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Abstract

We present a method to identify the parameters of a state

space model for a max-plus-linear discrete event system

from measured data. Previous papers report on results with

noise-free measured data. In this paper we extend this

to identification for perturbed max-plus-linear systems in

a stochastic setting. The approach is based on recasting

the identification problem as an optimization problem. We

show that under quite general conditions the resulting opti-

mization problems can be solved very efficiently using gra-

dient search techniques.

Keywords: discrete event systems, system identification,

max-plus-linear systems, noise, stochastic setting.

1 Introduction

Discrete event systems (DES) are dynamic, asynchronous

systems the state of which changes due to the occurrence

of events; this in contrast to continuous variable systems,

whose behavior is governed by the progression of time or

the ticks of a clock and which can be modeled by a system

of differential or difference equations. Typical examples of

DES are flexible manufacturing systems, telecommunica-

tion networks, parallel processing systems, traffic control

systems, and logistic systems. An event corresponds to the

start or the end of an activity. In the case of a produc-

tion system possible events are: the completion of a part

on a machine, a machine breakdown, or a buffer becoming

empty. There exist many modeling frameworks for DES

such as queueing theory, (extended) state machines, for-

mal languages, automata, temporal logic models, general-

ized semi-Markov processes, Petri nets, and computer sim-

ulation models (see [4, 10, 14] and the references therein).

In general, models that describe the behavior of a DES are

nonlinear in conventional algebra. However, there is a class

of DES that can be described by a model that is “linear” in

the max-plus algebra [1, 5]. Such DES are called max-plus-

linear (MPL) DES. Essentially, they can be characterized

as DES in which only synchronization and no concurrency

or choice occurs. So typical examples are serial production

lines, production systems with a fixed routing schedule, and

railway networks.

If we want to use a model for control and other purposes, we

have to be able to determine the parameters of the model.

Most identification methods for MPL DES use a transfer

function approach [2, 8]. One could argue that an identi-

fied transfer function description can be transformed into a

state space model, but then the connection with the physical

structure is usually lost1. Furthermore, compared to transfer

functions state space models have certain advantages: they

explicitly take the initial state of the system into account,

they can reveal “hidden” behavior such as unobservable un-

stable modes, the extension from SISO to MIMO is more

intuitive and elegant for state space models, and the analy-

sis is often easier. In addition, the Model Predictive Control

framework of [6] requires a state space model. Therefore,

we focus on state space identification for MPL DES.

In [7, 16, 17, 18] state space identification methods have

been derived in which the internal structure of the system is

assumed to be completely known and the state is assumed

to be measurable. In [7] we assumed that only input-output

sequences were available. The method can also be used for

fully parameterized state space identification and also yields

an estimate of the state sequence. All these methods use

noise free data.

In this paper we look at the noisy case. In contrast to con-

ventional linear systems, where noise and disturbances are

usually modeled by including an extra term in the system

equations (i.e., the noise is considered to be additive), the

influence of noise and disturbances in MPL DES is not max-

plus-additive, but max-plus-multiplicative (see [1]). This

means that the system parameters will be perturbed and

as a consequence the system identification has to take the

stochastic properties into account. We will show that under

quite general conditions the resulting identification problem

can be solved very efficiently.

This paper is organized as follows. In Section 2 we first give

a concise introduction to MPL DES in a stochastic frame-

work. In Section 3 we derive an expression for the predic-

tion error in the stochastic setting, and we suggest an iden-

1For MPL DES the physical layout of the system is often clearly rec-

ognizable in the structure of the state space matrices (see also Section 5).



tification algorithm. Section 4 discusses the computational

aspects of the algorithm and in Section 5 we give a worked

example.

2 Stochastic max-plus-linear DES

In this section we define the class of stochastic max-plus-

linear DES. For this purpose we will first give the basic def-

inition of the max-plus algebra and min-plus algebra.

