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Abstract
Model predictive control (MPC) is a pop-
ular controller design technique in the pro-
cess industry. Conventional MPC uses lin-
ear or nonlinear discrete-time models. Re-
cently, we have extended MPC to a class of
discrete event systems that can be described
by a model that is “linear” in the max-plus
algebra. In our previous work we have con-
sidered MPC for the time-invariant case. In
this paper we consider an adaptive scheme for
the time-varying case, based on parameter es-
timation of input-output models. In a sim-
ulation example we show that the combined
parameter-estimation/MPC algorithm gives a
good closed-loop behaviour.

1 Introduction

Clarke et al. [3] and Mosca [11] demonstrate
how predictive control can provide adaptive
controllers. The predictive technique is seen
as a tool to go beyond the conventional single-
step-ahead adaptive control strategies. Model
predictive control (MPC) [8] is a proven tech-
nology for the control of multivariable sys-
tems in the presence of input and output
constraints and is capable of tracking pre-
scheduled reference signals. At each time in-
stant the process model is updated, based on
measured input and output data. On the ba-
sis of this model, predictions of the process
signals over a specified horizon are made to
optimize the future control signal by minimiz-
ing a performance index. The resulting con-
troller is called an adaptive model predictive
controller.

Usually adaptive MPC uses linear or nonlin-
ear discrete-time models. However, the at-
tractive features mentioned above have led us
to extend the adaptive MPC scheme to dis-
crete event systems. Typical examples of dis-
crete event systems (DES) are flexible man-
ufacturing systems, telecommunication net-
works, parallel processing systems, traffic con-
trol systems, and logistic systems. There exist
many different modeling and analysis frame-
works for DES such as Petri nets, finite state
machines, automata, languages, process alge-
bra, computer models, etc. [2, 7]. In this
paper we consider the class of DES with syn-
chronization but no concurrency. Such DES
can be described by models that are “linear”
in the max-plus algebra [1, 4], and therefore
they are called max-plus-linear (MPL) DES.
In [5] we have derived an MPC controller for
this framework and we have also shown that
under quite general conditions the resulting
MPC optimization problem is a convex opti-
mization problem. This paper describes an
adaptive MPC methodology for slowly time-
varying MPL systems using an input-output
model. An input-output setting is used be-
cause in many applications only input and
output measurements are available. In this
paper we consider the noise-free case.

2 Max-plus-linear input-output
systems

In this section we define the class of MPL
input-output systems. For this purpose we
will first give the basic definition of the max-



plus algebra and min-plus algebra, and we
present some results for max-plus polynomi-
als.

Max-plus algebra

Define ε = −∞ and Rε = R ∪ {ε}. The max-
plus-algebraic addition (⊕) and multiplication
(⊗) are defined as follows [1, 4]:

x⊕ y = max(x, y) x⊗ y = x+ y

for numbers x, y ∈ Rε, and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

Min-plus algebra

Define ⊤ = ∞ and R̄ = Rε ∪ {⊤} = R ∪
{ε,⊤}. The min-plus-algebraic addition (⊕′)
and multiplication (⊗′) are defined as follows
[1, 4]:

x⊕′ y = min(x, y) x⊗′ y = x+ y

for numbers x, y ∈ R̄. By definition ε ⊗ ⊤ =
⊤ ⊗ ε = ε and ε ⊗′ ⊤ = ⊤ ⊗′ ε = ⊤. For
matrices A,B ∈ R̄

m×n and C ∈ R̄
n×p we have

[A⊕′ B]ij = aij ⊕
′ bij = min(aij , bij)

[A⊗′ C]ij =

n⊕

k=1

′ aik ⊗′ ckj = min
k=1,...,n

(aik + ckj)

Max-plus polynomials

This section is based on Bacelli et al. [1]. De-
fine the delay operator γ as γ z(k) = z(k− 1).
Now we can define the max-plus polynomial

P (γ) = p0 ⊗ γ0 ⊕ p1 ⊗ γ1 ⊕ . . .⊕ pn ⊗ γn

where n is the order of the polynomial. We
obtain

P (γ) z(k)

