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Abstract

In this paper a new iterative approach to probabilistic robust controller design is
presented, which is applicable to any robust controller /filter design problem that can
be represented as an LMI feasibility problem. Recently, a probabilistic Subgradient
Iteration algorithm was proposed for solving LMIs. It transforms the initial feasi-
bility problem to an equivalent convex optimization problem, which is subsequently
solved by means of an iterative algorithm. While this algorithm always converges
to a feasible solution in a finite number of iterations, it requires that the radius of a
non-empty ball contained into the solution set is known a-priori. This rather restric-
tive assumption is released in this paper, while retaining the convergence property.
Given an initial ellipsoid that contains the solution set, the approach proposed here
iteratively generates a sequence of ellipsoids with decreasing volumes, all containing
the solution set. At each iteration a random uncertainty sample is generated with
a specified probability density, which parametrizes an LMI. For this LMI the next
minimum-volume ellipsoid that contains the solution set is computed. An upper
bound on the maximum number of possible correction steps, that can be performed
by the algorithm before finding a feasible solution, is derived. A method for finding
an initial ellipsoid containing the solution set, which is necessary for initialization
of the optimization, is also given. The proposed approach is illustrated on a real-life
diesel actuator benchmark model with real parametric uncertainty, for which a Ho

robust state-feedback controller is designed.

Key words: Probabilistic design, Randomized algorithms, Robust LMIs, Robust
control, Ellipsoid algorithm.
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1 Introduction

Recently, a new approach for probabilistic design of LQ regulators was pro-
posed in the literature [12], to which we will refer to as the Subgradient Itera-
tion Algorithm (SIA), which was later on extended to deal with general robust
LMIs [3]. The main advantage of this approach over the existing determinis-
tic approaches to robust controller design is that it can handle very general
uncertainty structures, where the uncertainty can enter the system in any,
possibly non-linear, fashion. In addition to that, this approach does not need
to solve simultaneously a number of LMIs, whose dimension grows exponen-
tially with the number of uncertain parameters, but rather solves one LMI at
each iteration. This turns out to be a very powerful feature when one observes
that even for ten real uncertain parameters most of the existing LMI solvers
will be unable to handle the resulting number of LMIs. For an overview of the
literature on probabilistic design the reader is referred to [3,12-16,10,5,6], and
the references therein.

While enjoying these nice properties, the major drawback of the STA is that
the radius of a ball contained in the solution set (the set of all feasible solutions
to the problem) is required to be known a-priori. This radius is used at each
iteration of the SIA to compute the size of the step which will be made in
the direction of the anti-gradient of a suitably defined convex function. It will
be shown later in this paper that not knowing such a radius r can result
in the SIA failing to find a feasible solution. Knowing r, on the other hand,
guarantees that the algorithm will terminate in a feasible solution in a finite
number of iterations with probability one, provided that the solution set has
a non-empty interior [12,3]. The purpose of this paper is to develop a new
probabilistic approach that no longer necessitates the knowledge of r, while
keeping the above-mentioned advantages and the convergence property of STA.

To circumvent the lack of knowledge of r, it is proposed in [11] that one can
substitute this number with a sequence {e;} such that ¢, > 0, ¢ — 0 and
Y2y €s = 00. While this indeed releases the assumption that the radius r is
known, it increases the number of iterations necessary to arrive at a feasible
solution. In addition to that the choice of an appropriate sequence {¢,} remains
an open question.

An interesting result concerning the algorithm in [3] appeared recently in [8],
where it is shown that the expected time to achieve a solution is infinite.
In [8] the authors also propose a slight modification of the approach from
[3] that results in an algorithm with finite expected achievement time. Yet,
this modified algorithm suffers from the “curse of dimensionality”, i.e. the

! This work is sponsored by the Dutch Technology Foundation (STW) under
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expected achievement time grows (faster than) exponentially with the number
of uncertain parameters.

