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Abstract

When implementing ramp metering in the context of free-

way networks, traffic can spontaneously re-route due to the

applied control actions. Although this re-routing can have

an important impact on the resulting traffic situation in the

traffic network and on the performance of the traffic net-

work as a whole, re-routing is not automatically included

in current model predictive frameworks for freeway traffic

control. Therefore, we propose a method to calculate and

incorporate the re-routing effects into the model predictive

framework. In this way, we realize anticipative model pre-

dictive control for ramp metering in freeway networks.

1 Introduction

Advanced traffic management systems are powerful tools in

the battle against traffic congestion on freeways. These ad-

vanced traffic management systems consist of a controller

or a hierarchy of controllers which steer one or more ac-

tuators based on traffic measurements. We consider ramp

metering and we use model predictive control to determine

the control signals. More specifically, we consider network-

wide control of freeway networks. Since there are typically

multiple routes in a freeway network between a driver’s ori-

gin and destination, every driver has to choose a route for

his trip. This route choice can be modeled as the driver as-

signing a cost to every possible route and choosing the route

with the lowest cost. The cost assignment to each route is

a subjective process which is influenced by the estimated

travel time of the route, by the total length of the route and

even by subjective factors such as, e.g., the driver’s dislike

of a certain freeway.

When advanced traffic management systems are activated

they influence the traffic state on the freeway. This altered

traffic state can change the cost that an average driver as-

signs to a route. This way the traffic management system

influences the route choice of the drivers. The model pre-

dictive control we discuss in this paper takes the re-routing
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Figure 1: The flow–density relation of the traffic in a freeway

section, also known as the fundamental diagram.

of traffic due to control actions into account. Hence, we

obtain an anticipative control framework.

2 Ramp metering

Studies of traffic measurements usually show an increasing

traffic throughput (number of vehicles per hour) with in-

creasing traffic density (number of vehicles per kilometer)

until the critical density ρcr is reached after which the traffic

throughput starts decreasing with increasing traffic density.

This phenomenon is known as the fundamental diagram [5]

and is presented is Figure 1. The maximal throughput is

called the capacity of the freeway qcap. Free-flow traffic oc-

curs when the traffic density is lower than or equal to the

critical density ρcr. Traffic operation at densities larger than

ρcr corresponds to a congested traffic flow.

Advanced traffic management systems are implemented to

control the traffic flows in such a way that the traffic is in the

free flow state as much as possible. One technique that is

frequently used for these purposes is ramp metering. Ramp

metering tries to avoid that the traffic density on the freeway

becomes larger than the critical traffic density, thus avoid-



Figure 2: Schematic representation of ramp metering.
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Figure 3: MPC for ramp metering. The MPC controller provides

the metering rates as set-points to the local traffic sig-

nal controllers, which convert metering rates into ap-

propriate lengths of the red and the green phases.

ing congestion [1, 12]. The way ramp metering limits the

traffic density on the freeway is by restricting the number

of vehicles that are allowed to enter the freeway through the

on-ramp. This can be implemented by installing a traffic

signal at the on-ramp as presented in Figure 2. The green

period is selected such that only one car is allowed to enter

the freeway per red-green cycle.

We use a discrete-time controller, with as control parameter

the metering rate, which is defined as follows [3]:

ri(k) =
qmax,i(k)

Qcap,i
, (1)

where k is the sample step, i is the on-ramp index, qmax,i(k)
is the maximal number of cars allowed to enter the freeway

via on-ramp i, and Qcap,i is the capacity of the ith on-ramp.

Based on the metering rate, a sequence of red and green

phases for the traffic signal is calculated. The length of the

green phase is selected such that only one vehicle is allowed

to enter the freeway during the green phase. The duration of

the red phase in between two green phases is adjusted such

that the metering rate is met. The calculation of the phase

lengths is done by a local controller that uses the metering

rate as its set-point and that outputs the red and green phases

for the traffic signal as shown in Figure 3.

