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Abstract

Model predictive control (MPC) is a popular controller design technique in the process industry.

Recently, MPC has been extended to a class of discrete event systems that can be described by a

model that is “linear” in the max-plus algebra. In this context both the perturbations-free case and

for the case with noise and/or modeling errors in a bounded or stochastic setting have been con-

sidered. In each of these cases an optimization problem has to be solved on-line at each event step

in order to determine the MPC input. This paper considers a method to reduce the computational

complexity of this optimization problem, based on variability expansion. In particular, it is shown

that the computational load is reduced if one decreases the level of “randomness” in the system.

1 Introduction

Model predictive control (MPC) [5, 11] is a well-established technology for the control of multivari-

able systems in the presence of input, output and state constraints. Usually, MPC uses (non)linear

discrete-time models. However, the attractive features mentioned above have led us to extend MPC to

discrete event systems (DES). The class of DES essentially consists of man-made systems that con-

tain a finite number of resources (such as machines, communications channels, or processors) that are

shared by several users (such as product types, information packets, or jobs) all of which contribute

to the achievement of some common goal (the assembly of products, the end-to-end transmission of a

set of information packets, or a parallel computation) [1]. In this paper we focus on the class of DES

with synchronization but no concurrency. Such DES can be described by a model that is “linear” in

the max-plus algebra [1, 3, 8], and therefore they are called max-plus-linear (MPL) DES.

In [4, 18] MPC has been extended to MPL DES, and a comparison was made to other control

method for MPL DES [2, 10, 13]. For conventional linear systems noise and disturbances are usu-

ally modeled by including an extra term in the system equations (i.e., the noise is considered to be

*This paper is an extended version of the paper “Complexity reduction in MPC for stochastic max-plus-linear discrete

event systems by variability expansion,” by T.J.J. van den Boom, B. Heidergott, and B. De Schutter, Automatica, vol. 43,

no. 6, pp. 1058–1063, June 2007.
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additive). However, in MPL DES the influence of noise and disturbances is usually not max-plus-

additive, but max-plus-multiplicative (cf. [1] or Section 6). As regards modeling errors, uncertainty

in the modeling or identification phase leads to errors in the (estimates of the) system matrices. Since

both noise/disturbances and modeling errors perturb the system by introducing uncertainty in the sys-

tem matrices, both features can be treated in one single framework, as was already shown in [18, 19].

The characterization of the perturbation will then determine whether it describes model mismatch

or disturbance. In [19] an MPC controller has been developed for the uncertainty setting described

above and there it was also shown that under quite general conditions the resulting MPC optimization

problem is a convex optimization problem. However, for many practical situations, the computational

complexity will increase significantly as the prediction horizon and the system order increase.

In this paper, we will present a novel approach to the approximate calculation of stochastic inte-

grals, called variability expansion. Since variability expansion is an analytical method and does not

resort to simulation, it is, in principle, possible to compute higher moments of performance character-

istics of stochastic systems. We combine this general method with max-plus systems, which enables

us to solve the MPC optimization problem for MPL DES very efficiently. The results on variability

expansion in this paper are an extension of a conference paper [6] where an example from queu-

ing theory has been studied. The present paper provides a thorough technical analysis of variability

expansion and includes the proofs, which were lacking in [6].

The paper is organized as follows. In Section 2 we introduce max-plus algebra and stochastic MPL

DES. In Section 3 we give a short overview of the MPC algorithm for MPL DES. Section 4 introduces

the method of variability expansion and describes how the complexity of the MPC optimization prob-

lem for MPL DES can be reduced significantly by using this method. The technical analysis of this

method is postponed to the Appendix of the paper. Section 5 gives a more detailed analysis of the

computational complexity of the developed algorithm. Finally, Section 6 gives a worked example and

a comparison of computational performance for the new method and previous methods.

2 Stochastic max-plus-linear systems

In this paper we consider MPL DES that include stochastic uncertainty (see also [19]). Define ε =−∞

and Rε = R∪{ε}, and let the system matrices of such a system be given by A(k) ∈ R
nx×nx
ε , B(k) ∈

R
nx×nu
ε , C(k) ∈ R

ny×nx

ε ; then the system is described by a state space model of the form

xi(k) = max
(

max
j=1,...,nx

(Ai j(k)+ x j(k−1)) , max
j=1,...,nu

(Bi j(k)+u j(k))
)

i = 1, . . . ,nx, (1)

yℓ(k) = max
j=1,...,nx

(Cℓ j(k)+ x j(k)) ℓ= 1, . . . ,ny . (2)

The index k in (1)–(2) is called the event counter. The state x(k) typically contains the time instants at

which the internal events occur for the kth time, the input u(k) contains the time instants at which the

input events occur for the kth time, and the output y(k) contains the time instants at which the output

events occur for the kth time1.

Remark 1 Recurrence relations (1) and (2) can be written in a concise way using max-plus-algebra

[1, 3, 8]. To see this, let x⊕ y = max(x,y) and x⊗ y = x+ y for x,y ∈ Rε . For matrices A ∈ R
n×m
ε

1More specifically, for a manufacturing system, x(k) contains the time instants at which the processing units start working

for the kth time, u(k) the time instants at which the kth batch of raw material is fed to the system, and y(k) the time instants

at which the kth batch of finished product leaves the system.
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and B ∈ R
m×l
ε , their ⊗-product is defined by

[A⊗B]i j =
m
⊕

k=1

Aik ⊗Bk j = max
k=1,...,m

(Aik +Bk j).

