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Abstract

The present contribution addresses the problem of designing an

adequate persistent excitation for state space identification of

max–plus–linear systems. The persistent excitation is designed

using the same techniques that have recently been developed

for model predictive control for max–plus–linear systems. The

application of this method for input signal design allows to in-

corporate additional objectives which are desirable for the input

signals and the resulting process behaviour such that an optimal

persistent excitation is obtained.

1 Introduction

When considering processes from manufacturing or chemical

engineering, their behaviour can often be adequately repre-

sented by a discrete event model [2] accounting for the typi-

cally discrete sensor and actuator equipment of such processes.

In addition, the behaviour of these processes is often ade-

quately described by a sequence of transitions between discrete

process states. The focus of this contribution is on a particular

class of such discrete event systems where synchronization but

no concurrency occurs. This system class has gained signifi-

cant attention in recent years due to the fact that the sequences

of event times for such processes can be described by equations

which are linear in a particular algebra, the so called max–

plus algebra [1]. The resulting equations exhibit a structural

equivalence to system descriptions from conventional control

engineering such as transfer functions or state space models.

Thus, a system theory for these max–plus–linear systems has

been developed [1, 3], and various concepts well known from

control engineering have been adapted to this system class in

control design [8, 12] and diagnosis [14]. The application of

any of these methods requires a process model which can be

obtained by theoretical modeling or identification algorithms.

The identification problem by parameter estimation for max–

plus–linear systems has been considered in several publications

e.g. by estimating the parameters of an ARMA model [10] or

impulse response [12], by determining state space models us-

ing either the system’s Markov parameters in [5] or minimiz-

ing a prediction error based on input output data [9]. As shown

in [10, 12], the given methods will in general overestimate the

true system parameters. This issue of identifiability [11], that

is, the convergence of the estimated parameters to their corre-

sponding true values is addressed and solved in [15] by apply-

ing certain input signals to the system. However, the choice

of appropriate input signals used in [15] may be difficult to

handle in engineering applications. Therefore, we propose an

alternative way to compute such input signals using a model–

predictive–control–like approach as has been developed in [8].

The application of this method for input signal design allows to

incorporate additional objectives which are desirable for the in-

put signals and the resulting process behaviour, thus obtaining

an optimal persistent excitation.

This paper is organized as follows. The following section

briefly reviews the basic notions of max–plus–linear systems.

The parameter estimation algorithm and the issue of identifia-

bility of parameters is then discussed followed by a presenta-

tion of a procedure for designing a persistently exciting input

sequence. Finally, the overall identification procedure is illus-

trated in an example.

2 Max–plus–linear systems

We consider in the sequel discrete event systems where the evo-

lution of the events is governed by synchronization effects and

where no structural alternatives occur. The behaviour of these

systems is completely specified if the occurrence times of each

event are known. Thus, the time instant when event ei occurs

for the k–th time is denoted by the “dater” xi(k). Similarly,

the input event times are given by uj(k). The evolution of the



event times x(k) ∈ IRn
max

depending on the input event times

u(k) ∈ IRnu
max

, where IRmax = IR ∪ {−∞} is then given by the

following model, which is structurally equivalent to a conven-

tional discrete–time linear state space model [1]

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1) , (1)

where A ∈ IRn×n
max

, B ∈ IRn×nu
max

. The operators ⊕ and ⊗ are the

addition and multiplication operators of the max–plus algebra

and are defined by

x⊕ y = max(x, y) , x⊗ y = x+ y , ∀ x, y ∈ IRmax .

The neutral elements of max–plus addition and max–plus mul-

tiplication are −∞ = ε and 0, respectively. Note that ε is

absorbing with respect to ⊗. The matrix addition and multipli-

cation are defined similarly to the conventional algebra:

∀P ,Q ∈ IRn×p
max

: (P ⊕Q)ij = Pij ⊕Qij ,

∀P ∈ IRn×p
max

∀Q ∈ IRp×q
max

: (P ⊗Q)ij =

p⊕

k=1

(Pik ⊗Qkj) .

The structural equivalence of the model (1) with the discrete

time state space equation makes it possible to adapt well known

concepts from system theory to this particular system class,

provided the model and its parameter can be determined. The

following section describes an identification procedure that,

given the model structure, allows the determination of the

model parameters from event time measurements.