If the traffic demand d(k) at the on-ramp is larger than the

number of cars that is allowed to enter the freeway, a wait-

ing queue occurs at the on-ramp. Hence, we get a trade-off

between smooth traffic flows on the freeway and the num-

ber of cars that are waiting at the on-ramps. The metering
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Figure 4: In METANET a link is subdivided into several seg-

ments.

rate can be used to optimize the performance of the traffic

system under study. A performance measure or cost func-

tion that is often used in literature is the total time spent by

all the vehicles in the network [12]. This includes the time

spent by the vehicles traveling on the mainstream as well as

the time spent by the vehicles in the queue at the on-ramp.

This cost function makes a trade-off between the waiting

time in the queue and the gain in travel time achieved on the

mainstream. A more detailed discussion of the choice of the

cost function is given in Section 3.2.

3 Model predictive control

We use a model predictive control (MPC) approach [4] to

find an optimal metering rate. The optimal metering rates

(control signals) are determined by minimizing the cost

function (total time spent) over a given prediction horizon,

where the predictions of the future behavior of the system

are made using a traffic flow model. MPC uses a receding

horizon framework in which only the first sample of the cal-

culated metering rates is implemented while the others are

discarded and recalculated during the next iteration. Once

the first sample is applied to the system, the state (and/or

the model parameters) are updated using measurements and

next the whole process is repeated with the control and the

prediction horizon shifted one sample forward. In this way

we obtain an adaptive control strategy that is robust for

small changes in the system parameters, noise, and small

disturbances and measurement errors.

3.1 Destination dependent traffic flow model

We use the macroscopic traffic flow model for freeway net-

works as described by Payne [8] and enhanced by Papageor-

giou in the METANET model [6, 7]. For the sake of com-

pleteness we include a brief description of the METANET

model. Note however that the MPC approach is generic so

that we could also work with other traffic flow models. In

the METANET framework a freeway network consists of

links, which join or bifurcate at nodes.

3.1.1 Link equations: A link in a freeway network

is a part of the network that connects two nodes. For simu-

lation, link m is subdivided into Nm segments (cf. Figure 4).

A typical segment length is 500 meters.

In a freeway network with multiple origins and destinations

the traffic in a link can be composed of vehicles with dif-

ferent destinations. In order to be able to pin-point the con-

tributions of the traffic destined to the different destinations



we use partial densities and partial flows. The partial den-

sity ρm,i, j(k) is defined as the density induced by the traf-

fic traveling to destination j in the ith segment of link m at

simulation step k. The partial flow qm,i, j(k) is defined in a

similar way.

The behavior of each of the segments in the freeway links

can be described as follows. The law of conservation of the

number of vehicles in a segment yields:

ρm,i, j(k+1) = ρm,i, j(k)+

∆T

nmlm

[

γm,i−1, j(k)qm,i−1(k)− γm,i, j(k)qm,i(k)
]

(2)

where ρm,i, j(k) is the partial density induced by the traffic

traveling to destination j in the ith segment of link m at step

k, ∆T is the time step, and lm and nm are respectively the

length and the number of lanes of link m. The composition

rate of the density γm,i−1, j(k) (and of the flow) at step k is

defined as
ρm,i, j(k)

ρm,i(k)
and qm,i−1(k) is the flow out of segment

i−1 of link m at step k.

The average speed vm,i(k+1) in segment i of link m at step

k+1, as described in (3), is the average speed vm,i(k) in the

segment altered by three terms accounting for relaxation,

convection and anticipation phenomena.

vm,i(k+1) = vm,i(k)

+
∆T

τ

[

V [ρm,i(k)]− vm,i(k)
]

Relaxation

+
∆T

l j

vm,i(k)
[

vm,i−1(k)− vm,i(k)
]

Convection

−
ν∆T [ρm,i+1(k)−ρm,i(k)]

τ l j[ρm,i(k)+κ ]
. Anticipation

(3)

The relaxation term expresses that vehicles in a freeway seg-

ment tend to obtain a desired speed V [ρm,i(k)]. An empirical

formula for this average speed-density relationship is

V [ρm,i(k)] = vf exp

(

−
1

am

(

ρm,i(k)

ρcr, j

)am
)

, (4)

where the free flow speed vf is the average speed the vehi-

cles adopt when the traffic density tends to zero and am is a

parameter.