Max-plus algebra

Define ε =−∞ and Rε = R∪{ε}. The max-plus-algebraic

addition ( ⊕ ) and multiplication (⊗) are defined as follows

[1, 5]:

x ⊕ y = max(x,y) x⊗ y = x+ y

for numbers x,y ∈ Rε , and

[P ⊕ Q]i, j = Pi j ⊕ Qi, j = max(Pi, j,Qi, j)

[P⊗R]i, j =
n

⊕

k=1

Pi,k ⊗Rk, j = max
k=1,...,n

(Pi,k +Rk, j)

for matrices P,Q ∈R
m×n
ε and R ∈R

n×p
ε and where Pi, j is the

i jth element of matrix P. In the sequel of the paper we will

use the notation Pi,· for the ith row of matrix P and P·, j for

the jth column of matrix P.

Note that in this paper we use both max-plus and conven-

tional algebra. Therefore we will always write ⊕ and ⊗
explicitly in all equations. The operations ‘+’ and ‘·’ de-

note the conventional summation and multiplication opera-

tors (Only the conventional multiplication operator is some-

times omitted).

Max-plus-linear systems

In [1] a state-space setting is used to DES in which there is

synchronization but no concurrency, described by the state

equation

x(k+1) = A⊗ x(k) ⊕ B⊗u(k) (1)

=
[

A B
]

⊗

[

x(k)
u(k)

]

(2)

= Θ⊗ p(k) (3)

where

Θ =
[

A B
]

∈ R
n×m
ε , p(k) =

[

x(k)
u(k)

]

∈ R
m
ε .

DES that can be described by this model will be called max-

plus-linear (MPL) systems. The index k is called the event

counter. The input u(k) contains the time instants at which

the input events occur for the kth time, and the state x(k)
contains the time instants at which the state events occur for

the kth time2.

2More specifically, for a manufacturing system, x(k) contains the time

instants at which the processing units start working for the kth time, and

Stochastic max-plus-linear systems

In this paper we consider systems of the form (1), but in

a stochastic setting, as described in [20]. In contrast to

conventional linear systems, where noise and disturbances

are usually modeled by including an extra term in the sys-

tem equations (i.e., the noise is considered to be additive),

the influence of noise and disturbances in MPL systems is

not max-plus-additive, but max-plus-multiplicative. This

means that the system parameters will be perturbed and as

a consequence the system properties will change.

Consider the following MPL system

x(k+1) = A(k)⊗ x(k) ⊕ B(k)⊗u(k) (4)

=
[

A(k) B(k)
]

⊗

[

x(k)
u(k)

]

(5)

= Θ(k)⊗ p(k) (6)

where Θ(k) represents the uncertain system matrix due to

disturbances and noise. The uncertainty caused by distur-

bances, is gathered in the uncertainty vector e(k) ∈ R
ne .

In this paper we assume that the uncertainty has stochas-

tic properties. Hence, e(k) is a stochastic variable. To make

the identification of the unknown system parameters pos-

sible, we have to distinguish the parameters of Θ that are

known a priori (because of the known structure), the param-

eters of Θ that we like to identify, and an additional term

to account for the noise and disturbances. We therefore as-

sume that the ith row of system matrix Θ(k) can be written

as:

Θi,·(k) = Ri,·+θ T T (i)+ e(k)T ΛS(i) (7)

where R represent the parameters that are known, θ is a vec-

tor with all unknown parameters of Θ, the diagonal matrix

Λ contains the amplitude of the noise, and T (i) and S(i) are

selection matrices for the ith row with only ones and ze-

ros. We assume that the selection matrices T (i) and S(i), for

i = 1, . . . ,n, the matrix R with the known parameters, and

the probability density function of e(k) (denoted by p(e))
are known a priori. Let λ be a column vector with the diag-

onal elements of Λ. In the identification procedure we will

derive estimates θ̂ and λ̂ of θ and λ , respectively.

3 Identification of stochastic MPL systems

Suppose that for a given MPL DES of the form (6) we have

an input-state sequence {(u(k),x(k)}N
k=1, and that we want

to identify the system parameters θ̂ and λ̂ from this se-

quence. We make the standard assumption that the input-

state sequence is sufficiently rich to capture all the relevant

information about the system (see also [17]). We consider

the following identification problem:

θ ∗,λ ∗ = argmin
θ̂ ,λ̂

J(θ̂ , λ̂ ) (8)

u(k) contains the time instants at which the kth batch of raw material is fed

to the system.



subject to

λ̂ > 0 (9)

where

J(θ̂ , λ̂ ) =
N−1

∑
k=1

n

∑
i=1

|IExi(k+1|k)− xi(k+1)|2 (10)

In (10), IE denotes the expectation and IExi(k+ 1|k) is the

one-step ahead prediction of xi for event k+1, using the

knowledge from event k.