The approach proposed in this paper is based on the Ellipsoid Algorithm (EA).
The algorithm can be used for finding exact or approximate solutions to LMI
optimization problems, like those arising from many (robust) controller and
filter design problems. The uncertainty A is assumed to be bounded in the
structured uncertainty set A, and to be coupled with a probability density
function fa(A). It is further assumed that it is possible to generate samples
of A according to fa(A). The interested reader is referred to [4] for more
details on the available algorithms for uncertainty generation. Then, similarly
to the SIA, at each iteration of the EA two steps are performed. In the first
step a random uncertainty sample A® € A is generated according to the
given probability density function fa(A). With this generated uncertainty a
suitably defined convex function is parametrized so that at the second step of
the algorithm an ellipsoid is computed, in which the solution set is guaranteed
to lie. The EA thus produces a sequence of ellipsoids with decreasing volumes,
all containing the solution set. Using some existing facts, and provided that the
solution set has a non-empty interior, it will be established that this algorithm
converges to a feasible solution in a finite number of iterations with probability
one. To initialize the algorithm, a method is presented for obtaining an initial
ellipsoid that contains the solution set. It is also shown that even if the solution
set has a zero volume, the EA converges to the solution set when the iteration
number tends to infinity — a property not possessed by the SIA.

The remaining part of the paper is organized as follows. In the next Section
the problem is formulated, and the SIA is summarized. In Section §3 the EA is
developed and its convergence is established. In Section §4 a possible method
for finding an initial ellipsoid containing the solution set is presented. The
complete EA method is illustrated in Section §5 on the design of a robust
Ho state-feedback controller for a real-life diesel actuator benchmark model,
taken from [1]. Finally, Section §6 concludes the paper.

2 Introduction to the Problem

2.1 Notation and Problem Formulation

The notation used in the paper is as follows. I,, denotes the identity matrix
of dimension n X n, I« is a matrix of dimension n X m with ones on its
main diagonal. The dimensions will often be omitted in cases where they can
be implied from the context. ||.|| denotes any matrix norm. A > 0 (A > 0)
means that A is positive definite (positive semi-definite). We also introduce the



notation ||z[|3 = 27 Qx for x € R" and Q € R™" with @ > 0, which should
not be mistaken with the standard notation for the vector p-norm (||z[,). A
vector of dimension n with all elements equal to zero will be denoted as 0,,.

Let the space of all symmetric n-by-n matrices be denoted as S,,, and let C;f
denote the cone of symmetric non-negative definite n-by-n matrices [12]. Then
we define the projection ITT : S,, — C;| in the following way:

IT"A = arg min |4 — X||p.
Xect

This projection can be found explicitly as follows. For a matrix A € S,, the
eigenvalue decomposition exists and has the following form A = UAU” | where
U is an orthogonal matrix containing the eigenvectors of A, and A is a diagonal
matrix with the eigenvalues \;, ¢ = 1,...,n, of A appearing on its diagonal,
i.e. A =diag{)\,..., A\, }. Then it can be shown that (see [12])

Mt A = Udiag{\],..., AT} U7,

with A} = max(0,\;),i=1,...,n.

In this paper we consider the following uncertain transfer function

U z
Gal(o) : — ,
§ Yy
defined as
cA D2 DA
Ga(o) = A (0L, + A%~ [Bf B?] + A“ : (1)
Cy Dyu Dy§

where A% € R™™", B} € R™™, Bf € R, C2 € R=*", O € RP*,
D4 e R=xm, DzAg e Rm=>"e Dzﬁt e Rpxm, DyAE € RP*" ¢, € R™ is the control
action, y € RP is the measured output, z € R" is the controlled output of the
system, and ¢ € R™ is the disturbance to the system, and where the symbol
o represents the s-operator (i.e. the time-derivative operator) for continuous-
time systems, and the z-operator (i.e. the shift operator) for discrete-time
systems. The uncertainty A is characterized by an uncertainty set A and a
probability distribution over this uncertainty set fa.

Many controller (and filter) design problems are known to be representable in



terms of LMIs (2]

Control Problem: Find a feasible solution to the LMI
Uz, A) <0, z€ X CRY forall A e A,

where U(z,A) = UT(x,A) is affine in x, and where the set X is assumed
to be convex. The controller is then parametrized by any solution z*. Such a
controller is called robust whenever the uncertainty set A has more than one
element.

The set of all feasible solutions to the control problem is called the solution
set, and is denoted as

S={reX: Ux,A) <0, VA € A}. (2)

It is assumed throughout this paper that the solution set § is nonempty.

