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Abstract—Traffic operators in traffic control centers have
various measures at their disposition to control the traffic flows on
motorways and on urban roads such as ramp metering, variable
speed limits, dynamic route guidance, opening of shoulder lanes,
etc. When having to determine which of these control measures
have to be applied and where they have to be applied for a given
traffic situation, the traffic operator should be able to predict
the effect of a control scenario in order to be able to select the
best scenario. As on-line, real-time simulation of a large number
of possible scenarios is usually not tractable for even relatively
small motorway networks, a fast method to predict the effects
of control measures on-line is a key requirement for effectively
applying traffic control. In this paper we develop a multi-agent
case-based approach to assist traffic operators in evaluating or
predicting the effects of control measures. The proposed approach
is much faster than straightforward traffic simulation so that it
can be used for on-line and real-time evaluation of a large number
of different control scenarios. In addition, it is scalable so that
it can also be used for large networks.

Index Terms—Traffic flow control, case-based scenario evalu-
ation, coordinated control, prediction, multi-agent control, fuzzy
control.

I. INTRODUCTION

Contemporary traffic control centers use dynamic traffic

management measures such as ramp metering, DRIPs (dy-

namic route information panels) or VMSs (variable message

signs) to control traffic flows on motorways and urban ring

roads. The DRIPs can be used to display queue length

information or indications of congestion, traffic jams and

alternative routes. VMSs can be used to show dynamic speed

limits per lane, advisory speeds, or lane closures. Recurrent

congestion can usually be managed satisfactorily by using

local control measures. However, operators in traffic control

centers often face a difficult task when non-recurrent, non-

predictable congestion occurs (e.g., as a consequence of an

incident or due to unexpected weather conditions). In such

situations, local measures are usually not sufficient and often

an intervention at the network level is required to manage

congestion and to return to a normal traffic situation.

The effects of non-recurrent congestion can be attenuated by

redirecting the traffic flows over a larger part of the network.

The operator of the traffic control center then has to assess the

severity of the situation, predict the most probable evolution

of the state of the network, and select the most appropriate

measures. This is a complex task, which requires expert knowl-

edge and much experience, which can often only be obtained

after extensive training. As a result, the approaches used by

human traffic operators are in general neither structured nor

uniform. Therefore, the aim is to provide a decision support

tool to assist the operators in their decisions when they have

to take measures to deal with non-recurrent, non-predictable

congestion. This decision support system should help the

operators to react in a uniform and structured way to unusual

situations. Furthermore, in order to increase the acceptance

of the decision support system by the traffic operators, it

is designed as an advisory and analysis tool that assists the

operators (instead of trying to replace them).

In short, the decision support system presented in this paper

works as follows. Given the current state of the network and

the optimization criterion (such as minimal total travel time,

maximal throughput, or a weighted combination of several

criteria), the decision support system generates a ranked list

of the best control measures and presents them to the human

operator of the traffic control center. If necessary, the effect of

these measures on the current traffic situation can be simulated

and visualized by an external simulation unit. The resulting

output of the overall system is a characterization of the actions

that can be taken and their predicted effectiveness in the

current situation. As on-line simulation of a large number of

different control scenarios via microscopic or macroscopic is

usually not tractable, the system proposed in this paper uses

a case-base that is constructed off-line. The current situation

is then compared with the cases in the case base, and based

on the similarity between the current traffic situation and the

cases in the case base a prediction can be made about the

effects of a given control scenario.



The system described in this paper operates in a multi-

level control framework. At the lowest level we have semi-

autonomous local traffic controllers for, e.g., traffic lights or

ramp metering. At a higher level the operation of several

local traffic controllers is coordinated or synchronized by

supervisory controllers. The role of the fuzzy decision support

system in this set-up is to suggest whether a particular local

traffic controller or control measure should be activated or not.