The first step in the identification procedure is to take a

closer look at the one-step-ahead prediction. From (6) and

(7) we derive the one-step-ahead prediction

IExi(k+1|k) = IE
(

Ri,·+ θ̂ T T (i)+ e(k)T Λ̂S(i)
)

⊗ p(k)

The one-step-ahead prediction error is given by

η̂i(k+1, θ̂ , λ̂ )= IExi(k+1|k)− xi(k+1)

= IE
(

Ri,·+ θ̂ T T (i)+ e(k)T Λ̂S(i)
)

⊗ p(k)− xi(k+1)

= IE max
j=1,...,m

(

Ri, j + θ̂ T T
(i)
·, j + e(k)T Λ̂S(i)·, j+

+p j(k)− xi(k+1)
)

, (11)

Now define for a specific realization of the noise vector e(k),
the signal

ηi(k+1, θ̂ , λ̂ ,e(k)) = max
j=1,...,m

(

Ri, j + θ̂ T T
(i)
·, j +

+e(k)T Λ̂S
(i)
·, j + p j(k)− xi(k+1)

)

,

then

η̂i(k+1, θ̂ , λ̂ ) = IEηi(k+1, θ̂ , λ̂ ,e(k)) .

We will now consider the computation of the η̂ , and derive

a subgradient of η̂ with respect to θ̂ and λ̂ . First we intro-

duce some notation for an easier derivation. Let αi j(k) =

Ri, j + p j(k)−xi(k+1), βi j = T
(i)
·, j and Γi j = diag(S

(i)
·, j), then

[S
(i)
·, j ]

T · Λ̂ = λ̂ T Γi j and η(k+1|k) can be written as

ηi(k+1, θ̂ , λ̂ ,e(k)) = max
j=1,...,m

(

αi j(k)+β T
i j θ̂ + λ̂ T Γi je(k)

)

Define for any i the sets Φi j(θ̂ , λ̂ ,k), j = 1, . . . ,m such that

for all e ∈ Φi j(θ̂ , λ̂ ,k) there holds:

ηi(k+1, θ̂ , λ̂ ,e(k)) = αi j(k)+β T
i j θ̂ + λ̂ T Γi je(k)

and for any i there holds

m
⋃

j=1

Φi j(θ̂ , λ̂ ,k) = R
ne

Then

η̂i(k+1, θ̂ , λ̂ ) = IE[ηi(k+1, θ̂ , λ̂ ,e(k))]

=
∫ ∞

−∞
. . .

∫ ∞

−∞
η(k+1, θ̂ , λ̂ ,e(k)) p(e)de

=
∫ ∞

−∞
. . .

∫ ∞

−∞
max

j=1,...,m

(

αi j(k)+β T
i j θ̂ + λ̂ T Γi je

)

p(e)de

=
m

∑
j=1

∫

e∈Φi j(θ̂ ,λ̂ ,k)
· · ·

∫

(

αi j(k)+β T
i j θ̂ + λ̂ T Γi je

)

p(e)de

(12)

where de = de1 de2 . . .dene .

The following proposition shows that η̂i(θ̂(k)) is convex in

θ̂ and λ̂ .

Proposition 1 The function η̂i(k+1, θ̂ , λ̂ ) as defined in (11)

is convex in θ̂ and λ̂ , and subgradients gi,θ̂ (θ̂ , λ̂ ,k) and

g
i,λ̂ (θ̂ , λ̂ ,k) are given by

gi,θ̂ (θ̂ , λ̂ ,k) =
m

∑
ℓ=1

(

∫

e∈Φiℓ(θ̂ ,λ̂ ,k)
· · ·

∫

p(e)de

)

β T
iℓ (13)

g
i,λ̂ (θ̂ , λ̂ ,k) =

m

∑
ℓ=1

(

∫

e∈Φiℓ(θ̂ ,λ̂ ,k)
· · ·

∫

eT p(e)de

)

ΓT
iℓ (14)

Proof: Consider vectors θ̂0 and λ̂0 with the same size as θ̂
and λ̂ , respectively. Recall that (cf. (12))