=
(

p0 ⊗ γ0 ⊕ p1 ⊗ γ1 ⊕ . . .⊕ pn ⊗ γn
)

z(k)

= p0⊗z(k)⊕ p1⊗z(k−1)⊕ . . .⊕ pn⊗z(k−n)

Let P , Q be nth order max-plus polynomials
and let R be a mth order max-plus polyno-
mial. The max-plus product and max-plus
sum for polynomials are defined as follows:

P (γ)⊕Q(γ) =

n⊕

i=0

(pi ⊕ rqi)⊗ γi

P (γ)⊗R(γ) =

n⊕

i=0

m⊕

j=0

(pi ⊕ rj)⊗ γi+j

Max-plus-linear Input-Output systems

In [5] we have used a state-space setting to
study DES in which there is synchronization
but no concurrency. In this paper we will con-
sider these systems in an input-output setting.
Our motivation behind this is that in prac-
tice only input-output signals are available,
and the input-output form gives a compact
description of the system. Consider systems
that can be described by the input-output re-
lation

y(k) = a1 ⊗ y(k − 1)⊕ . . .⊕ an ⊗ y(k−n)⊕

b0 ⊗ u(k)⊕ . . .⊕ bm ⊗ u(k−m)

This can be rewritten in polynomial form as

y(k) = A(γ)y(k)⊕B(γ)u(k) (1)

where A(γ) and B(γ) are polynomial opera-
tors

A(γ) = a1 ⊗ γ1 ⊕ a2 ⊗ γ2 ⊕ . . .⊕ an ⊗ γn

B(γ) = b0 ⊗ γ0 ⊕ b1 ⊗ γ1 ⊕ . . .⊕ bm ⊗ γm

(2)
DES that can be described by this model
will be called max-plus-linear input-output
(MPLIO) systems. The index k is called
the event counter. The input u(k) contains
the time instants at which the input events
occur for the kth time, and the output y(k)
contains the time instants at which the
output events occur for the kth time1. The
entries of system polynomials A(γ) and B(γ)
are varying in time due to slow changes in
the model.

3 Identification of MPLIO systems

Consider the SISO2 MPLIO model, described
by the input-output relation (1) and (2). We
assume that the ‘real’ system is in the model
set, and we denote the estimates of the input-
output polynomials from (1) by Â(γ) and
B̂(γ). The prediction error ξ(k) after the mea-
surements of the kth event is then defined as

ξ(k) = y(k)−
(

Â(γ)y(k)⊕ B̂(γ)u(k)
)

1More specifically, for a manufacturing system,
u(k) contains the time instants at which the kth batch
of raw material is fed to the system, and y(k) the time
instants at which the kth batch of finished product
leaves the system.

2For sake of simplicity SISO systems are consid-
ered in this paper. However, all results can easily be
extended to the MIMO case.



= y(k)−
([

â1 · · · ân b̂0 · · · b̂m
]

︸ ︷︷ ︸

θ̂

⊗













y(k−1)
...

y(k−n)
u(k)
...

u(k−m)













︸ ︷︷ ︸

p(k)

)

= y(k)− θ̂ ⊗ p(k)

The elements of the vector θ̂ are estimates of
the system parameters. Considering k con-
secutive events, i.e. the measurement data of
k process cycles, one obtains the prediction
error matrix
[
ξ(k) · · · ξ(1)

]

︸ ︷︷ ︸

Ξ(k, 1)

=
[
y(k) · · · y(1)

]

︸ ︷︷ ︸

Y (k, 1)

−θ̂ ⊗
[
p(k) · · · p(1)

]

︸ ︷︷ ︸

P (k, 1)
or

Ξ(k, 1) = Y (k, 1)− θ̂ ⊗ P (k, 1)

As shown in [6] the solution that minimizes
the prediction error Ξ(k, 1) corresponds to the
greatest solution of the inequality