The goal is the development of an iterative algorithm capable of finding a
solution to the control problem defined above. To this end the following cost
function is defined

v(z, A) = [[IT[U(z, Al = 0, (3)

which is such that v(z,A) =0 for all A € A if and only if z € S.
Thus, the initial problem is reformulated to the following optimization problem

" = arg min sup v(x, A). (4)
T€X AcA

Note that x* is such that v(z*, A) = 0 for every A € A due to the assumption
that S is nonempty.

In [3] it is shown that the function v(x, A) is convex in x and a subgradient
of v(z,A), denoted here as Vu(x, A), is derived.

2.2 The Subgradient Iteration Algorithm (SIA)

For finding a feasible solution to the optimization problem (4), an algorithm
was proposed in [3]. It originated in [12], where it was developed specifically
for the design of a state-feedback LQ regulator. We will refer to this algorithm



as the Subgradient Iteration Algorithm due to the fact that it is based on
subgradient iterations.

Define the operator ITy : RY — X as follows

IMyz = arg min |z — vl

Further, the following assumption is imposed for the STA.

Assumption 1 (Strong Feasibility Condition) A scalar r > 0 is known
for which there exists x* € X such that

{reX: |z—2"||<r}CS.

Assumption 1 implies that the solution set & has a non-empty interior, and
that a radius r of a ball contained in S is known. This is often is a rather
restrictive assumption due to the fact that usually no a-priori information
about the solution set is available. This Assumption will be released in the
next Section where the newly proposed algorithm is presented.

The SIA is then summarized as follows (see [12,3] for more details).

Algorithm 1 (Subgradient Iteration Algorithm: iteration i+ 1) Given
2@ and 0 < n < 2, perform the following steps.

Step 1. Generate a random sample AW € A with probability distribution fa.
Step 2. Select the step-size

Wa A VoD AN () A £ )

MTONNONE
0 if v(z, AW) =0,
and compute
S04 I, [aj(i) . Mvv(x(i)’ A(i))]- (6)

As an initial condition (9 to the algorithm can be selected any element of the
set X. As a stopping criterion one may, for instance, select the condition that
for a given number of iterations L (usually L > 1) the step-size u;—r = 0 (or
equivalently v(z0* A=) = 0) for k = 0,1,...,L. A “weaker” stopping
condition could be that the vector (¥ did not change significantly in the last
L iterations. Once the algorithm has terminated, a Monte-Carlo simulation
could be performed to estimate the empirical probability of robust feasibility
[3]. Whenever the obtained probability is unsatisfactory, the number L can be
increased and the algorithm can be continued until a better solution (achieving
higher empirical probability of robust feasibility) is found.



The following technical assumption needs to be additionally imposed

Assumption 2 For any %) ¢ S there is a non-zero probability to generate a
sample AW for which v(z® AD) >0, i.e.

Prob(v(z?, A®) > 0) > 0.

This assumption is not restrictive and needs to hold also for the algorithm,
proposed in the next Section. The Assumption is needed to make sure that
for any ¥ & S there is a non-zero probability for a correction step to be
executed. By correction step it is meant an iteration (6) with x(+1) # 20,

It is shown in [3] that for any initial condition 2° € X', the SIA finds a feasible
solution with probability one in a finite number of iterations, provided that
Assumptions 1 and 2 hold. It is also shown that the number

Isia = |2 = |/ (r*n(2 = n)) (7)

provides an upper bound on the maximum number of correction steps that
have to be executed.

Although there are a lot of applications for which the subgradient algorithm
performs well, in general it possesses the weakness that Assumption 1 is too
restrictive, i.e. the number r is not known. As it is demonstrated below, if
it is selected not small enough, so that the condition in Assumption 1 does
not hold, then Algorithm SIA results in an oscillatory sequence {x(i)}i:I,Q,...
that actually diverges from the solution set. On the other hand, if r is selected
too small to make sure that Assumption 1 is satisfied, then the convergence
rate of the algorithm can drastically slow down since the maximum number
of correction steps is reversely proportional to r2. To experimentally illustrate
this discussion we consider the following example