In the same vein, ⊕-addition of matrices A ∈ R
n×m
ε and B ∈ R

n×m
ε is defined by

[A⊕B]i j = Ai j ⊕Bi j = max(Bi j,Ai j).

With these definitions, the system equations (1) and (2) become

x(k) = A(k)⊗ x(k−1)⊕B(k)⊗u(k)

y(k) =C(k)⊗ x(k) .

The system equations become thus linear in the max-plus algebra, and therefore the system is called

a max-plus linear system.

The entries of system matrices A(k), B(k) and C(k) are uncertain due to modeling errors or dis-

turbances. Usually fast changes in the system matrices will be considered as noise and disturbances,

whereas slow changes or permanent errors are considered as model mismatch. In this paper both

features will be treated within one single framework.

The uncertainty caused by disturbances and errors in the estimation of physical variables, can be

gathered in the uncertainty vector e(k). In this paper we assume that the uncertainty has stochastic

properties. Hence, e(k) is a stochastic variable. We assume that e(k) captures the complete event-

varying aspect of the system.

Now we will describe how the entries of e(k) enter the system. Let Smpns be the set of max-plus-

nonnegative-scaling functions, i.e., functions f of the form

f (z) = max
i=1,...,m

(µi +νi,1z1 + . . .+νi,nzn)

with variable z ∈ R
n
ε and constants νi, j ∈ R

+ and µi ∈ R, where R
+ is the set of nonnegative real

numbers. If we want to stress that f is a function of z we will denote this by f ∈ Smpns(z).
Note that the system matrices of an MPL model usually consist of sums or maximizations of

internal process times, transportation times, etc. (see, e.g., [1] or Section 6). Since the entries of e(k)
directly correspond to the uncertainties in the duration times, and using the fact that the set Smpns is

closed under the operations max, +, and scalar multiplication by a nonnegative scalar [18], we know

that the entries of the uncertain system matrices belong to Smpns:

A(k) ∈ S
nx×nx

mpns (e(k)), B(k) ∈ S
nx×nu

mpns (e(k)), C(k) ∈ S
ny×nx

mpns (e(k)) . (3)

System (1)–(2) with system matrices (3) will be called a stochastic MPL DES. Some results for the

analysis of stochastic MPL DES can be found in [15, 16].

3 Model predictive control for stochastic MPL systems

In [4, 18, 19] the MPC framework has been extended to MPL models (1)–(2) as follows. Just as in

conventional MPC [5, 11] we define at each event step k a cost criterion J(k) that reflects the output

and input cost functions (Jout(k) and Jin(k)) in the event period [k,k+Np −1]:

J(k) = Jout(k)+λJin(k) (4)
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where Np is the prediction horizon, λ is a weighting parameter, and2, e.g.,

Jout(k) =
Np−1

∑
j=0

ny

∑
i=1

IE[ηi(k+ j)] (5)

Jin(k) = −
Np−1

∑
j=0

nu

∑
ℓ=1

uℓ(k+ j) (6)

where IE[ηi(k)] denotes the expected value of the ith “tardiness” ηi(k). This tardiness is given by

ηi(k) = max( yi(k)− ri(k) , 0 ) , (7)

where r(k) is the due date for output signal y(k). Note that this choice of Jout(k) favors on-time

delivery and penalizes late delivery.

Define the vectors

ũ(k)=







u(k)
...

u(k+Np−1)






, r̃(k)=







r(k)
...

r(k+Np−1)






, ỹ(k)=







y(k)
...

y(k+Np−1)






, ẽ(k)=







e(k)
...

e(k+Np−1)






.

The aim is now to compute an optimal input sequence u(k), . . . ,u(k+Np−1) that minimizes J(k)
subject to some linear constraints on the inputs and outputs (e.g., minimal and maximal input or output

rates3, hard due dates) of the form [4]

Aconstr(k)ũ(k)+Bconstr(k)IE[ỹ(k)]≤ cconstr(k) . (8)

where the matrices Aconstr and Bconstr and vector cconstr model the constraints of the overall control

problem, have the appropriate dimensions and do not depend on ũ(k). As the u(k)’s correspond to

consecutive event occurrence times, we have to add the condition

∆u(k+ j) = u(k+ j)−u(k+ j−1)≥ 0 for j = 0, . . . ,Np −1. (9)

Furthermore, in order to reduce the number of decision variables and the corresponding computational

complexity we introduce a control horizon Nc (≤ Np) and we impose the additional condition that the

input rate should be constant from event step k+Nc −1 on:

∆u(k+ j) = ∆u(k+Nc −1) for j = Nc, . . . ,Np −1. (10)

MPC uses a receding horizon principle. This means that after computation of the optimal control

sequence u(k), . . . ,u(k+Nc−1), only the first control sample u(k) will be implemented, subsequently

the horizon is shifted one event step, the state and/or model is updated with new information of the

measurements, and the optimization is restarted.

The MPL-MPC problem for event step k can be defined as:

min
ũ(k)

Jout(k)+λJin(k) subject to (1), (2), (8), (9) and (10).

2Other choices for Jout(k) and Jin(k) are given in [4].
3For a manufacturing system the input (output) rate corresponds to the rate at which raw material/external resources

(finished products) are fed to (leave) the system.
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In order to compute the optimal MPC input signal, we need the expected value of the signals ηi(k+ j)
and yi(k+ j). We will now consider the computation of IE[ηi(k+ j)] and IE[yi(k+ j)]. In [19] it is

shown that ηi(k+ j) and yi(k+ j) are max-plus-nonnegative-scaling functions of the variable w(k) =
[

−r̃T (k) xT (k−1) ũT (k)
]T

.