Y (k, 1) ≥ θ̂ ⊗ P (k, 1)

and can be computed using the min–plus al-
gebraic operators ”⊕′” and ”⊗′”:

θ̂i =

k⊕

j=1

′ Yj(k, 1)⊗
′
(
− Pij(k, 1)

)

= min
j=1,...,k

(
y(j)− pi(j)

)
(3)

where Yj(k, 1) denotes the j-th column of
Y (k, 1). For this solution, the following prop-
erties hold [9]:

θ̂i ≥ θi (4)

θ̂ ⊗ P (k) = θ ⊗ P (k) (5)

such that the prediction error ξ(j) = 0, for
j = 1, . . . , k due to (5). On the other hand,
property (4) shows that in general, the param-
eters will be overestimated by this approach.
In [12] this issue has been investigated and
a condition was given for convergence of the
estimated parameters to their true values.

Hence, an initial estimate for the system pa-
rameters can be obtained based on k data

points using (3). To track changing system
parameters, an update of the estimates after
each update of the output is necessary. A first
possibility is the recursive evaluation of (3) as
first proposed in [10] for the estimation of the
system’s impulse response. Thus,

θ̂i(k) =

k⊕

j=1

′(
y(j)− pi(j)

)

=

k−1⊕

j=1

′(
y(j)− pi(j)

)
⊕′

(
y(k)− pi(k)

)

= θ̂i(k − 1)⊕′
(
y(k)− pi(k)

)

= min
(

θ̂i(k − 1),
(
y(k)− pi(k)

))

However, since ⊕′ corresponds to minimiza-
tion, an update where

(
y(k)−pi(k)

)
> θ̂i(k−

1) will not have any influence on θ̂i(k). Thus,
increasing parameter values will not be de-
tected by this approach. As a possible so-
lution to this problem the estimation can be
carried out considering only the most recent
Ne data points, and choosing

[
ξ(k) · · · ξ(k−Ne)

]

︸ ︷︷ ︸

Ξ(k, k−Ne)

=
[
y(k) · · · y(k−Ne)

]

︸ ︷︷ ︸

Y (k, k−Ne)

−θ̂ ⊗
[
p(k) · · · p(k−Ne)

]

︸ ︷︷ ︸

P (k, k−Ne)

However, using the reasoning above, it can
be concluded that a change in a parameter θi
that leads to measurements with y(j)−pi(j) >

θ̂i(k) may be detected only when all Ne data
points considered in the estimation are influ-
enced by this new parameter value.

Therefore, the algorithm used in the sequel is
based on a different strategy. Assume, that
the initial estimation θ̂(0) was determined
from the first Ne data points by (3). Similar
to the conventional recursive estimation algo-
rithms, the new estimate can be computed by
adding a weighted difference between the new
measurement and the measurement predicted
by the model. This principle was used in [9]
(though the similarity to the conventional re-
cursive estimation was not pointed out) and
will be applied for adaptive MPC with some
modifications. Let θ̂(k − 1) be the estimate

at the end of the (k − 1)th cycle. If θ̂(k − 1)

satisfies y(k) = θ̂(k − 1) ⊗ p(k), we choose



θ̂(k) = θ̂(k − 1). If not, then θ̂(k) is obtained
by the series

{
θ̂(0)(k) = θ̂(k−1)

θ̂(ℓ)(k) = θ̂(ℓ−1)(k) + α∆(ℓ−1)(k) ℓ > 0
(6)

where 0 < α ≤ 2 is a weighting parameter and

∆(ℓ−1)(k)=
[(

Y (k, k−Ne)⊗′
(
− PT (k, k−Ne)

))

−
((

θ̂(l−1)(k) ⊗ P (k, k−Ne)
)
⊗′ (−PT (k, k−Ne))

)]

(7)

In [9] it is proven that for α = 1 the iteration
(6)-(7) will converge to a value that satisfies

y(k) = θ̂(ℓ)(k)⊗ p(k).