The number of cases in the case base should be sufficiently

large to cover a wide range of operating conditions and

control measures. The system presented in this paper is a

major extension and improvement of the system we have

developed in [1]. As the latter system did not scale well, it

could only be used for small-sized networks and for a limited

number of traffic situations and control scenarios. In order

to obtain a scalable system we have now opted for a multi-

agent approach where the total network is divided in (possible

overlapping) subnetworks, each of which has its own case base

and evaluation agent. In that way, we can effectively deal with

the combinational explosion of the number of cases that is

required to cover the state and control measure space as the

size of the network grows.

Several authors have described decision support systems

for traffic management, such as FRED (Freeway Real-Time

Expert System Demonstration) [2], [3], [4], or the Santa Mon-

ica Smart Corridor Demonstration Project [5], [6]. However,

these architectures do not use fuzzy logic in their decision

process. Since we want a system with an intuitive operation

process that is able to generate decisions in cases that are not

explicitly covered by the knowledge base, we have opted for a

fuzzy system. Other fuzzy decision support systems for traffic

control have been developed in [7], [8], [9].

II. OVERALL FRAMEWORK

The system we are developing is a part of a larger traf-

fic decision support system (TDSS) [10] that is currently

being developed by the Dutch Ministry of Transportation,

Roadworks, and Water Management. The structure of this

system is depicted in Figure 1. The inputs for the TDSS

are indicators of the current traffic situation, such as traffic

densities, average speeds, traffic demand, time of day, weather

conditions, incidents, etc. Furthermore, the traffic operator can

provide or adjust additional parameters and specify which

control objective should be used. Based on the measurements,

historic data and traffic simulation, the system predicts the

future traffic situation (more specifically, the TDSS uses the

METANET macroscopic traffic flow model [11], [12] to make

a forecast of the traffic situation). In that way we can also

predict the performance of the traffic control measures (such

as ramp metering, lane closures, shoulder lane openings, or

rerouting via DRIP messages) that will be applied.

Since in general a large number of traffic control measures

(and combinations of them) are possible, it is not tractable to

evaluate all possible combinations of traffic control measures

database with
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control
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traffic

simulation

traffic
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analysis
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Fig. 1. The overall traffic decision support system (TDSS). The TCSES
traffic control scenario evaluation system is a part of the analysis module.

using macroscopic or microscopic traffic simulation. There-

fore, in practice, only a limited number of combinations can

be simulated. The aim of the subsystem we are developing

is to limit the number of possible combinations of control

measures that should be simulated by using an intelligent

decision support system to rank the possible combinations of

control measures and to present the operator with a limited

number of possibilities that deserve further examination (via

a quick assessment based on the operator’s experience or by a

real-time traffic simulation program). Afterward, the operator

can select the most appropriate control strategy.

III. THE TRAFFIC CONTROL SCENARIO EVALUATION

SYSTEM (TCSES)

A. Structure

Consider a traffic network consisting of several motorway

stretches (also called links). Traffic enters the network via

origin links (e.g., on-ramps or motorway links coming from

outside the network), and leaves the network via destination

links (e.g., off-ramps or motorway links going out of the

network). The given traffic network will be divided into

tractable subnetworks. Note that the subnetworks may overlap.

In addition, each subnetwork will be divided into several

subsubnetworks. Let nsub be the number of subnetworks.

For each of the subnetworks a case base will be constructed

with cases that describe the traffic situation in the subnetwork,

the (predicted) boundary conditions (i.e., inflow demands and

outflow restrictions), the control measures, the incident status.

Let Tpred be the period over which the prediction will occur.

The structure of the cases in the case base is illustrated

in Table I. Consider subnetwork j. The current state x(j) at

time t of the subnetwork j is characterized by the average

state (consisting of, e.g., densities, flows, speeds) in each

subsubnetwork. The same holds for the “input” boundary

conditions d(j) in the period [t, t+Tpred], where also the aver-

ages for each subsubnetwork are taken. The “input” boundary

conditions are those conditions that determine the evolution



TABLE I
REPRESENTATION OF THE STRUCTURE OF THE CASE BASE FOR SUBNETWORK j .