3 Parameter estimation by minimization of a

prediction error

In this paper, the following parameter estimation problem is

considered:

Given the system model

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1) ,

the input event times u(k), k = 1, . . . , N and the measure-

ments x(k), k = 0, . . . , N , determine estimates Â and B̂ for

the system matrices A and B such that the prediction error

ξ(k + 1) = x(k + 1)−
(
Â⊗ x(k)⊕ B̂ ⊗ u(k + 1)

)
(2)

= x(k + 1)−
[
Â B̂

]
︸ ︷︷ ︸

=: Θ̂

⊗

[
x(k)
u(k + 1)

]

︸ ︷︷ ︸
=: m(k + 1)

= x(k + 1)− Θ̂⊗m(k + 1)

is minimized and the estimated parameters Âij and B̂ij are as

close as possible to the true system parameters given by Aij

and Bij .

It is assumed that no noise is present and the internal structure

(also called the ε–structure) of the system is known so that we

know which entries of the systems matrices are equal to ε and

which are not.

Remark 3.1 The ε–structure of the system is determined by

the layout and the internal connection between different sub-

parts of the system (see, e.g., [1]). For most discrete event

systems the internal structure is known so that this assumption

is not restrictive. Hence, we may without loss of generality

assume that all entries of Θ̂ are different from ε (we can re-

move the ε entries from Θ̂ or put Âij = ε and B̂i′j′ = ε for

all index pairs (i, j) and (i′, j′) that define the ε–structure of

respectively A and B and only consider the finite entries of Θ̂).

Remark 3.2 We assume that all event times are measurable

as it is the case for most discrete event systems such as, e.g.,

manufacturing systems, where one can usually measure all the

starting times of the various production units. Note however

that the results derived below can be extended to also include

an output equation since this equation can be dealt with in the

same way as the state update equation (1).

Remark 3.3 We assume that the real system belongs to the

model class, i.e., that its input–state behaviour can indeed

be described by a model of the form (1). Note that for dis-

crete event systems the assumption that no noise (or mea-

surement errors) are present is not as restrictive as for con-

ventional continuous-time or discrete–time (non)linear systems

since measurements of occurrence times of events are in gen-

eral not as susceptible to noise and measurement errors as

measurements of continuous–time signals.

To solve the parameter estimation problem defined above, first

an estimate for the system parameters is determined. Consid-

ering the given measurements of x(k + 1) and m(k + 1), the

prediction error matrix results in

[
ξ(N) . . . ξ(1)

]
=

=
[
x(N) . . . x(1)

]
− Θ̂⊗

[
m(N) . . . m(1)

]

= X − Θ̂⊗M .

The data matrices X and M contain the event times, whereas

Θ̂ = [Â B̂] denotes the matrix of estimated parameters deter-

mined from the given measurements of x and m.

A solution that minimizes the prediction error is obtained [1, 3,

12] by computing the greatest solution of the inequality

X ≥ Θ⊗M

which is given by

Θ̂ = X ⊗′
(
−MT

)
,

Θ̂ij =

N⊕

k=1

′
(
xi(k)−mj(k)

)
(3)

where the operators “⊕′” and “⊗′” of the min–plus algebra [3]

correspond to conventional minimization and addition, respec-

tively. As shown in [12], the solution determined by (3) has



two particular properties1:

X = Θ̂⊗M , (4)

Θ̂ ≥ Θ . (5)

From (4) it immediately follows that the prediction error

ξ(k) = 0 for k = 1, . . . , N . However, the property (5) shows

that an estimated parameter value will in general differ from the

true parameter value. This issue is addressed in [15]. There, it

is shown that the estimated values are equal to the true val-

ues only for those trajectories of x and m that are informative

enough to obtain estimates that are equal to the true system pa-

rameters. Sufficient conditions for x and m are now discussed

using a result from [15] given in the following theorem:

Theorem 3.1 [15] The parameter Θij is correctly identified

by (3) based on the given data m(k + 1), x(k + 1), k =

0, . . . , N − 1, i.e. Θ̂ij = Θij if and only if

∃k ∈ {0, . . . , N − 1} s. t. xi(k + 1) = Θij ⊗mj(k + 1) .