The following proposition is proved in [19]:

Proposition 2 Consider a signal v(k) that is a max-plus-nonnegative-scaling function of w(k) and

ẽ(k):

v(k) = max
j=1,...,nv

(

α j +β T
j w(k)+ γT

j ẽ(k)
)

, (11)

where α j ∈ Rε , β j ∈ (R+)nw , γ j ∈ (R+)nẽ , and ẽ(k) ∈ R
nẽ is a stochastic variable with probability

density function p. If we define the sets Φ j(w(k)), j = 1, . . . ,nv such that4

∀ẽ(k) ∈ Φ j(w(k)) : v(k) = α j +β T
j w(k)+ γT

j ẽ(k)

and
⋃nv

j=1 Φ j(w(k)) = R
nẽ , then the expected value of v(k) is given by

IE[v(k)] =
nv

∑
j=1

∫

. . .
∫

ẽ∈Φ j(w)

(

α j+β T
j w(k)+γT

j ẽ
)

p(ẽ)dẽ

where dẽ = dẽ1 dẽ2 . . .dẽnẽ
. Furthermore, the function IE[v(k)] is convex in w(k) and a subgradient

gv(w(k)) of IE[v(k)] is given by

gv(w(k)) =
nv

∑
ℓ=1

β T
ℓ

∫

ẽ∈Φℓ(w(k))
· · ·

∫

p(ẽ)dẽ .

Now consider the MPL-MPC problem for event step k. First note that ηi(k + j) and yi(k + j)
depend on ẽ(k) and can both be written as a function v(ẽ(k)) of the form (11), and that, because of

Proposition 2, IE[ηi(k+ j)] and IE[y(k+ j)] are convex in w(k). This means that Jout(k) and J(k) are

convex in ũ(k). Hence, it is easy to verify that the following lemma holds.

Lemma 3 If the linear constraints are monotonically nondecreasing as a function of IE[ỹ(k)] (in other

words, if [Bc]i j ≥ 0 for all i, j), constraint (8) becomes convex in ũ(k).

So, if the linear constraints are monotonically nondecreasing, the MPL-MPC problem turns out to

be a convex problem in ũ(k), and both a subgradient of the constraints and a subgradient of the cost

criterion can easily be derived using Proposition 2. Note that convex optimization problems can be

solved using reliable and efficient optimization algorithms, based on, e.g., interior point methods

[14, 20].

4 Variability expansion

The algorithm described in the previous section has a complexity that is growing fast with an increas-

ing number of stochastic variables nẽ due to the numerical integration that is required when computing

the expected values of ηi(k+ j) and yi(k+ j).
In this section we will approximate the expected value of v(ẽ(k)) using the method of variability

expansion. To this end, we assume that the entries of ẽ(k) are independent and identically distributed

4I.e., for ẽ(k) ∈ Φ j′(w(k)) the maximum in (11) is reached for the index j = j′.
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(i.i.d) and we introduce an artificial parameter θ . We replace with probability 1− θ the ith entry of

random vector ẽ(k) by its mean. The result is denoted by ẽθ (k). The parameter θ allows controlling

the level of randomness in the system, and letting θ go from 0 to 1 increases the level of stochasticity

in the system.

The main idea of variability expansion is the following. Considering IE[v(ẽθ (k))] as a function

in θ , it can be developed into a Taylor series in θ that converges to the true function on R; for a

proof we refer to the Appendix. Note that only θ ∈ [0,1] has an interpretation in terms of our model.

In particular, if we denote the value of dm/dθ m IE[v(ẽθ (k))] for θ = 0 by dm/dθ m IE[v(ẽ0(k))], then

IE[v(ẽ1(k))], the “true” expected value of v(ẽ(k)), is given by

IE[v(ẽ(k))] = IE[v(ẽ1(k))] =
M

∑
m=0

1

m!

dm

dθ m
IE[v(ẽ0(k))]+RM(k) ,

where, for M < nẽ,

RM ≤
1

(M+1)!
sup

θ∈[0,1]

∣

∣

∣

∣

dM+1

dθ M+1
IE[v(ẽ0(k))]

∣

∣

∣

∣

and RM = 0 otherwise.

A closed-form expression for the mth order derivative dm/dθ mIE[v(ẽ0(k))] can be obtained as

follows. Set for 0 ≤ m ≤ nẽ and i1 < i2 < .. . < im:

V (i1, i2, . . . , im) = IE[v(ẽθ (k, i1, i2, . . . , im))]

where [ẽθ (k, i1, i2, . . . , im)] j equals the mean value of the jth element of ẽ0 for j 6∈ {i1, i2, . . . , im} and

[ẽ(k)] j for j ∈ {i1, i2, . . . , im}, and where V (0) = v(ẽ0(k)). This means that V (i1, i2, . . . , im) is the

estimation of v in the case where only the elements [ẽ(k)] j for j ∈ {i1, i2, . . . , im} are stochastic, and

the elements [ẽ(k)] j for j 6∈ {i1, i2, . . . , im} are fixed to their mean.