Case Time Initial Predicted boundary Control Incident Predicted Predicted boundary
number state conditions (input) scenario status performance conditions (output)
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case nj

p
(j)
case nj

y
(j)
case nj

of the subnetwork in [t, t+ Tpred] such as the demands at the

origin links that belong to subnetwork j, the inflows coming

from the other subnetworks, and the output restrictions at

the destination links that belong to subnetwork j and on the

outflow links to other subnetworks. Traffic control measures

are subdivided in globally operating measures (such as route

guidance) that have an effect in the entire network, and local

measures (such as ramp metering or variable speed limits)

that mainly influence the traffic flows within the subnetwork.

If in the period [t, t+Tpred] global traffic measures are active

somewhere in the network, then these measures are included in

the corresponding cases for each subnetwork. Local measures

are only included in the case for the subnetwork in which

they are active. The components of the control scenario vector

u(j) will vary between 0 (no control) and 1 (control active

during the entire period [t, t + Tpred] and in all controllable

traffic links of the network (for global measures) or of the

subnetwork (for local measures)). The incident status z(j) is

also recorded in a similar way, i.e., we determine the severity

(capacity reduction caused by the incident) and the duration

of the incident. The performance vector p(j) over [t, t+Tpred]
contains the average values for quantities such as vehicle loss

hours, total travel time, total travel distance, total time spent,

average vehicle speed, total fuel consumption, etc. (see also

the list of performance criteria in the screenshot of Figure 3).

The “output” boundary conditions y(j) consist of the average

flows to the other subnetworks in [t, t + Tpred] and of the

outflow restrictions for the other subnetworks in [t, t+Tpred].

The cases can be generated in several ways, e.g., using

macroscopic traffic simulation, microscopic traffic simulation,

or by considering actual measurements of traffic situations

during a given period. The initial case base will be generated

off-line. Furthermore, once the system operates in a real traffic

control center, we can extend it with an adaptive learning

module. Then, if necessary, cases can be added on-line, e.g.,

if an encountered traffic situation is not sufficiently covered

by the cases already present in the case base. For the newly

added cases, we could either use simulation or actual traffic

evolutions. This results in an adaptive system that learns during

operation. Such a system is also described in [13].

Remark 3.1 An important difference between the approach

proposed in this paper and conventional case-based reasoning

is that in conventional case-based reasoning one usually has

a fixed “solution” (for our application this would be a com-

bination of traffic control measures) for each case in the case

base. So in the conventional case-based reasoning approach

only the traffic situation would be used to characterize a case.

However, since we use the case base to assign a performance

indicator to a given traffic situation and control scenario, we

also have to include the values of the performance indices in

the characterization of the cases. Furthermore, since for the

overall performance assessment we may consider an objective

function J that is a weighted combination of various perfor-

mance indicators (cf. Section III-C) and since the weights are

not fixed but variable, we cannot directly relate an optimal

solution to each case (or traffic situation). ♦

B. Operation

Once the case base is constructed it is used for scenario

evaluation as follows. Suppose that the current time is t = T .

First, the current state of the network is recorded. Next, the de-

mand and the outflow restrictions for the period [T, T +Tpred]
are predicted (e.g., based on historic data, current weather

conditions, and traffic measurements, etc.). If any incidents are

present, their severity and predicted duration are also recorded.

Finally, the control scenario to be evaluated is also selected.

Based on this information, we can for each subnetwork j

construct a vector X(j) = (x(j), d(j), u(j), z(j)) with the

same structure as the vectors in the case base and with all

components specified except for the inflows d
(j)
in from the other

subnetworks, and the outflow restrictions d
(j)
out imposed by the

other networks over the prediction period [T, T + Tpred] as

these are not yet known and as they depend on the interaction

between the networks. These values are determined in an

iterative way as will be discussed next.