Let us now assume that we want to obtain an estimate of the

(finite) parameter Θij for a given i, j. Recalling that in

xi(k + 1) =

n+nu⊕

r=1

Θir ⊗mr(k + 1)

⊕ represents conventional maximization, a necessary and suf-

ficient condition for the condition of theorem 3.1 is given by

Θij ⊗mj(k + 1) ≥

n+nu⊕

r=1
r 6=j

Θir ⊗mr(k + 1) for some k. (6)

Although the true system parameters are unknown, (6) can be

still evaluated replacing Θij by its lower bound2 0 and Θir by

its upper bound Θ̂ir which is obtained from an estimation with

arbitrary input signals (cf. (5)). Thus, if the condition

mj(k + 1) ≥

n+nu⊕

r=1
r 6=j

Θ̂ir ⊗mr(k + 1) (7)

is satisfied for at least one data point in the measurements

then (6) is also satisfied and the correct estimation of Θij by (3)

is ensured. This behaviour can be obtained by designing partic-

ular input signals that persistently excite the system. The focus

of the following section is on the computation of such signals

by formulating the determination of the feasible solutions set

as an Extended Linear Complementarity Problem (ELCP).

4 Designing persistent excitation signals using

prediction models

We will now discuss an approach to identify the (non–ε) pa-

rameters of the model (1). We will identify each parameter Θij

1Recall that we assume that no noise is present (cf. Remark 3.3).
2Since we only consider finite entries in Θ (cf. Remark 3.1) and since these

finite entries correspond to processing times, transportation times, and so on

they are always nonnegative.

separately in an iterative way. So every, say, Ni event steps

one parameter will be identified using the persistent excitation

approach. In this section we will illustrate how input signals

satisfying condition (7) can be designed. We will first give

a short introduction to the Extended Linear Complementarity

Problem. Next, we will show how this mathematical program-

ming problem can be used to obtain accurate parameter estima-

tions based on the persistent excitation condition.

4.1 The Extended Linear Complementarity Problem

The Extended Linear Complementarity Problem (ELCP) arose

from our research on discrete event systems and hybrid sys-

tems, and is defined as follows [4]:

Given P ∈ IRnp×nz , Q ∈ IRnq×nz , p ∈ IRnp , q ∈
IRnq and φ1, . . . , φm ⊆ {1, . . . , np}, find z ∈ IRnz

such that

Pz ≥ p (8)

Qz = q (9)
m∑

j=1

∏

i∈φj

(Pz − p)i = 0 . (10)

Condition (10) represents the complementarity condition of the

ELCP and can be interpreted as follows. Since Pz ≥ p, all

the terms in (10) are nonnegative. Hence, (10) is equivalent

to
∏

i∈φj
(Pz − p)i = 0 for j = 1, . . . ,m. So each set φj

corresponds to a group of inequalities in Pz ≥ p, and in each

group at least one inequality should hold with equality (i.e., the

corresponding surplus variable is equal to 0).

In [4] we have developed an algorithm to find a parametric rep-

resentation of the entire solution set of an ELCP. The compu-

tation time and the memory storage requirements of this algo-

rithm increase exponentially as the size of the ELCP increases,

which makes this approach intractable even for small–scale

ELCPs. However, in [7] we have recently developed an ap-

proach to efficiently solve ELCPs with a bounded feasible set

{z|Pz ≥ p,Qz = q} that is based on mixed integer linear pro-

gramming, and that allows us to solve much larger instances of

the ELCP.

4.2 Persistent excitation signal design

Suppose that we are at event step k0 and that we want to iden-

tify Θij within the next Ni event steps. Assume, that a first

estimate Θ̂(k0) = [Â(k0) B̂(k0)] from a previous identification

step, possibly based on arbitrary input signals, has been deter-

mined from the measurements up to k0. Then, the parameters

of the system are known to stay within certain bounds given by

0 ≤ Θij ≤ Θ̂
(k0)
ij .

Now an input/state trajectory {m(k0 + 1), . . . ,m(k0 + Ni)}
3

should be determined which satisfies (7) and for which the fol-

3Note that x(k0) is included in m(k0 +1) (cf. (2)) so that the correspond-

ing components of m(k0 + 1) are assumed to be fixed as x(k0) is assumed to

be known at event step k = k0.



lowing prediction model equation holds:

x(k + 1) = Â(k0) ⊗ x(k)⊕ B̂(k0) ⊗ u(k + 1) (11)

for k = k0, . . . , k0 +Ni − 2,

where Â(k0) and B̂(k0) correspond to the parameter estimates

Θ̂(k0) obtained using the previous identification run or based

on arbitrary input signals4. Note that (11) predicts the relation

between the u part and the x part of two subsequent m vectors.

Now we have the following proposition.

Proposition 4.1 For a given index pair (i, j) the condition that

there exists an index k ∈ {k0, . . . , k0 + Ni − 1} such that (7)

and (11) holds can be rewritten as an ELCP.