η̂i(k+1, θ̂0, λ̂0) =
m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

(

αiℓ(k)+

+β T
iℓ θ̂0 + λ̂ T

0 Γiℓe
)

p(e)de

Then, using the fact that
⋃

Φiℓ(θ̂0, λ̂0,k) = R
ne , there holds

for any θ̂ and λ̂ :

η̂i(k+1, θ̂ , λ̂ )=

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
max

j=1,...,m

(

αi j(k)+β T
i j θ̂ + λ̂ T Γi je

)

p(e)de

=
m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

max
j=1,...,m

(

αi j(k)+

+β T
i j θ̂ + λ̂ T Γi je

)

p(e)de

≥
m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

(

αiℓ(k)+β T
iℓ θ̂ + λ̂Γiℓe

)

p(e)de

(15)

Note that the sets Φiℓ(·, ·,k) in (15) are computed for θ̂0 and

λ̂0, whereas for η̂i(k+1, θ̂ , λ̂ ), they are computed for θ̂ and

λ̂ (cf. (12)). Now we derive:

m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

(

αiℓ(k)+β T
iℓ θ̂ + λ̂ T Γiℓe

)

p(e)de

=
m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

(

αiℓ(k)+β T
iℓ θ̂0 + λ̂ T

0 Γiℓe
)

p(e)de

+
m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

(

β T
iℓ (θ̂ − θ̂0)

)

p(e)de



+
m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

(

(λ̂ − λ̂0)
T Γiℓe

)

p(e)de

=
m

∑
ℓ=1

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

(

αiℓ(k)+β T
iℓ θ̂0 + λ̂ T

0 ΓT
iℓe

)

p(e)de

+
m

∑
ℓ=1

(

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

p(e)de

)

β T
iℓ

(

θ̂ − θ̂0

)

+
m

∑
ℓ=1

(

∫

e∈Φiℓ(θ̂0,λ̂0,k)
· · ·

∫

eT p(e)de

)

ΓT
iℓ

(

λ̂ − λ̂0

)

= η̂i(k+1, θ̂0, λ̂0)+gi,θ̂ (θ̂0, λ̂0,k)
(

θ̂ − θ̂0

)

+g
i,λ̂ (θ̂0, λ̂0,k)

(

λ̂ − λ̂0

)

and we conclude:

η̂i(k+1, θ̂ , λ̂ ) ≥ η̂i(k+1, θ̂0, λ̂0)

+gi,θ̂ (θ̂0, λ̂0,k)
(

θ̂ − θ̂0

)

+g
i,λ̂ (θ̂0, λ̂0,k)

(

λ̂ − λ̂0

)

(16)

From [15] it follows that equation (16) proves that η̂ is con-

vex in θ̂ and λ̂ and that gi,θ̂ and g
i,λ̂ , defined by (13)-(14),

are subgradients of η̂i.

Now J(θ̂ , λ̂ ) in identification problem (8) can be rewritten

as

J(θ̂ , λ̂ ) =
N

∑
k=1

n

∑
i=1

∣

∣

∣
η̂i(k+1, θ̂ , λ̂ )

∣

∣

∣

2

(17)

The gradients of J become3:

∇θ̂ J(θ̂ , λ̂ ) =
N

∑
k=1

n

∑
i=1

1

2
η̂i(k+1, θ̂ , λ̂ )gi,θ̂ (θ̂ , λ̂ ,k)

∇
λ̂

J(θ̂ , λ̂ ) =
N

∑
k=1

n

∑
i=1

1

2
η̂i(k+1, θ̂ , λ̂ )g

i,λ̂ (θ̂ , λ̂ ,k)

Note that J(θ̂ , λ̂ ) is not convex in θ̂ and λ̂ any more. How-

ever we have explicit expression for the gradients, and so

gradient search methods with multiple starting points can

be used to find the optimal θ̂ and λ̂ .

The extension to multi-step ahead prediction is straightfor-

ward. Analogous to [20] we can show that a Np-step ahead

prediction η̂i(k+ j|k, θ̂ , λ̂ ), j = 1, . . . ,Np will be convex in θ̂

and λ̂ . The main disadvantage of multi-step ahead predic-

tions is that the stochastic complexity grows dramatically.