As we have constructed a separate case base for each

network, and as the predictions will be performed for each

network separately, we have to take care that the predictions

are consistent, i.e., that the inflows y
(j)
in and outflows y

(j)
out

between subnetworks predicted by the agent for subnetwork j

(i.e., the “output” boundary conditions) are consistent with the

“input” boundary conditions d
(j′)
in and d

(j′)
out used by the other

subnetworks j′ = 1, . . . , nsub, j′ 6= j for their prediction. To

this aim we use the following iterative algorithm:

• Inputs:

– tolerance: ε > 0
– relaxation parameter: λ ∈ (0, 1)
– maximum number of iterations: imax

– X(j) = (x(j), d(j), u(j), z(j)) for j = 1, . . . , nsub



• Initialization:

– Set iteration index: i = 0
– Set y

(j)
in,0 = 0 for all j

– Set y
(j)
out,0 to the maximal possible flow (i.e., capac-

ity) of the corresponding links for all j

– Set current error: e = ∞

• Iteration

while e > ε and i ≤ imax do

– for each subnetwork j = 1, . . . , nsub do

∗ Extract the values of d
(j)
in and d

(j)
out from the

vectors y
(j′)
in,i and y

(j′)
out,i for the other subnetworks

j′ = 1, . . . , nsub, j′ 6= j

∗ Use the case base to predict the new “output”

boundary conditions ŷ
(j)
i+1 = (ŷ

(j)
in,i+1, ŷ

(j)
out,i+1)

∗ Update the current “output” boundary conditions

using relaxation:

y
(j)
i+1 = λŷ

(j)
i+1 + (1− λ)y

(j)
i

– Determine the error:

e =





nsub
∑

j=1

‖y
(j)
i+1 − y

(j)
i ‖2





1
2

– Increment the iteration index: i = i+ 1

• Post-processing

– Set y(j) = y
(j)
i for j = 1, . . . , nsub

– Determine the subnetwork performance p(j) and the

similarity sj between the current situation and the

case base for j = 1, . . . , nsub

– Compute the performance p of the total network and

the total similarity s

• Output: p, s

In the experiments we have run for the case study of Section

IV we have noticed that the algorithm converges rapidly, in

about 4 to 8 iterations. In the next section we will discuss

how the predictions for each subnetwork are done, and how

the similarity between the current traffic situation and the cases

in the case base is determined.

C. Prediction and performance determination

In order to predict the performance and the output (“out-

put” boundary conditions) for a given vector X(j) =
(x(j), d(j), u(j), z(j)), we first have to determine for which

cases the traffic situation corresponds best to the traffic situa-

tion characterized by X(j). This is done by using a similarity

function based on fuzzy membership functions that describe

the degree of similarity between two traffic situations.

The similarity between the current traffic vector X(j) and

the traffic situation X
(j)
case i of case i of the case base for

subnetwork j is characterized by f
(j)
mbs,i(X

(j)) where f
(j)
mbs,i

is the membership function that corresponds to case i. Note

that the range of f
(j)
mbs,i is [0, 1]. So the similarity ranges

from 0 for no similarity at all to 1 for a perfect match.

The membership function f
(j)
mbs,i for case i of the case base

of subnetwork j is defined as follows. We consider each

coordinate of X(j) separately when defining the membership

functions. The overall membership function f
(j)
mbs,i for case

i is then defined as the mean1 of the membership functions

f
(j)
mbs,i,ℓ for the separate coordinates:

f
(j)
mbs,i(X) =

1

n
(j)
X

n
(j)
X
∑

ℓ=1

f
(j)
mbs,i,ℓ(Xℓ)

where n
(j)
X is the number of components of X(j). For the

membership functions f
(j)
mbs,i,ℓ we could take one of the

standard trapezoidal or bell-shaped membership functions (see

also Section IV).

Now the predicted output and the performance over the

period [T, T + Tpred] for subnetwork j are determined as

y(j) =

∑nj

i=1 f
(j)
mbs,i(X

(j)) y
(j)
case i

∑nj

i=1 f
(j)
mbs,i(X

(j))

p(j) =

∑nj

i=1 f
(j)
mbs,i(X

(j)) p
(j)
case i

∑nj

i=1 f
(j)
mbs,i(X

(j))
.