Proof: First we consider (7) for a fixed k = k0 + ℓ with ℓ ∈
{0, . . . , Ni−1}. Recalling that ⊕ and ⊗ represent conventional

maximization and addition, respectively, it is easy to verify that

(7) can be rewritten as

mj(k + 1)−mr(k + 1) ≥ Θ̂ir

for r = 1, . . . , n+ nu, r 6= j,

or equivalently

P (ℓ)m̃ ≥ q(ℓ)

for an appropriately defined matrix P (ℓ) and vector q(ℓ), where

m̃ =
[
mT (k0 + 1) . . . mT (k0 +Ni)

]T
.

In order to express that (7) should hold for k = k0 or k = k0+1
or . . . or k = k0+Ni−1, we introduce binary variables δ0, . . . ,

δNi−1 ∈ {0, 1} such that if δℓ = 1 then (7) holds for k = k0+ℓ.

So we should have

δℓ = 1 ⇒ P (ℓ)m̃ ≥ q(ℓ) (12)

δℓ = 0 ⇒ m̃ is arbitrary. (13)

The condition δℓ ∈ {0, 1} is equivalent to the ELCP

0 ≤ δℓ ≤ 1 and δℓ(1− δℓ) = 0 . (14)

To express that at least one δℓ should be equal to 1, we add the

condition

δ0 + . . .+ δNi−1 ≥ 1 . (15)

As the components of m̃ correspond to inputs and states and

as we only look a finite number (Ni) of event steps ahead, we

may assume with loss of generality that the components of m̃

are bounded, i.e., m̃ ∈ M with M a bounded set. As a conse-

quence, the number

MP = min
ℓ=0,...,Ni−1

min
m̃∈M

min
j=1,...,n

P (ℓ)

(P (ℓ)m̃)j (16)

where nP (ℓ) is the number of rows of P (ℓ), is finite, and we

have P (ℓ)m̃ ≥ MP for all m̃ ∈ M. Hence, condition (12)–

(13) is equivalent to

P (ℓ)m̃ ≥ δℓq
(ℓ) +MP (1− δℓ)1 . (17)

4Note that by repeatedly performing the sweeping identification process we

will get better estimates, and thus also better predictions, as the process goes

on.

So, the condition that (7) should hold for at least one index

k ∈ {k0, . . . , k0 + Ni − 1} is equivalent to the ELCP (14),

(15), (17).

Now we consider the prediction equation (11). By repeated

substitution this results in a max–plus–linear equation of the

form

m̃(x) = C̃ ⊗ x(k0)⊕ D̃ ⊗ m̃(u) (18)

where m̃(x) =
[
xT (k0 + 1) . . . xT (k0 + Ni − 1)

]T
and

m̃(u) =
[
uT (k0 + 1) . . . uT (k0 +Ni − 1)

]T
. Now we can

make use of the fact that a system of max–plus–linear equations

can be rewritten as an ELCP5 [6].

Since the merge of two ELCPs is again an ELCP, we can now

merge the ELCP (14), (15), (17) and the ELCP corresponding

to (18) into one ELCP. ✷

Remark 4.1 Note that using the ELCP approach we can also

easily include a constraint of the form

dmin ≤ u(k+1)−u(k) ≤ dmax for k = k0, . . . , k0+Ni−1,

which bounds the input rate between dmin and dmax (this may

sometimes be necessary to ensure safe operation of the system

or to prevent buffer overflows). In general, we can accommo-

date any linear constraint of the form

D1m(k0 + 1) + . . .+DNi
m(k0 +Ni) ≥ d . (19)

The main advantage of the ELCP approach is that — us-

ing the ELCP algorithm of [4] — we can find all sequences

{m(k0 + 1), . . . ,m(k0 + Ni)} that guarantee correct estima-

tion of the parameter Θij . This enables us to perform an extra

optimization within this set of persistent excitation signals, e.g.,

for control purposes.

5 Example

Consider now a manufacturing cell shown in figure 1, where

parts are delivered to the machine by a conveyor, machined

and released to an additional conveyor. The capacity of each

conveyor is limited to one part. The machine can process one

part at the same time.