In example 1, presented in the subsequent section, we will work with a Taylor series of degree 4

and we need the derivatives dm/dθ mIE[v(ẽ0(k))] for m = 1,2,3,4. They are given by

d

dθ
IE[v(ẽ0(k))] =

nẽ

∑
i=1

(V (i)−V (0))

d2

dθ 2
IE[v(ẽ0(k))] = 2

nẽ−1

∑
i1=1

nẽ

∑
i2=i1+1

(

V (i1, i2)+V (0) − V (i1)−V (i2)
)

d3

dθ 3
IE[v(ẽ0(k))] = 6

nẽ−2

∑
i1=1

nẽ−1

∑
i2=i1−1

nẽ

∑
i3=i2+1

(

V (i1, i2, i3) + V (i1)+V (i2)+V (i3)

−V (i1, i2)−V (i1, i3)−V (i2, i3)−V (0)
)

d4

dθ 4
IE[v(ẽ0(k))] = 24

nẽ−3

∑
i1=1

nẽ−2

∑
i2=i1+1

nẽ−1

∑
i3=i2+1

nẽ

∑
i4=i3+1

(

V (i1, i2, i3, i4)+V (i1, i2)+V (i1, i3)+V (i1, i4)

+V (i2, i3)+V (i2, i4)+V (i3, i4)+V (0)−V (i1, i2, i3)−V (i1, i2, i4)

−V (i1, i3, i4)−V (i2, i3, i4)−V (i1)−V (i2)−V (i3)−V (i4)
)

.

There is the following simple building rule for the derivatives: The factor in front of the summation

is m! when the mth order derivative is evaluated. The outer summation ranges over all possible com-

binations of marking m out of nẽ random variables. The inner sum ranges over all possible ordered
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combinations of letting the m marked variables be either stochastic or not. The sign of an element in

the inner sum is given by −1 to the power of the number of deterministic substitutions among the m

marked variables.

In example 1, to be presented in Section 6 below, we approximate IE[v(ẽ(k))] by a fourth-order

Taylor expansion by ignoring the error term R4:

IE[v(ẽ(k))] ≈ v(ẽ0(k))+
d

dθ
IE[v(ẽ0(k))] +

1

2

d2

dθ 2
IE[v(ẽ0(k))]+

1

6

d3

dθ 3
IE[v(ẽ0(k))]

+
1

24

d4

dθ 4
IE[v(ẽ0(k))] .

The above expression contains redundant terms and a simplified version can be obtained as follows.

For m ≤ nẽ, set

V(m) =
nẽ−m

∑
i1=1

nẽ−m+1

∑
i2=i1+1

· · ·
nẽ

∑
im=im−1+1

V (i1, i2, . . . , im) .

The term V(m) yields the total effect of making m out of nẽ variables stochastic. For the nth derivative

we mark in total n variables out of which m are stochastic. Hence, there are

(

nẽ −m

n−m

)

possibilities of reaching at nẽ −m deterministic substitutions provided that there m stochastic ones,

and, in accordance with our building rule for higher-order derivatives, we arrive at the following result,

which will be proved in the Appendix.

Lemma 4 Provided that ẽ(k) has a bounded support, the nth order derivative of IE[v(ẽθ (k))] with

respect to θ is for any θ ∈ R given by

dn

dθ n
IE[v(ẽ(k))] = n!

n

∑
l=0

(

nẽ − l

n− l

)

(−1)n−lV(l) ,

for n ≤ nẽ, and zero otherwise.

By Lemma 4, IE[v(ẽθ (k))] is infinitely many times differentiable with respect to θ . Moreover, the

derivatives vanish for sufficiently high order, which implies that IE[v(ẽθ (k))] as a function of θ can be

represented on R by its Taylor series developed at θ = 0. This train of thoughts leads to the following

approximation for IE[v(ẽ(k))].

IE[v(ẽ(k))] =
M

∑
n=0

n

∑
l=0

(

nẽ − l

n− l

)

(−1)n−lV(l)+RM+1

=
M

∑
l=0

(

M

∑
n=l

(

nẽ − l

n− l

)

(−1)n−l

)

V(l)+RM+1 .

Note that
1

(M− l)!

M

∏
j=l+1

( j−nẽ) =
M

∑
m=l

(

nẽ − l

m− l

)

(−1)m−l,

7



CM
l l = 0 l = 1 l = 2 l = 3 l = 4

M = 0 1 0 0 0 0

M = 1 1−nẽ 1 0 0 0

M = 2 (1−nẽ)(2−nẽ)/2 (2−nẽ) 1 0 0

M = 3 (1−nẽ)(2−nẽ)(3−nẽ)/6 (2−nẽ)(3−nẽ)/2 (3−nẽ) 1 0

M = 4 (1−nẽ)(2−nẽ)(3−nẽ)(4−nẽ)/24 (2−nẽ)(3−nẽ)(4−nẽ)/6 (3−nẽ)(4−nẽ)/2 (4−nẽ) 1

Table 1: Coefficients cM
l of the Taylor series for M, l = 0, . . . ,4.

see, for example, [9], p. 57 formula (18). Let

cM
l =

1

(M− l)!

M

∏
j=l+1

( j−nẽ) ,

where we set cM
l = 1 for l = M. In Table 1 the coefficients cM

l are computed for M = 0, . . . ,4.

We summarize our analysis in the following theorem.

Theorem 5 Let ẽ(k) has bounded support. For M ∈N, the Taylor polynomial for IE[v(ẽ(k))] of degree

M is given by

IE[v(ẽ(k))] =
M

∑
l=0

cM
l V(l)+RM(k) ,

with RM(k) = 0 for M ≥ ñẽ.