Example 1 Consider the discrete-time system

Mz = xp + ug, (8)

and the following standard LQ) cost function is minimized

o0
Jigr = ka-HHQQ + ||kl B
=1

It is shown in [9] that the control action uy = Fxj = Y X~'a;, achieves an
upper bound of xF X 1xy on the cost function if and only if X = XT > 0 and
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Fig. 1. Performance of the Subgradient Iteration Algorithm (SIA) for system
M: (left) level curves of v([X Y]T) together with a plot of the sequence
(middle) plot of v([X®, Y®]T) versus the iteration number
i, (right) a zoom on the solution set.
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By (randomly) selecting @ = 1, R =10, r =1, n =1, Xy = 0.1545, Y =
—1.7073, the subgradient iteration algorithm does not converge to the solution
set, but rather begins to oscillate, as it can be seen from Figure 1. The feasibility
set is represented by the innermost contour in Figure 1 (left). The contours in
Figure 1 represent different level sets. A level set LS(c, A*) for the function
v(z,A) for a given A* € A and for a given positive number c is defined as

LS(c,A")={zx e X: v(z,A") <c}. (10)

The reason for these oscillations is that there exists no ball of radius r = 1
inside the solution set (see Figure 1 (right)). Clearly, for this trivial example
one can obtain convergence by simply reducing r a bit (for instance, taking
r = 0.5 results in convergence to a solution in siz iterations), but in general
for larger systems of LMIs simple trial-and-error method with different values
of the radius r may not be the best option.

The approach proposed in this paper is based on the FEllipsoid Algorithm
(EA). Similarly to the SIA method, at each iteration of the EA two steps
are performed. In the first step a random uncertainty sample A® € A is
generated according to the given probability density function fa(A). With
this generated uncertainty the convex function U(z, A®) is parametrized and
used at the second step of the algorithm where an ellipsoid is computed, in
which the solution set is guaranteed to lie. The EA thus produces a sequence of



ellipsoids with decreasing volumes, all containing the solution set. Using some
existing facts, and provided that the solution set has a non-empty interior,
it will be established that this algorithm converges to a feasible solution in a
finite number of iterations with probability one. To initialize the algorithm, a
method is presented for obtaining an initial ellipsoid that contains the solution
set. It is also shown that even if the solution set has a zero volume, the EA
converges to the solution set when the iteration number tends to infinity — a
property not possessed by the SIA.

3 The Ellipsoid Algorithm (EA)

The algorithm presented below releases the restrictive Assumption 1, and
retains only Assumption 2. Convergence in a finite number of iterations with
probability one is also guaranteed.

Assume that an initial ellipsoid £, that contains the solution set S, is given

EO={zex: (z—29)7P (z—20)<1}DS

with center () € X and Py € RV*Y such that Py = P > 0. The problem of
finding such an initial ellipsoid will be discussed in the next Section. Define
the half-space

HO - {:U c X VTU(QZ(O), A)(aﬁ — JJ(O)) < 0}-

Due to the convexity of the function v(z, A) we know that H(® also contains
the solution set S, and therefore S € HO N E©®, We can then construct a new
ellipsoid, EM, as the minimum volume ellipsoid such that EV O HONEO D
S, and such that the volume of EM is less than the volume of E(©. This,
repeated iteratively, represents the main idea behind the Ellipsoid Algorithm
[2,7].

Suppose that after iteration i we have (" € X and P, = P’ > 0 such that

EV={zecX: (z—aD)"P Y z-2D)<1}DS.

The Ellipsoid algorithm is then summarized as follows.

Algorithm 2 (The Ellipsoid Algorithm: iteration i + 1) Givenx® € X C
RN and P; = PT > 0, perform the following two steps

Step 1. Generate a random sample AD with probability distribution fa.



Vu(x?,A)

Fig. 2. One iteration of the ellipsoid method in the two-dimensional case.