The total performance p is determined as

p =

∑nsub

j=1 wjp
(j)

∑nsub

j=1 wj

,

where the weight wj > 0 expresses the relative contribution

of subnetwork j to the total performance or the relative

importance of subnetwork j. The similarity sj for subnetwork

j and the total similarity s are defined as

sj = max
i=1,...,nj

f
(j)
mbs,i(X

(j))

s =

∑nsub

j=1 wjsj
∑nsub

j=1 wj

.

D. Ranking

Now that the case base and the performance evaluation have

been established, we move on to explain how the multi-agent

case-based scenario evaluation system can be used to support

the traffic operators when they have to decide which control

measures will most effectively deal with the current traffic

situation and the predicted demand and traffic evolution in

[T, T + Tpred].

First, the operator decides which control scenarios C1, . . . ,

CM should be considered. Furthermore, the operator can select

to consider several performance criteria Ji (such as vehicle

loss hours, average travel times, queue lengths, etc.) or a

weighted sum J =
∑

i ξiJi. The weights ξi are not necessarily

1In the fuzzy logic literature, several “aggregation” operators are defined
such as minℓ,

∏
ℓ, etc. depending on the specific application. However, for

the TCSES application the mean operator seems to perform the best.



Fig. 2. The network considered in the prototype consists of the ring-
road around Amsterdam, The Netherlands. The figure is a screenshot of the
“Network Viewer” of the TCSES-GUI.

fixed, but can be changed on-line by the traffic operator

depending on the current traffic management policies and other

considerations. Next, all data and control scenarios are fed to

TCSES, and the predicted performance is evaluated. Note that

the multi-agent case-based approach we use is sufficiently fast2

so that a large number of control scenarios can be evaluated

on-line. Finally, the scenarios are ranked according to their

performance and presented to the operator. The operator can

then select the P top-ranking scenarios and more closely

assess their performance (based on experience or using traffic

simulation). As P is much smaller than the total number of

control scenarios M , we can significantly reduce the timed

needed in the final analysis process by removing from the

detailed decision process those combinations for which the

performance will probably not be satisfactory.

IV. PROTOTYPE OF THE TCSES

In order to assess the technical feasibility of the approach

proposed above, we have created a prototype TCSES for

the ring-road around Amsterdam, The Netherlands and some

connecting motorways (see Figure 2). The network was di-

vided into nsub = 5 subnetworks, each consisting of 3 to 4

subsubnetworks. The state of a subnetwork was characterized

by the average link densities in each of its subsubnetworks.

The prototype of the TCSES has been implemented in the

mathematical software package Matlab (which includes a

programming language and the possibility to create graphical

user interfaces (GUIs)).

The cases have been constructed using METANET simula-

tions for several incident and control scenarios. The incidents

varied in duration from 30 to 60 min, and in severity from

25 % to 50%̇ reduction in link capacity. The following control

measures have been considered: ramp metering, variable speed

2For the prototype we built the TCSES evaluates a scenario in less than
1 s, whereas METANET simulation takes about 1 min.

Fig. 3. Screenshot of the “Scenario Evaluation” tab of the TCSES-GUI.

limits, and shoulder lane openings. All these situation have

been simulated in the macroscopic traffic flow simulation

program METANET for the period from 6.00 am to 11.00 am

(i.e., the morning peak hours). Note that the TCSES concept

is generic enough to also allow other types of simulation or

even the inclusion of real-life measured traffic evolutions. We

have taken a prediction horizon Tpred = 1 hour. In total about

1500 simulations were performed (each resulting in 7 cases to

be included in each subnetwork case base). Merging similar

case resulted in a reduction of about 40 % of the resulting

case bases. The final total size of the 5 subnetwork case bases

saved in internal Matlab format is about 8 MB.