By Theorem 5 it holds that

IE[v(ẽ(k))] ≈
M

∑
l=0

cM
l V(l) . (12)

The subgradient ∇ũIE[v(ẽ(k))] can be computed using the same weighted summation. For example,

the approximate subgradient for M ≤ nẽ becomes:

∇ũIE[v(ẽ(k))] ≈
h

∑
l=0

cM
l ∇ũV(l) .

The values of V and ∇ũV can be computed using Proposition 2. Because of the dramatic reduction

in number of stochastic variables, these values are computed much faster than a full estimation of

v(ẽ(k)) and ∇ũIE[v(ẽ(k))].
Note that because of the approximations, full convexity might be lost. However, if the approxi-

mations are close to the original functions, we still have a smooth optimization problem.

5 Computational complexity

Consider equation (11) where nv is the number of max-terms, and nẽ is the number of stochastic

variables. If we use variability expansion, we usually have a reduced number of stochastic variables,

denoted by nr with nr ≤ nẽ. Let us assume that e(k) is uniformly distributed (see the examples in

Section 6)5. In the whole procedure, the computation of the sets Φ j, j = 1, . . . ,nv, is the most time-

demanding step. Or to be more precise, we have to compute the vertices of nv polytopes in R
nr . Every

5For other piecewise affine distributions we can make a similar analysis [19]. For more general distributions it may be

much harder.

8



polytope is described by 2nr +nv−1 inequality constraints. If we denote Cvert(ℓ,n) as the complexity

to compute all the vertices of a polytope defined by n inequality constraints in an ℓ dimensional space,

then the complexity of computing the vertices of nv polytopes in R
nr is Csets ∼ nv Cvert(nr,2nr+nv−1),

where Cvert(ℓ,n) is given in [12] as follows:

Cvert(ℓ,n) =

(

n−
⌊

ℓ+1
2

⌋

n− ℓ

)

+

(

n−
⌊

ℓ+2
2

⌋

n− ℓ

)

where ⌊∗⌋ denotes the greatest integer function and ( ∗
∗ ) denotes the binomial coefficient. In the case

of variability expansion of order M we solve

(

nẽ

m

)

problems of complexity nv Cvert(m,2m+nv−1)

for m = 1, . . . ,M and so the total complexity becomes

Ctot ∼
M

∑
m=1

(

nẽ

m

)

nv Cvert(m,2m+nv −1).

The dominant factor is for m = M and so the overall complexity will be

Ctot ∼

(

nẽ

M

)

nv Cvert(M,2M+nv −1).

For cost criterion (5), the due date error ηi(k+ j) will only depend on the elements of ẽ that correspond

to e(k+ l), l ≤ j because of causality. This means that the complexity mainly depends on the com-

plexity of computing ηi(k+Np), i = 1, . . . ,ny. The number of max-terms for computing ηi(k+Np) is

nv = nx +Np nu, and usually nẽ ≈ Npne, and so the complexity to compute Jout is in the order of

Ctot ∼

(

Npne

M

)

(nynx +nyNpnu)

×

{(

2M+nx+Np nu−1−
⌊

M+1
2

⌋

M+nx+Np nu−1

)

+

(

2M+nx+Np nu−1−
⌊

M+2
2

⌋

M+nx+Np nu−1

)}

.

We see that the complexity will grow rapidly with increasing M. The optimal choice for M will

depend on a trade-off between accuracy (larger M) and computation speed (small M). Note that the

complexity for the original problem is easily recovered by substitution of M = nẽ = Npne (i.e. no

reduction).

6 Examples

Example 1: A production system

Consider the production system in Figure 1. This system consists of two machines M1 and M2 and

operates in batches. The raw material is fed to machine M1 where preprocessing is done. Afterwards

M1 M2

d1(k) d2(k)

✲ ✲ ✲u(k) y(k)
x1(k) x2(k)

t1(k) t2(k) t3(k)

Figure 1: A production system.
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the intermediate product is fed to machine M2 and finally leaves the system. We assume that each

machine starts working as soon as possible on each batch, i.e., as soon as the raw material or the

required intermediate product is available, and as soon as the machine is idle (i.e., the previous batch

of products has been processed and has left the machine).

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7
0 5 1510 20 25 30 35 40

noiselevel=0.3

M = 0
M = 1
M = 2
M = 3
M = 4

k −→

y(
k
)−

r(
k
)
−
→

Figure 2: The due date error y(k)−r(k) for MPC with an Mth order approximation, M ∈ {0,1,2,3,4}
and a noise level α = 0.3.

Define u(k) as the time instant at which the system is fed for the kth time, y(k) as the time instant

at which the kth product leaves the system, xi(k) as the time instant at which machine i starts for the

kth time, t j(k) as the transportation time on link j for the kth batch and di(k) as the processing time

on machine i for the kth batch. The system equations are given by

x1(k) = max(x1(k−1)+d1(k−1),u(k)+ t1(k)),

x2(k) = max(x1(k)+d1(k)+ t2(k),x2(k−1)+d2(k−1)),

= max(x1(k−1)+d1(k−1)+d1(k)+ t2(k),u(k)+d1(k)+ t1(k)+ t2(k),

x2(k−1)+d2(k−1)),

y(k) = x2(k)+d2(k)+ t3(k).