Step 2. Form the ellipsoid

B+ {reXx: (z— m(z’+1))TP;11(x _ x(z’+1)) <1}D28S.

with
(@) _ _1 PiVo(z,A0) - (i) A®)

L) — ! N+ /VTu(@®,A0) P Vo(a®,A0) o, A%) £0,

20 if v(z®, AW) =0,
(11)

N2 2 PVu(a® A VT y(@® AO)PTY . i i

P NZ2—1 <Pi T N+ VIuE®,AD)BVu(a®,AD) ) if v(a®, AW) £ 0,

i+1 —

P, if v(z®, A®) =0,

The initialization of the EA as well as the stopping criterion remain the same
as for the STA.

Figure 2 visualizes Algorithm EA in the two-dimensional case. The conver-
gence of the approach is established immediately, provided that Assumption
2 holds, which implies that for any () & S there exists a non-zero probability
for the execution of a correction step (i.e. there is a non-zero probability for
generation of A® € A such that v(z®, A®) > 0).

Lemma 2 (Convergence of Algorithm EA) Consider Algorithm EA, and
suppose that Assumption 2 holds. Let

(i) vol(S) > 0. Then a feasible solution will be found in a finite number of
iterations with probability one.
(i) vol(S) = 0. Then
lim 2z =2*e€ S

1—00

with probability one.

10



PROOF. Algorithm EA generates ellipsoids with geometrically decreasing
volumes [2], i.e. for the i-th correction step we can write

vol(E®) < e*ﬁVOI(E(O)),

Due to Assumption 2, for any z(? ¢ S there exists a non-zero probability
for the execution of a correction step (i.e. there is a non-zero probability,

independent on the iteration number i, for generation of A® € A such that
v(x®@ A®D) > 0). Therefore

lim vol(E") = 0. (12)

1—00

(i) If we then suppose that the solution set S has a non-empty interior, i.e.
vol(S) > 0, then from Equation (12) and due to the fact that E® D S for
alli =0,1,..., it follows that in a finite number of iterations with probability
one the algorithm will terminate at a feasible solution.

(ii) If we now suppose that vol(S) = 0, then due to the convexity of the
function, and due to Equation (12), the algorithm will converge to a point in
S with probability one. O

The result in Lemma 2 outlines the advantages of Algorithm EA over the
previously proposed Algorithm SIA. While in the case vol(S) > 0 Algorithm
EA preserves the property of guaranteed convergence with probability one in
a finite number of iterations, it offers the advantages over Algorithm SIA that

+ no a-priori knowledge about a number r > 0 satisfying the condition in
Assumption 1 is necessary (we will discuss how to find an initial ellipsoid
in the next Section), and

4+ it converges (although at infinity) even in the case that the set S has an
empty interior.

Finally, similarly to the bound Ig;4 on the maximum number of correction
steps for the Subgradient Iteration Algorithm (see Equation (7)), we can derive
such an upper bound for the proposed Ellipsoid method.

Lemma 3 Consider Algorithm EA, and suppose that Assumption 2 holds.
Suppose further that the solution set has a non-empty interior, i.e. vol(S) > 0.
Then the number

(13)

1(E©
@A:2Nﬁnwww

vol(S)

11



1s an upper bound on the mazimum number of correction steps that can be
performed starting from any ellipsoid E® O S, where [a], a € R, denotes the
manimum integer number larger than or equal to a.

PROOF. It is shown in [2] that for the i-th correction step one can write

vol(E®) < e~ 2vvol(E©).

Since the volume of the consecutive ellipsoids tends to zero, and since vol(S) >
0, there exists an iteration number I, such that

e’ﬁvol(E(O)) <vol(S), Vi > Iga.
Therefore, we could obtain the number Ig4 from the following relation
VollS) o sk« i > Iy

vol(E©) —

Now, by taking the natural logarithm on both sides one obtains

vol(S) i ,
In——%- > —— >1
HVOl(E0) = Toy T = iea

or
vol(E©)
> 2NIn - = i >]
P= A TONS) =

Therefore, Equation (13) is proven. O

We would like to point out that usually /g4 < Igr4. This is demonstrated in
the following example.

Example 4 (Comparison between the bounds x4 and Is;4) Let us sup-
pose that the dimension of our vector of unknowns is 10 (i.e. N = 10), and
that the solution set is a ball of radius 1.1 and center x* € R1?