The partial flow qm,i, j(k) in segment i of link m induced by

traffic for destination j at step k is the product of the traffic

density ρm,i, j(k), the average speed vm,i, j(k) and the number

of lanes nm:

qm,i, j(k) = ρm,i, j(k)vm,i, j(k)nm. (5)

The total flow in a segment is the sum of all partial flows in

that segment.

The dynamics of the queue at the on-ramp are described by:

wi(k+1) = wi(k)+∆T γ0,i(k)
[

di(k)−qs,i(k)
]

(6)

where wi(k+ 1) is the length of the queue at on-ramp i at

step k+1, di(k) is the demand at the ith on-ramp, γ0,i(k) is

the composition rate of the demand at the ith on-ramp and

qs,i(k) is the service rate of the on-ramp, i.e., the number of

cars that is allowed to enter the freeway.

3.1.2 Node equations: Where the link equations de-

scribe the state of the traffic in the traffic links, the node

equations describe the relations between traffic flows in dif-

ferent links connected to a node. The node equations are

important since they describe how traffic flows through the

network. In a node, traffic for a destination j will distribute

over the links through which destination j can be reached.

The splitting rate β m
n, j(k) is the fraction of the total traffic

flow Qn, j(k) entering node n and destined for j that leaves

for destination j through link m.

The following node equations express the relation between

the traffic flows in the nodes and describe how the traffic

flows are routed through the network.

The total traffic volume entering node n and heading for

destination j can be calculated as:

Qn, j(k) = ∑
µ∈In

qµ ,Nµ (k)γµ ,Nµ , j(k) , (7)

where In is the set of all links entering node n, qµ ,Nµ (k) is the

traffic flow leaving the last segment of link µ (i.e., segment

Nµ ), and γµ ,Nµ , j(k) is the composition rate.

The total traffic flow leaving node n through link m is given

by:

qm,0(k) = ∑
j∈Jm

Qn, j(k)β
m
n, j(k) , (8)

where Jm is the set of reachable destinations through link m,

and On is the set of links leaving node n.

The composition rate γm,0, j(k) of the inflow into link m is

given by:

γm,0, j(k) = β m
n, j(k)

Qn, j(k)

qm,0(k)
. (9)

At the on-ramp node a special equation holds. The service

rate qs,i(k) of the on-ramp is limited by the capacity of the

on-ramp Qcap,i, by the metering rate ri(k), and by the traffic

density ρm,1 of the first segment on the mainstream. This

results in the following equation for the service rate:

qs,i(k) = min

[

di(k)+
wi(k)

∆T
,

Qcap,i min

(

ri(k),
ρmax,m −ρm,1(k)

ρmax,m −ρcr,m

)]

,

(10)

with ρmax,m the maximal possible density in link m. The me-

tering rate ri(k) is contained to the interval [rmin,i,1], where

rmin,i > 0 is the minimal metering rate for on-ramp i.

The system of equations (2)–(10) allows for a simulation of

the freeway network.