In matrix notation we obtain (1)-(2) where the system matrices A, B and C are given by

A(k) =

[

d1(k−1) ε

d1(k−1)+d1(k)+ t2(k) d2(k−1)

]

,

B(k) =

[

t1(k)
d1(k)+ t1(k)+ t2(k)

]

, C(k) =
[

ε d2(k)+ t3(k)
]

.

10



−5

−4

−3

−2

−1

0

1

2

3

noiselevel=3.5

4035302520151050

M = 0
M = 1
M = 2
M = 3
M = 4

k −→

y(
k
)−

r(
k
)
−
→

Figure 3: The due date error y(k)−r(k) for MPC with an Mth order approximation, M ∈ {0,1,2,3,4}
and a noise level α = 3.5.

Let us now solve the stochastic MPC problem for this perturbed MPL system. Assume that two of

the transportation times are constant: t1(k) = 0, t3(k) = 0, and that transportation time t2(k) and the

production times d1(k) and d2(k) are corrupted by noise:

d1(k) = 5+α 0.2e1(k),

d2(k) = 1+α 0.5e2(k),

t2(k) = 1+α 0.6e3(k),

where α is a nonnegative constant and e(k) =
[

e1(k) e2(k) e3(k)
]T

is a random signal with

probability density function

p(e) =







1/8 if max
i=1,2,3

(|ei|)≤ 1,

0 if max
i=1,2,3

(|ei|)> 1.
(13)

Assume that the initial state is equal to x(0) = [0 6 ]T , the due date signal is given by r(k) = 4+6 · k
and the cost criterion (4) is optimized for Np = 3, Nc = 2 and λ = 0.1. With the choice of the cost

criterion (5)-(6), we can rewrite the stochastic MPC problem into a convex optimization problem. For

the computation of the cost criterion we use an Mth order Taylor approximation with M = 0,1,2,3,4.

Next we apply MPC for the Mth order approximation for M = 0,1,2,3,4. The optimal input

sequence is computed for k = 1, . . . ,40, and for each k, the first element u(k) of the sequence ũ(k) is

11



applied to the perturbed system (due to the receding horizon strategy). We perform two experiments

with different noise levels α = 0.3 and α = 3.5. In the experiments, the true system is simulated for

a random sequence e(k), k = 1, . . . ,40, satisfying the probability density function (13). The due date

error y(k)−r(k) for MPC is given in Figure 2 for a noise level α = 0.3, and in Figure 3 for a noise

level α = 3.5. The 0th order approximation is in fact equal to the case where no disturbance is taken

into account. We see that for M = 0 the scheme leads to a frequent violation of the due dates (i.e. the

difference signal y(k)− r(k) is frequently positive). We see that for increasing approximation order

M the due date error decreases and y(k)− r(k) is below zero most of the time (which means that our

product is delivered in time). Furthermore, the approximation seems to converge for increasing M.

M = 0 M = 1 M = 2 M = 3 M = 4

CPU time 1 16.5 470 3810 34900

Table 2: (Scaled) CPU times for different levels in approximation

In Table 2 the (scaled) CPU times are given for the computation of the cost criterion and its sub-

gradient for M ∈ {0,1,2,3,4}. From Table 2 we see that computation time grows dramatically with

increasing M. Depending on the application and the available computation interval, we can choose the

level of approximation. In general, the above trade-off will give us the best possible approximation of

the optimal solution, given the constraints in computation time. For this system M = 2 or M = 3 is

probably sufficient for practical use.

Example 2: A batch process

M1
M3

M2 M4

M5 M6

M7

M8

d1(k)
d3(k)

d2(k) d4(k)

d5(k) d6(k)

d7(k)

d8(k)

✲ ✲

✲

✲ ✲

✲

✲ ✲

✛

✛

✲

✲

u2(k)

u1(k)

y(k)

Figure 4: A batch process.

Figure 4 gives the schematic configuration of a batch process [17]. This system consists of six

machines M1 to M6 operating in batches and two machines M7 and M8 working continuously. Two

substances are fed into machines M1 and M2 where they are heated. In the stirred tank reactors M3

and M4 the substances are mixed with a solvent and a reaction takes place. The result flows into tank

M5. Then the solvent is separated from the product and stored into the tanks M7 and M8. The product

is finalized in machine M6.

We assume that each machine starts working as soon as possible. We define ui(k) as the time

instant at which the subsystem Mi, i = 1,2, is fed for the kth time, y(k) is the time instant at which the

12



kth product leaves the system, xi(k) is the time instant at which machine i starts for the kth time, and

di(k) is the processing time on machine i for the kth batch.
The system equations are given in matrix notation by (1)-(2) with system matrices

A(k) =

















d1(k−1) ε ε ε
ε d2(k−1) ε ε

d1(k−1)+d1(k) ε d3(k−1) ε
ε d2(k−1)+d2(k) ε d4(k−1)

d1(k−1)+d1(k)+d3(k) d2(k−1)+d2(k)+d4(k) d3(k−1)+d3(k) d4(k−1)+d4(k)
d1(k−1)+d1(k)+d3(k) d2(k−1)+d2(k)+d4(k) d3(k−1)+d3(k) d4(k−1)+d4(k)

ε ε
ε ε

d5(k−1)+d7 ε
d3(k)+d5(k−1)+d7 ε

max(d3(k)+d5(k−1)+d7,d4(k)+d5(k−1)+d8) ε
max(d3(k)+d5(k−1)+d7,d4(k)+d5(k−1)+d8) d6(k−1)

















,

B(k) =

















0 ε
ε 0

d1(k) ε
ε d2(k)

d1(k)+d3(k) d2(k)+d4(k)
d1(k)+d3(k)+d5(k) d2(k)+d4(k)+d5(k)

















,

C(k) =
[

d1(k−1)+d1(k)+d3(k)+d6(k) d2(k−1)+d2(k)+d4(k)+d6(k) d3(k−1)+d3(k)+d6(k)

d4(k−1)+d4(k)+d6(k) max(d3(k)+d5(k−1)+d7+d6(k),d4(k)+d5(k−1)+d8+d6(k)) d6(k−1)+d6(k)
]

.