S={reR: |z -2 <11}

To make a fair comparison between the SIA and the newly proposed EA we pro-
ceed as follows: we assume that the initial condition 9 for SIA is at a distance

12



Dimension: 10

len and Isia

0001 "~ 10

Fig. 3. Comparison between the upper bounds Ig4 and Igy4 for the algorithms STA
and EA.

d > 1.1 from the center of S, i.e. ||2®) — 2*|| = d, and that the initial ellipsoid
for EA is a ball of radius d. Since for SIA the number r in Assumption 1 should
be known, we will make several experiments with r = {0.001,0.01,0.1,1}. For
these values of r, and for d = {10,10% 103,104,105} the two upper bounds I
and Isra on the mazimum numbers of possible correction steps for the two
algorithms were computed. Figure 3 represents the results (note that all the
three axes are in logarithmic scale). Clearly, Iga < Igra. It should be pointed
out that even if one selects the initial ellipsoid for the EA to be a ball of radius
10d, or even 100d, one still gets Igs << Isra-

In the next Section we present a method to obtain an initial ellipsoid.

4 TFinding an Initial Ellipsoid E©

Before the method for obtaining an initial ellipsoid is presented, some addi-
tional notation must be introduced. In addition to the solution set S and the
level sets LS(c, A), we now define the local solution sets for any fixed A; € A
as the level set at zero

Sa, = LS(0,A;). (14)

Therefore, any z* € S is such that 2* € S for all A € A. Also the solution
set § is the intersection of all local solution sets

S= ) Sa.

Note also, that LS(c,A) DO Sa 2 S. Due to the convexity of the functions

13



Fig. 4. The initial ellipsoid is computed by first bounding the level set LS(0,0) with
a box, and then obtaining an ellipsoid that embraces it (not drawn on the figure).

v(z, A;) (consult Lemmas 4 and 5 in [3]), the solution set is clearly convex.
The following additional assumption needs to be imposed.
Assumption 3 [t is assumed that the level set LS(0,0) is a bounded set.

It must be noted that this assumption is not very restrictive since we are
anyway not interested in unbounded solutions because the solutions are later
on needed for controller/observer parametrization. For instance, the optimal
state-feedback gain F' in Example 1 is parametrized by any solution {X,Y'}
to the LMI in Equation (9) as F = Y X! and thus unbounded solutions
are clearly of no interest. Whenever this assumption does not hold, it can be
enforced by introducing additional hard constraints on the entries of x. Such
constraints can be directly included into the algorithm for initial ellipsoid
computation that is presented below.

The goal is to find an ellipsoid containing the solution set S. For this purpose
we will make use of the fact that S is contained in any local solution set
Sa, and therefore in any level set LS(c, A) for any ¢ > 0 and A € A. It is,
therefore, contained in LS(0,0), i.e. S € LS(0,0). The idea is then to find an
ellipsoid that contains the level set LS(0,0). To this end we will first bound the
set LS(0,0) with a rectangular parallelepiped, and then we build an ellipsoid
around it as shown in Figure 4, which we will use as an initial ellipsoid to
start Algorithm EA. In order to find a bounding rectangular parallelepiped,

14



we need to find solutions to the following constrained optimization problems

T, = max ;, subject to x € LS(0,0), i =1,2,..., N,

x;, = rréi)r(lmi, subject to x € LS(0,0), i =1,2,..., N,

These can be rewritten as LMI problems by noting that

{r € LS(0,0)} ={zr e X: v(z,0) =0} ={z e X: U(x,0) <0}
As a result, the following algorithm is proposed for fast initial ellipsoid selec-
tion.

Algorithm 3 (Initial Ellipsoid Computation)
(a) Find solutions to the LMI problems

T, = max ;, subject to U(z,0) <0, i=1,2,..., N,

T; = Inei/{/lxi, subject to U(z,0) <0, i=1,2,..., N.

(b) Take T = [71,...,Zn]" and x = [xy,...,2N]7, and define the box

R={x: <z <z} 2DLS0,0)2S.