3.2 Objective function

The objective function, or the cost function, defines a mea-

sure of the performance of a traffic situation in the freeway

network. A cost function that is often used in literature is

the total time spent (TTS) by all vehicles in the network

during a certain period [2, 3]. In this paper we consider the

following cost function at sample step k0:

J(k0) =
k0+Np−1

∑
k=k0

[

∑
(m,i)∈Is

ρm,i(k)lmnm +α ∑
o∈Io

wo(k)

+αramp ∑
i∈Ic

(

ri(k)− ri(k−1)
)2

]

∆T (11)

with Is the set of pairs of indices of the freeway segments

and links, Io the set of indices of the on-ramps, and Ic the

set of indices of the controlled on-ramps. The cost is calcu-

lated over the period [k0∆T,(k0 +Np)∆T ) where Np is the

prediction horizon. The exact meaning of the parameter Np

will become clear during the discussion of the computation

of the control signals in the next section.

The parameter α in (11) determines the impact of the time

spent by vehicles in the queues at the on-ramps. By decreas-

ing α we decrease the contribution of vehicles in on-ramp

queues to the total cost J(k0), thus favoring the vehicles on

the mainstream. When optimizing the TTS, the resulting

control signal may oscillate. In order to suppress the oscil-

lations, a term proportional to the control variation is added

to (11). The parameter αramp needs to be tuned such that the

oscillations are suppressed to an acceptable level.

3.3 Computing the control signals

When minimizing the cost function, a trade-off between

the time spent on the mainstream and the time spent in the

queues at the on-ramp is found. The straightforward opti-

mization does not impose a maximal queue length on the

queue at the on-ramp. Since the available capacity to store

vehicles at the on-ramp is limited and since we want to pre-

vent the on-ramp queue spilling back into the underlying

traffic network, we add a constraint on the queue length to

the optimization process. The resulting optimization prob-

lem to be solved is nonlinear, non-convex and has con-

straints. This problem can be solved using a (multi-start1)

sequential quadratic programming method.

In a receding horizon framework, controller performance

can be tuned using the prediction horizon and the control

horizon. The larger the prediction horizon Np, the further

the controller looks ahead. This allows the controller to

foresee certain events (such as an increase or decrease in

traffic demand), but it also increases the computational com-

plexity. Since we want to implement ramp metering in a

real-time framework, Np is bounded from above. The con-

trol horizon Nc (Nc ≤ Np) determines the time period during

which the control signal is allowed to change. After the

control horizon, the control signal is taken to be constant.

1As MPC uses a receding horizon approach we can use the optimal

solution of the previous step (i.e., step k0 − 1) as a good initial guess for

the optimization of the current step (i.e., step k0).

The number of parameters to be optimized is proportional

to Nc. Since the computational complexity of the optimiza-

tion problem increases strongly with the number of param-

eters to be optimized, Nc is bounded from above as well.

The choice of Np and Nc is based on a trade-off between

controller performance and computational complexity.

4 Anticipative traffic assignment

In a freeway network with multiple routes from the ori-

gins to the destinations, drivers have to choose their route

in the network. Given the traffic demands for each origin-

destination pair and the topology of the network, the traf-

fic has to be assigned to the routes before a simulation can

be performed. First, we present a static equilibrium traffic

assignment algorithm based on the collective behavior of

drivers that assigns the traffic to the different routes. Next,

we propose an approach to incorporate the spontaneous re-

routing of drivers due to control measures in the simulation.

4.1 Static equilibrium traffic assignment

When traveling in a freeway network, drivers try to find the

route that is optimal for themselves. In fact, it seems as if

every driver assigns a cost to every alternative route leading

to his destination and chooses the one with the smallest cost.

Two factors are of importance when deciding which route to

choose: the travel time along the route and the length of the

route. The importance a driver assigns to these and other

components can vary from driver to driver. In what follows,

we use the travel time of the route as the cost assigned to that

route. Since a route consists of consecutive links connecting

the origin with the destination, the cost assigned to a route

can be calculated by adding the link costs. Similarly, the

link cost cm(qm) can be calculated as

cm(qm) = ∑
i∈Im

lm,i

vm,i

(12)

where Im is the set of segments in link m. According to (4)