Note that in contrast to [9], in this paper we
use an MPLIO model rather than an impulse
response model. The MPLIO description is
more compact and so the estimation can be
done using less information. Furthermore we
have two new parameters: Ne, the number
of past values of input and outputs, and the
parameter α, which can be used to tune the
convergence rate of the recursive estimation
algorithm.

4 Model predictive control
for MPLIO systems

In [5] we have extended the MPC framework
to MPL state-space models. Following
the strategy for conventional discrete-time
systems in an input-output setting [3] we
define a cost criterion J(k) that reflects the
due-date error and input-buffer cost in the
event period [k, k +Np − 1]:

J(k)=

Np−1
∑

j=0

(

ŷ(k+j|k)− r(k+j)
)

− λu(k+j)

(8)

where Np is the prediction horizon and λ is a
weighting parameter, ŷ(k+ j|k) is the predic-
tion of the output signal y(k+j), based on the
knowledge at event step k and r(k) is the due
date signal. Other choices for cost function
J are given in [5]. In order to compute the
optimal MPC input signal, we need to make
predictions of the output signal.

Lemma 1 Consider an MPLIO system (1)-
(2). For any non-negative integer j, there ex-

ist polynomials

Cj(γ) = c1,j ⊗ γ1 ⊕ . . .⊕ cn,j ⊗ γn (9)

Dj(γ) = d0,j ⊗ γ0 ⊕ . . .⊕ dm−1,j ⊗ γm−1(10)

Fj(γ) = f0,j ⊗ γ0 ⊕ . . .⊕ fj,j ⊗ γj (11)

such that

ŷ(k + j|k) = Cj(γ)y(k)⊕Dj(γ)u(k − 1)

⊕ Fj(γ)u(k + j) (12)

The proof is in [13].

Note that in (12) the first part of the expres-
sion, Cj(γ)y(k− 1)⊕Dj(γ)u(k− 1), only de-
pends on values of previous event steps and
the second part of the expression, Fj(γ)u(k+
i), only on present and future values of the
input signal.

Using the results of lemma 1, we can construct
matrices that relate the future output signal
with past values of the output and future val-
ues of the input. By defining the vector

ỹ0(k)=





C0(γ)y(k)⊕D0(γ)u(k−1)
...

CNp−1(γ)y(k)⊕DNp−1(γ)u(k−1)



 ,

and the constant matrix

F̃ =







f0,0 ε · · · ε

f0,1 f1,1
...

...
. . .

f0,Np−1 · · · fNp−1,Np−1






,

we obtain ỹ(k) = ỹ0(k)⊕ F̃ ⊗ ũ(k), where

ỹ(k)=






ŷ(k|k)
...

ŷ(k+Np−1|k)




 , ũ(k)=






u(k)
...

u(k+Np−1)






The aim is now to compute an optimal input
sequence ũ(k) that minimizes J(k) subject to
constraints on the inputs and outputs. These
constraints are due to limits on the input and
output event separation times or due to max-
imum due dates for the output events. Since
the elements of u(k) correspond to consecu-
tive event occurrence times, we have the ad-
ditional condition ∆u(k+j) = u(k+j)−u(k+
j−1) ≥ 0 for j = 0, . . . , Np−1. Furthermore,
in order to reduce the number of decision vari-
ables and the corresponding computational



complexity we introduce a control horizon Nc

(≤ Np) and we impose the additional con-
dition that the input rateshould be constant
from event step k + Nc − 1 on: ∆u(k + j) =
∆u(k+Nc−1) for j = Nc, . . . , Np−1, or equiv-
alently ∆2u(k+ j) = ∆u(k+ j)−∆u(k+ j −
1) = 0 for j = Nc, . . . , Np − 1.