(c) Next, find an ellipsoid that encircles the box R. This can easily be done
by first finding an ellipsoid inside R and then stretching it to embrace R.
The ellipsoid

Epn={rcX: (z—2)" Pz —2)<1}

with . = 5(Z + z) and P = diagi(z —§)2 is inside R. By defining A =
P12 and b = =Pz, this ellipsoid can be equivalently represented as

Epn={reX: ||Ax+ |5 < 1}.
(d) Stretching the ellipsoid E;, by o with o > 1 results in
Eui={r € X: o ?|Ax +b|; < 1},
which we need to be such that it contains both x and x. Therefore we take

a = max_|[Ax 4+ b||2
re{z,z}

The wnitial ellipsoid can then be taken as

Ey={rcX: (x —z.)"(a*P) Hz —z.) < 1}.

15
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Fig. 5. Illustration of the algorithm for initial ellipsoid computation.

Example 5 (Initial Ellipsoid Computation) 7o illustrate the algorithm
for initial ellipsoid computation, proposed in the previous Section, we consider
the following system

#(t) = —a(t) + ul(t) + (@)

for which a constant state-feedback controller has to be designed such that the
Hoo-norm of the resulting closed-loop system is less than v = 1075, Using the
results in [2], this would be the case if there erist Q € R, R € R, and L € R
such that

0 0 00]
020-L—LT1Q

>0
0 1 10
_0 Q Ofy_

Figure 5 visualizes the initial ellipsoid that was generated by Algorithm 3.

5 Experimental part

Next, we present an example illustrating the probabilistic approach developed
in this paper used to design a robust H, state-feedback controller for a model,
representing a real-life diesel actuator benchmark system, taken from [1]. A
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linear, continuous-time model of the system can be written in state-space form
as

R L . 0
() = %_JMJ&#O o(t) + | BB u(t) + | | €(t) (15)

0 * 0 0 0
z(t) =10, 1, 0]x(¢)

The values of the parameters in the state-space model above are n € | 0.7, 0.85 1,

frot €19.85 x 1073, 5.91 x 1072], Lir € [2.1505 x 1073, 2.9095 x 103 ], K, €

[0.513, 0.567], K, = 0.9, N = 89, ay = 0.987, and T, = 8.8 x 10~3. Note, that
four of the parameters are uncertain.

The goal is to design a robust state-feedback controller for the uncertain sys-
tem that achieves an upper bound yyp = 1 for the worst case Hy-norm of
the closed-loop system. This problem can be represented as the following LMI
feasibility problem [2]: Find matrices Q = QT, R = RT, and L such that for

all possible values of the parameters

trace(R) < 1

R C.Q] L
QCT Q|

“A()Q — QA(B)" — BL(6)L — L"Bu(6)" Be(6) | iy
Be(0)" I

Then F = LQ~ ! is the desired state-feedback gain matrix.

Application of the proposed approach resulted in the state-feedback gain ma-
trix

F =1-0.81508 —0.64339 —3.2121 x 1072 | .

This solution was found by the EA method in less than 100 iterations. Starting
from the same initial conditions, the SIA was terminated after 500 iterations
having found no feasible solution (it was run for » = 1, » = 0.1, and r = 0.01).
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6 Conclusions

In this paper a new approach was proposed to the probabilistic design of robust
controllers (state estimators), based on the Ellipsoid Algorithm. It features a
number of advantages over the probabilistic Subgradient Iteration Algorithm,
recently proposed in [12,3]. Although the latter possessed a number of useful
properties, namely guaranteed convergence in a finite number of iterations
with probability one, applicability to general uncertainty structures and to
large numbers of uncertain parameters, it has the strong disadvantage that
the radius of a non-empty ball contained in the solution set must be known.
This drawback is removed in the EA approach proposed in this paper, while
still retaining the advantages of the STA method. Similarly to the STA method,
at each iteration of the EA two steps are performed. In the first step a random
uncertainty sample A® € A is generated according to the given probability
density function fa(A). With this generated uncertainty a suitably defined
convex function is parametrized so that at the second step of the algorithm an
ellipsoid is computed, in which the solution set is guaranteed to lie. As a result,
the EA algorithm produces a sequence of ellipsoids with decreasing volumes,
all containing the solution set. An efficient method for obtaining an initial
ellipsoid is also proposed in the paper. The approach is illustrated by means
of a case study with a real-life diesel actuator benchmark model with four real
uncertain parameters, for which an H, robust state-feedback controller was
designed.
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