discrete-valued

speed limits are generated by the “round” or “ceil”, which

are very fast compared to full integer programming. In all

of the cases the coordination of speed limits eliminated the

shock wave entering from the downstream end of the link.

The coordinated case resulted in a network where the out-

flow was sooner restored to capacity, and in a significant

decrease of the total time spent.

Topics for further research include: further examination of

the trade-off between efficiency and optimality for round-

ing versus full discrete optimization; investigation of the ef-

fectiveness of MPC for optimal coordination of speed limits

for a wider range of scenarios, networks, traffic flow models

and/or model parameters; and including extra control mea-

sures in addition to speed limits (such as ramp metering,

dynamic lane assignment, route information, etc.).
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