An elegant way to solve this, is by using variability expan-

sion techniques ([9]) to reduce the computational load (cf.

[21]).

4 Piecewise polynomial probability density functions

So far, we did not make any assumption on the characteri-

zation of probability function p(e). For the computation of

3Note that strictly speaking, the chain-rule cannot be applied for sub-

gradients. However, under mild conditions the subgradients g
i,θ̂ and g

i,λ̂

will be gradients as well.

the cost criterion we need the values of η̂(k+1, θ̂ , λ̂ ). If we

choose e.g. a Gaussian distribution, they can be calculated

from (12) using numerical integration. Numerical integra-

tion is usually time-consuming and cumbersome, but can be

avoided by choosing polynomial probability density func-

tions (possibly as an approximation of the real probability

density function).

Let p(e) be piecewise polynomial functions, so consider

sets Pℓ , ℓ = 1, . . . ,np, such that for e ∈ Pℓ the probability

density function is given by pℓ(e), where

pℓ(e) =
M1

∑
i1=0

M2

∑
i2=0

. . .
Mm

∑
im=0

ζ(i1,i2,...,im)e
i1
1 e

i2
2 · · ·eim

m

Consider a signal η(k + 1, θ̂ , λ̂ ). Let Ei jℓ(θ̂ , λ̂ ,k) =

Φi j(θ̂ , λ̂ ,k)∩Pℓ for j = 1, . . . ,m, ℓ = 1, . . . ,np, then η̂i(k+

1, θ̂ , λ̂ ) is given by

η̂i(k+1, θ̂ , λ̂ ) =
np

∑
ℓ=1

m

∑
j=1

∫

e∈Ei jℓ(θ̂ ,λ̂ ,k)
· · ·

∫

(

αi j +

+β T
i j θ̂ + λ̂ T Γi je

)

pℓ(e)de

This is an integral of a polynomial function in e and can be

solved analytically for all regions Ei jℓ [3, 11].

If piecewise polynomial probability density functions are

used as an approximation of “true” non-polynomial prob-

ability functions, the quality of the approximation can be

improved by increasing the number of sets np.

5 Example

Consider the max-plus-linear system (1) with

A(k) =

[

θ1(k) θ2(k)
ε ε

]

B(k) =

[

θ3(k)
0

]

where the parameter vector θ is given by

θ =
[

θ1 θ2 θ3

]T
=
[

0.1 1 0.5
]T

These parameters are perturbed by uniformly distributed

noise ei(k) with −1 ≤ ei(k) ≤ 1, for i = 1, . . . ,5, and with

amplitudes

λ =
[

λ1 λ2 λ3

]T
=
[

0.3 0.3 0.3
]T

.

In this simulation study we simulate the system for k =
1, . . . ,400. A parameter estimation is done with the input-

state data where the input signal is a staircase signal with an

average slope of 0.5, given by

u(k) = 1.5 ·
(

1+ ⌊k/3⌋
)



5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

k −−−>

u
(k

) 
−

−
−

>

Figure 1: Input signal u(k)

In Figure 1 input signal u(k) is given for k = 1, . . . ,20. As

a starting value for our optimization, we use an parameter

estimation, based on the technique, described by [1, 5, 13]

(in which we assume the noiseless case), adn we obtain:

θ̂init =
[

−0.1971 0.6776 0.2047
]T

For the noise we use as a starting value:

λ̂init =
[

0.1 0.1 0.1
]T

.

Criterion (17), based on the one-step ahead prediction, is

minimized using ... We obtain the estimated parameter vec-

tor

θ̂ =
[

0.0781 0.9317 0.4767
]T

and estimated noise amplitude vector

λ̂ =
[

0.3591 0.5150 0.6899
]T

6 Discussion

In this paper we have derived a system identification proce-

dure for stochastic max-plus-linear systems from observed

data. The parameter estimation can be done using a gradient

search optimization algorithm. The method works for both

structured and fully parameterized state space models. An

simulation example has shown that the algorithm makes a

good estimate of the system’s parameters.

Topics for future research include: development of algo-

rithms for max-plus-linear state space identification, en-

tirely based on input-output data or with only partial state

information, and development of methods to obtain good

estimates for the system structure and system order.
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