Let us now solve the stochastic MPC problem for this perturbed MPL system. Assume that two of

the production times are constant: d7(k) = d8(k) = 2, and that the production times d1(k), . . . ,d6(k)
are corrupted by noise:

di(k) = di,0 +αi ei(k), i = 1, . . . ,6,

where d1,0 = d2,0 = 1, d3,0 = d4,0 = 3, d5,0 = 4, d6,0 = 3, α1 = α2 = 0.2, α3 = α4 = 0.1, α5 = 0.3,

α6 = 0.1 and e(k) =
[

e1(k) . . . e6(k)
]T

is a random signal with probability density function

p(e) =







1/64 if max
i=1,...,6

(|ei|)≤ 1,

0 if max
i=1,...,6

(|ei|)> 1.
(14)

Assume that the due date signal is given by r(k) = 6+ 10 · k and the cost criterion (4) is optimized

for Np = 3, Nc = 2 and λ = 0.001. With the choice of the cost criterion (5)-(6), we can rewrite the

stochastic MPC problem into a convex optimization problem. For the computation of the cost criterion

we use a Taylor approximation with M = 0,1,2.

We apply MPC for the Mth order approximation for M = 0,1,2. The simulation with the MPC

controller is done for k = 1, . . . ,40. The due date error y(k)−r(k) for MPC is given in Figure 5. The

0th order approximation is in fact equal to the case where no disturbance is taken into account.

We see that for M = 0 (no disturbance is taken into account) and M = 1 the scheme leads to a

frequent violation of the due dates (i.e. the difference signal y(k)−r(k) is frequently positive). We see

that for M = 2 the due date error is small enough for a proper functioning of the process.

7 Discussion

We have discussed complexity reduction in MPC for max-plus linear discrete event systems with

stochastic uncertainties. From the MPC framework, a convex optimization problem results if the con-

straints are a nondecreasing function of the output. With an increasing number of stochastic variables,
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Figure 5: The due date error y(k)−r(k) for MPC on a batch process with an Mth order approximation,

M ∈ {0,1,2}.

the computational complexity of the optimization problem increases dramatically due to the numerical

integrations required to evaluate the objective function. To tackle this increase of complexity, we use

the method of variability expansion. The key idea of this method is to introduce a parameter θ that

controls the level of stochasticity in the system. In this paper we have derived explicit expressions for

the coefficients in the expansion (and we have provided the proofs that were lacking in [6]). Based on

a Taylor expansion in the parameter θ , good approximations for the expectations of the cost criterion

and the constraints can be computed, which leads to a significant reduction of the computational com-

plexity of our approach. We have analyzed the computational complexity of the overall algorithm,

and illustrated the theory with two worked examples. From the examples it becomes clear that if we

do not take the stochastic perturbation into account (the case that the approximation order is M = 0),

the due-date error will often be positive, which means for a production system that the products are

finished too late. Even for small M the due-date error is reduced dramatically, and the system can

deliver products in time.
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Appendix

A1. Variability expansion (for more details see [7])

We show that IE[v(ẽθ (k))] is infinitely often differentiable with respect to θ , and more particular

for θ ∈ [0,1], which is the interval of interest for us due to the interpretation of θ as the level of

randomness. Note that ẽ(k) can be written as f (X1, . . . ,Xnẽ
) for some measurable mapping f and

i.i.d. random noise variables Xi. Let µ denote the distribution of Xi and a its finite expected value,

i.e., IE[Xi] =
∫

R
xµ(dx) = a, for 1 ≤ i ≤ nẽ. We formalize variability expansion as follows. Choose

l ∈ {0,1}nẽ , let Xi have distribution µ (the “true” distribution) if li = 1 and let Xi = a (with probability

one) if li = 0. This is easily achieved be replacing those Xi in f for which li = 1 by a . The thus

modified mapping f is denoted by fl . Next, let the elements of l be independently distributed with

P(li = 1) = 1− θ and P(li = 0) = θ , where P(·) denotes probability. Furthermore, let Xi(θ) have

distribution µ with probability θ and let it be deterministic and equal to a with probability 1−θ . It

then holds that

IE[v(ẽθ (k))] = IE[ f (X1(θ), . . . ,Xnẽ
(θ))] = ∑

l∈{0,1}nẽ

IE[ fl(X1, . . . ,Xnẽ
)] (1−θ)∑

nẽ
i=1 li θ nẽ−∑

nẽ
i=1 li .

Note that the sum on the right-hand side of the above equation is finite and we may interchange the

order of higher-order differentiation and summation. Since the distribution of l is a polynomial in θ

of order nẽ, it is infinitely differentiable and its derivatives of order nẽ +1 and higher vanish.