MPC uses a receding horizon principle. This
means that after computation of the optimal
control sequence u(k), . . . , u(k + Nc − 1),
only the first control sample u(k) will be
implemented, subsequently the horizon is
shifted one event step, and the optimization
is restarted with new information of the
measurements. The MPC problem for MPL
systems for event step k is formulated as
follows (compare with [5] for the state space
case):

min
ũ(k),ỹ(k)

J(ũ(k), ỹ(k)) (13)

subject to

ỹ(k) = ỹ0(k)⊕ F̃ ⊗ ũ(k) (14)

Ac(k)ũ(k) +Bc(k)ỹ(k) 6 cc(k) (15)

∆u(k+j) > 0 for j=0, . . . , Np−1 (16)

∆2u(k+j) = 0 for j=Nc, . . . , Np−1, (17)

where equation (15) reflects the constraints
on the inputs and outputs. Similar to [5] we
can prove that, if the linear constraints are
monotonically non-decreasing as a function
of ỹ(k), the MPL-MPC problem can be
recast as a convex problem. Moreover, by
introducing some additional dummy variables
the problem can even be reduced to a linear
programming problem (see [5]).

5 The adaptive MPC algorithm

The two important ingredients of the adap-
tive controller, identification and control law,
have been discussed in the previous sections.
This leads to the final adaptive MPC algo-
rithm, which consists of the following 5 steps.

step 1 (initial identification): The model

is initialized by computing θ̂0 using
equation (3).

step 2 (measurement): Obtain new mea-
surement y(k) at event step k.

step 3 (adaptation): Make a recursive es-

timation of θ̂(k) using equation (6)-(7).
step 4 (control law): Compute new con-

trol sequence ũ∗(k) by solving the
MPL-MPC problem, which is defined

by the optimization of (13) subject to
(14)-(17). The first element u(k) of
ũ∗(k) is fed to the system.

step 5 (receding horizon): The horizon is
shifted one step. Return to step 2.

6 Example

Consider the MPLIO system, described by
the input-output relation (1) where A(γ) and
B(γ) are polynomial operators

A(γ) = a1 ⊗ γ1 ⊕ a2 ⊗ γ2 ,

B(γ) = b0 ⊗ γ0 ⊕ b1 ⊗ γ1 ⊕ b2 ⊗ γ2

Define the parameter vector

θ =
[
a1 a2 b0 b1 b2

]

We simulate the system for k = 1, . . . , 300
where

θ=







[ 0.2 0.4 0.2 0.4 0.6 ] , 1 ≤ k ≤ 100

[ 0.25 0.7 0.3 0.55 1.0 ] , 101 ≤ k ≤ 200

[ 0.3 0.6 0.3 0.6 0.9 ] , 201 ≤ k ≤ 300

An adaptive model predictive controller strat-
egy is applied following section 5. The due
date signal r(k) is a non-decreasing random3

signal with an average slope of 0.4175 and
variance 0.3470. The initial state is set to
p(0) = [ 0 0 0 0 0 ]T and the criterion func-
tion is given by (13) for Np = 10, Nc = 2 and
λ = 0.01. For each k, the model is updated
using an update interval with Ne = 15 and
α = 1, and (with the updated model) the op-
timal input sequence is computed, and finally
the first element u(k) of the sequence ũ(k)
is applied to the system (due to the reced-
ing horizon strategy). Figure 1 gives the due
date error, i.e. the difference between the due
date signal and the output signal y(k). Note
that only near the jumps of the parameters
the due date error is positive, corresponding
to a due date violation. Figure 2 shows the
model parameters, as estimated by the iden-
tification algorithm. Note that in the first in-
terval (k = 1, . . . , 100), the second parameter
is not estimated accurately, and in the third
interval (k = 201, . . . , 300) the fourth parame-
ter has a deviation. Clearly, these parameters
are not important in the prediction of the fu-
ture behaviour, because the predictive control
algorithm results in a good due date tracking
behaviour.

3The due date signal is chosen random to express
the varying customer demand.
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Figure 1: Due date error y(k)−r(k)
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7 Discussion

In this paper we have derived a technique
for adaptive MPC of MPL systems, given an
input-output description. We have included
the identification and estimation update
into the algorithm. If the linear constraints
are a non-decreasing function of the output
the computation of the MPC control law
can be done using a linear programming
algorithm. An simulation example has shown
that the algorithm gives a good closed-loop
behaviour in the case of a MPLIO model
with time-varying parameters.
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