and (12) we see that the link cost is dependent on the traffic

density on the freeway. Indeed, when more drivers use a

link, the densities in the segments of that link increase and

the desired average speeds in the corresponding segments

decrease, increasing the travel time (cost) of the link. In

order to be able to compute the link costs for a whole free-

way network using (12), we need to be able to calculate the

average link speeds given a set of link flows. Since static

equilibrium traffic assignment implies that the traffic flows

in the network are invariant in time, we assume that the traf-

fic flows in the links are in equilibrium. By consequence, we

can compute the equilibrium average segment speeds by us-

ing equations (2), (3) and (5) of the METANET model with

ρm,i, j(k+1) = ρm,i, j(k) and vm,i(k+1) = vm,i(k).

Wardrop stated in 1952 [11] that the traffic in a network

distributes over the links in such a way that an equilibrium

occurs where no individual driver can lower his travel cost

by changing routes. In equilibrium all used routes between

an origin-destination pair have the same travel cost and non-



used routes have a higher travel cost. The resulting equilib-

rium is called the user optimal equilibrium since it occurs

when every driver individually optimizes his route.

There exist several methods to compute the user optimum

as defined by Wardrop’s principle such as, e.g., the Frank-

Wolfe algorithm [10] and the method of the successive aver-

ages [9]. We describe the method of the successive averages

(MSA) here. The MSA is an iterative static equilibrium traf-

fic assignment method that takes the impact of vehicle den-

sities on the link costs into account through the cost function

(12). The algorithm uses link flow vectors q
(i)
lf , which con-

tain the link flows for all the links in the network at iteration

i. The algorithm contains the following steps:

Initialization: i = 1, q
(i)
lf = 0, φ = 1

repeat

Step 1: Calculate costs c
(i)
lc (q

(i)
lf ) according to (12)

Step 2: Determine q
(i)
lf,AON by the all-or-nothing assignment

Step 3: q
(i+1)
lf = (1−φ)q

(i)
lf +φq

(i)
lf,AON

Step 4: i = i+1, φ = 1
i

until the stopping criterion is reached

In Step 1, the vector c
(i)
lc (q

(i)
lf ) containing the links costs as-

sociated with the traffic assignment in iteration i is calcu-

lated. The link costs are computed based on the vector

with the link flows q
(i)
lf and equations (2), (3) and (5) of the

METANET model as described before. In Step 2, we assign

for every origin-destination pair all the traffic to the cheapest

route. This is called an all-or-nothing assignment. During

the ith iteration we search for every origin-destination pair

the cheapest route based on the link cost vector c
(i)
lc (q

(i)
lf ).

For smaller networks, the cheapest route can be searched ex-

haustively but for larger networks a more advanced method

like Dijkstra’s shortest path algorithm is needed. The flows

in the links caused by the all-or-nothing assignments for all

origin-destination pairs lead to a link flow vector q
(i)
lf,AON. In

Step 3 we calculate a new link flow vector q
(i+1)
lf as a linear

combination of the previous link flow vector and the link

flow vector q
(i)
lf,AON resulting from the all-or-nothing assign-

ments in Step 2. The meaning of the parameter φ is the

following: In iteration i, the value of φ is such that the new

link flow vector we find is the average of all i link flow vec-

tors — hence the name: the method of successive averages.

For the MSA the stopping criterion is in general a maximal

number of iterations. It can be proved that the MSA con-

verges to a solution.

4.2 Anticipative traffic assignment

In the previous section we dealt with static equilibrium traf-

fic assignment where the traffic demands were invariant in

time. In this section we present anticipative traffic assign-

ment that takes the drivers’ experience of the traffic state and

their responses to this state into account. This method only

uses the experienced traffic state and does not require the

traffic demands to be constant. The anticipative traffic as-

signment is incorporated into the MPC framework for ramp

metering in order to allow for the design of control signals
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Figure 5: Exponential evolution from the current traffic as-

signment (CTA) to the equilibrium traffic assignment

(ETA) for τevol = 5 min.

that anticipate the drivers’ response to the control actions.