A2. Proof of Lemma 4 (for more details see [7])

Let µθ = θ µ +(1−θ)δa, where δa denotes the Dirac measure in a (which carries only mass on point

a). With this notation,

IE[v(ẽθ (k))] = IE[ f (X1(θ), . . . ,Xnẽ
(θ))] =

∫

Rnẽ

f (x1, . . . ,xnẽ
)µnẽ

θ (dx1) · · ·µ
nẽ

θ (dxnẽ
),

where

f (x1, . . . ,xnẽ
) = IE

[

v(ẽθ (k))
∣

∣ [ẽθ (k)] j = x j,1 ≤ j ≤ nẽ

]

.

Provided that the elements of ẽθ (k) have bounded support it follows from our basic model that

f (x1, . . . ,xnẽ
) is bounded as a function in x1, . . . ,xnẽ

. Interchanging integration and differentiation

is thus justified and we obtain

dn

dθ n
IE[ f (X1(θ), . . . ,Xnẽ

(θ))] =
∫

Rnẽ

f (x1, . . . ,xnẽ
)

dn

dθ n
µθ (dx1) · · ·µθ (dxnẽ

) .

Note that µθ (dx) = θ µ(dx)+(1−θ)δa(dx), which implies d
dθ µθ (dx) = µ(dx)−δa(dx). After some

computation one arrives at

dn

dθ n
µθ (dx1), . . . ,µθ (dxnẽ

) = n! ∑
l∈L (nẽ;n)

( nẽ

∏
k=1

(µθ )
(lk)(dxk) −

nẽ

∏
k=1

(µθ )
(l−k )(dxk)

)

, (15)
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where the following definitions are in force. The set L (nẽ;n) is given by

L (nẽ;n) =















l ∈ {0,−1,1}nẽ

∣

∣

∣

∣

∣

∣

∣

∣

nẽ

∑
k=1

lk = n and ∏
l1,...,lnẽ

lk 6=0

lk = 1















.

For l ∈ L (m;n), the vector l− is generated out of l by changing the sign of the highest non-zero

element; more formally, let k∗ be the highest position of a non-zero element in l ∈ L (m;n), that is,

lk = 0 for all k > k∗ and lk∗ ∈ {−1,+1}, and set

l− = (l1, . . . , lm)
− = (l1, . . . lk∗−1,−lk∗ , lk∗+1, . . . , lm) .

Finally, we have set

µ
(0)
θ = µθ , µ

(1)
θ = µ and µ

(−1)
θ = δa .

With (15), we obtain

dn

dθ n
IE[ f (X1(θ), . . . ,Xnẽ

(θ))]

= n! ∑
l∈L (nẽ;n)

∫

· · ·
∫

f (x1, . . . ,xnẽ
)
( nẽ

∏
k=1

(µθ )
(lk)(dxk) −

nẽ

∏
k=1

(µθ )
(l−k )(dxk)

)

.

In order to interpret the integral expression on the right-hand side of the above equation as an expected

value with respect to appropriate random variables, we introduce Xi(r)(θ) such that Xi(r)(θ) has

distribution µθ (r) for r ∈ {0,1,−1}. This yields

dn

dθ n
IE[ f (X1(θ), . . . ,Xnẽ

(θ))]

= n! ∑
l∈L (nẽ;n)

(

IE
[

f
(

X
(l1)
1 (θ), . . . ,X

(lnẽ
)

nẽ (θ)
)]

− IE

[

f

(

X
(l−1 )
1 (θ), . . . ,X

(l−nẽ
)

m (θ)

)])

.

The key observation it that only those elements X
(li)
i (θ) with li = 0 (resp. X

(l−i )
i (θ) with l−i = 0)

actually do depend on θ . Moreover, as θ tends to zero, those X
(li)
i (θ) (resp. X

(l−i )
i (θ)) with li = 0

converge weakly to a, whereas all other noise variables remain unaffected. Hence, the limit of the

higher order derivatives of IE[ f (X1(θ), . . . ,Xnẽ
(θ))] as θ tends to 0 exists and is given by

lim
θ↓0

dn

dθ n
IE[ f (X1(θ), . . . ,Xnẽ

(θ))]

= n! ∑
l∈L (nẽ;n)

(

IE
[

f
(

1l1=1X1 +1l1∈{0,−1} a, . . . ,1lnẽ
=1Xnẽ

+1lnẽ
∈{0,−1} a

)

]

− IE
[

f
(

1l−1 =1X1 +1l−1 ∈{0,−1} a, . . . ,1l−nẽ
=1Xnẽ

+1l−nẽ
∈{0,−1} a

)])

,

for nẽ ≥ n and zero otherwise; where 1A = 1 if expression A holds and zero otherwise.

For n = 1, the set L (nẽ;n) contains vectors with all elements equal to zero except for one entry.

Hence, the first order derivative at θ = 0 can be written as follows

lim
θ↓0

d

dθ
IE[ f (X1(θ), . . . ,Xnẽ

(θ))]

17



=
nẽ

∑
l=1

(

IE
[

f
(

1l=1X1 +1l 6=1 a, . . . ,1l=nẽ
Xnẽ

+1l 6=nẽ
a
)

]

− IE [ f (a, . . . ,a))]
)

,

which in the notation of the paper reads

lim
θ↓0

d

dθ
IE[ f (X1(θ), . . . ,Xnẽ

(θ))] =
nẽ

∑
l=1

(

V (l)−V (0)
)

.

Following this train of thought for higher-order derivatives proves Lemma 4.
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