For the scenario evaluation the user has to provide input files

(with a format similar to METANET) that describe the current

traffic situation and the predicted demands and/or outflow

restrictions. The scenarios can be evaluated in batch and/or

by the “Scenario Evaluator” of the TCSES GUI (see Figure

3). Tests show that the prototype TCSES can evaluate a given

scenario in under 1 s. Note that if we would implement the

TCSES in C, this execution time can be reduced even further.

The METANET program, which is already implemented in C,

requires about 1 min for a scenario evaluation.

We have also included the option to change on-line

the membership functions used for the scenario assessment

(cf. Figure 4). Currently, we have implemented trapezoidal

and bell-shaped membership functions, which are defined as

f
(j)
mbs,bell,i,ℓ(x) = exp

(

−
1

2

(

x− ci,ℓ

σrel (xmax − xmin)

)2
)

f
(j)
mbs,trap,i,ℓ(x) = PWA

(

(

ci,ℓ −
1

2
νrel(xmax − xmin), 0

)

,
(

ci,ℓ, 1
)

,

(

ci,ℓ +
1

2
νrel(xmax − xmin), 0

)

)

for the ℓth component of case i where the center ci,ℓ of the

membership function corresponds to the value of component

ℓ of the vector X
(j)
case i = (x

(j)
case i, d

(j)
case i, u

(j)
case i, z

(j)
case i), and



Fig. 4. Screenshot of the “Membership” tab of the TCSES-GUI.

where PWA((x1, y1), . . . , (xn, yn)) is the piecewise-affine

function that interpolates in the points (x1, y1), . . . , (xn, yn).
The parameters σrel > 0 and νrel > 0 determine the relative

size of the membership functions with respect to the range

[xmin, xmax] of the variable x. For νrel = 1 the base of the

triangles of the membership functions equals xmax − xmin.

For νrel = 0 and σrel → 0 the membership function is

0 everywhere except in its center point where the function

value is 1 (note that this corresponds to crisp membership

functions). So the choice νrel = 0 and σrel → 0 would

result in a crisp case base (i.e., without fuzzy interpolation).

The choice νrel → ∞ or σrel → ∞ would correspond to

membership functions that are identically 1 over the whole

input range. We have selected νrel = 0.7 and σrel = 0.1. Based

on some preliminary experiments, the membership functions

defined above appear to give the best results. Of course, other

definitions and shapes of membership functions can easily be

added to the TCSES prototype.

Finally, we have also compared the results of the TCSES

system with full METANET simulation, and we found that

TCSES indicates the same trend as METANET. Note however

that the TCSES indicators provide much coarser information

than the detailed METANET simulation results due to the

aggregation of the network state into subnetwork states and

due to taking the average of the period [T, T +Tpred]. On the

other hand, TCSES is much faster than METANET. Hence, we

can effectively use TCSES to quickly and roughly rank several

control scenarios according to their approximate performance,

and then use METANET (or another traffic simulation pro-

gram) to effectively assess the most promising ones.

V. CONCLUSIONS AND FUTURE RESEARCH

We have presented a multi-agent case-based traffic control

scenario evaluation system (TCSES) for traffic control centers.

The TCSES uses a case base and fuzzy interpolation to asses

the approximate performance of several control scenarios. This

results in a ranked list of control scenarios, of which the best-

scoring scenarios can then be assessed in more detail via,

e.g., microscopic or macroscopic traffic simulation. The main

advantage of the TCSES is its speed. In addition, the multi-

agent approach used in the TCSES, in which the network is

split into several (possible overlapping) subnetwork each of

which has its own case base, makes the system scalable so

that it can also be used for large networks.

Currently, we have demonstrated the technical feasibility of

the system. In the next stage of the project we will thoroughly

examine the performance of the system (for more traffic

situations and control scenarios than the ones described in this

paper), see how the parameters of the system have to tuned to

improve the performance, and compare this performance with

other traffic control strategies.
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