During their trip in the freeway network, drivers experience

the traffic state of the network. Based on the information

they gather on the global state of the traffic network, drivers

will determine their optimal route. The current state assess-

ment, which is used to determine the optimal route, is based

on information on the traffic state in the near past. This pro-

cess of gathering traffic state information can be modeled

as follows: The traffic state in the near past results from the

traffic demands and the metering rates in the near past. The

fact that the gathering of traffic state information takes some

time is modeled by averaging the traffic demands and the

metering rates over a time horizon τinfo. This way we ob-

tain the information about the traffic state as it is perceived

and used by the drivers to determine their optimal route.

The parameter τinfo needs to be tuned and is influenced by

the network dimensions and topology, the availability of in-

formation (e.g., radio bulletins) and so on. E.g., a value of

15 minutes could be chosen for τinfo.

Drivers use the gathered traffic state information to optimize

their route. Using the static equilibrium assignment method

presented in Section 4.1 combined with the average val-

ues of traffic demands and metering rates, we can compute

the equilibrium traffic assignment (ETA) associated with the

traffic situation experienced by the drivers. Since we use the

average traffic demand, the static equilibrium traffic assign-

ment method will yield acceptable results even in the case

of time varying traffic demands. Based on the assignment

of the flows to the routes we can compute the splitting rates

needed for simulation of the METANET model.

It takes some time before the traffic flows in the freeway net-

work will reorganize according to the ETA. This due to the

fact that not all drivers will decide to use the new route im-

mediately. We model this evolution from the current traffic

assignment (CTA) to the ETA as an exponential evolution

of the splitting rates as shown in Figure 5. The time con-

stant τevol needs to be tuned such that the evolution from the

CTA to the ETA occurs in a realistic time frame. In Figure

5 we see that for τevol = 5 min it takes about 30 min for the

splitting rates to evolve from their values corresponding to

the CTA to the values corresponding to the ETA.
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5 The overall control strategy

In order to obtain an adaptive and anticipative control

framework, we now propose an overall control strategy

that combines MPC and anticipative traffic assignment. A

schematic representation of the overall control strategy is

presented in Figure 6. There are two loops in the scheme:

an inner loop in which the MPC control signals are com-

puted and applied, and an outer loop in which the anticipa-

tive traffic assignment takes place. We now discuss these

loops in more detail.

The MPC control module produces control signals in the

form of metering rates which are applied to the traffic sys-

tem. The state of the traffic situation is measured (e.g.,

every τinner = 1 min) and fed back to the MPC module.

These measurement are used to update the state and to sub-

sequently start a new optimization over the prediction hori-

zon the traffic states.

During traffic assignment, a prediction of the ETA is made

using information of the traffic situation experienced by the

drivers. This experienced traffic situation is computed based

on the traffic demands and the metering rates as described in

Section 4.2. The ETA and the CTA are combined to provide

us with a description of the evolution of the splitting rates in

time. The evolution of the splitting rates in time is fed to the

MPC control module in order to be used during the predic-

tion horizon. By supplying the MPC module with the evo-

lution of the splitting rates from CTA to ETA, the controller

is able to take the re-routing behavior of the drivers into ac-

count. Since the dynamics of the re-routing are slower than

the dynamics of the traffic system near the on-ramps, it suf-

fices to update the traffic assignment at a slower pace than

the traffic states (e.g., every τouter = 5 min).

6 Conclusions

We have presented ramp metering combined with the MPC

framework. As drivers tend to use the cheapest route avail-

able, a control action can cause a re-routing of traffic.

Hence, an adequate control strategy has to take this re-

routing into account. We have proposed a method to take

this re-routing into account within the model predictive con-

trol framework. In this way, a controller can avoid unwanted

re-routing of traffic as a response to control actions. This re-

sults in an adaptive, anticipative traffic control approach.
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