Let x1(k) be the time instant when the k–th part is loaded onto

the conveyor 1. After τ21 time units, this part is ready to enter

the machine. The dater x2(k) denotes the time when the k–th

part enters the machine. After the machining operation which

takes τ32 time units, the part is released to an additional con-

veyor 2 at time x3(k) reaching a final position after τ43 time

units. From this final position, the part is picked up at time

x4(k). Conveyor 1 and 3 can receive a new part after τ12 and

τ34, respectively, whereas the machine must be prepared for a

new operation for τ23 time units. The input event times u1(k)

5Basically, the proof of this statement boils down to the fact that an equation

of the form α = max(β, γ) for some scalar variables or expressions α, β, γ

can be rewritten as the ELCP α ≥ β, α ≥ γ, (α − β) · (α − γ) = 0,

as the latter of these equations in combination with the first two implies that

α = β ≥ γ or α = γ ≥ β.



part part

machine

conveyor 1 conveyor 2 conveyor 3

Figure 1: Manufacturing cell.

and u2(k) correspond to the time instants when a new part is

available to be delivered for conveyor 1 or removed from con-

veyor 3, respectively. As shown in figure 1, in the initial state

the manufacturing cell already contains one part on conveyor 1

and 3 which are assumed to have entered at time x1(0) and

x3(0), respectively (see [13] for more details). Using the above

reasoning and the initial state of the system, the following equa-

tions hold for x(k):

x1(k + 1) = τ12 ⊗ x2(k + 1)⊕ u1(k + 1) (20)

x2(k + 1) = τ21 ⊗ x1(k)⊕ τ23 ⊗ x3(k) (21)

x3(k + 1) = τ32 ⊗ x2(k + 1)⊕ τ34 ⊗ x4(k + 1) (22)

x4(k + 1) = τ43 ⊗ x3(k)⊕ u2(k + 1) (23)

Inserting equation (21) into (20) and (21) and (23) into (22)

yields the max–plus–linear system

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1)

A =




a11 ε a13 ε

a21 ε a23 ε

a31 ε a33 ε

ε ε a43 ε


 B =




b11 ε

ε ε

ε b32
ε b42


 , (24)

with the true system parameters given by

a11 = 3 , a21 = 1 , a31 = 4 ,

a13 = 3 , a23 = 1 , a33 = 4 , a43 = 2 ,

b11 = 0 , b32 = 1 , b42 = 0 .

Let us now assume that the ε–structure of the system matrices

is known and let us determine the unknown parameters aij and

bij from event time measurements.

First, the estimation is carried out using a set of arbitrary input

signals for k = 1, . . . , 6. These signals and the corresponding

states are listed in table 1. This yields the following estimates

(/upper bounds) for the system parameters (where we have not

included the initial state in this estimation as we assume it to

be unknown):

â11 = 4 , â21 = 2 , â31 = 5 ,

â13 = 3 , â23 = 1 , â33 = 4 , â43 = 2 ,

b̂11 = 6 , b̂32 = 6 , b̂42 = 4 .

Based on these system parameters, it is easy to satisfy (7)

for the parameters b11, b32 and b42 for k = 6 by choosing

u(k + 1) = u(7) such that

b11 : u1(7) ≥ (Â(6) ⊗ x(6))1 = 27 ,

k 1 2 3 4 5 6 7 8 9 10 11

x(k) 3 7 11 15 19 23 29 34 43 46 50

1 5 9 13 17 21 25 32 36 44 48

4 8 12 16 20 24 31 35 39 47 51

2 6 10 14 18 22 30 33 37 41 49

u(k) 0 1 3 4 5 6 29 30 43 44 45

0 2 3 4 5 7 30 31 36 37 38

Table 1: The input signals and the corresponding states values

used in the worked example for k = 1, . . . , 11.

b32 : u2(7) ≥ (Â(6) ⊗ x(6))3 = 28 ,

b42 : u2(7) ≥ (Â(6) ⊗ x(6))4 = 26 .

To be on the safe side we select u(k+1) = u(7) =
[
29 30

]T
.

Furthermore, we — arbitrarily — take u(8) = 1 ⊗ u(7). The

corresponding states x(7) and x(8) are listed in table 1. From

the resulting measurements one now obtains the true parameter

values for the entries of B while Â remains unchanged.

Let us now consider the estimation of the parameter a31.

We use the ELCP approach to determine a persistent excita-

tion input sequence6 {u(k0 + 1), u(k0 + 2), u(k0 + 3)} =
{u(9), u(10), u(11)}. For a31 condition (7) is satisfied if :

x1(k) ≥ 4⊗ x3(k) (25)

x1(k) ≥ 1⊗ u2(k + 1) (26)

holds for some k ≥ k0, i.e., for k = 8 or k = 9 or k = 10 as

we have Ni = 3. As (25) does not hold for k = 8 anyway, in

order to satisfy (7) we should have

x1(9)− x3(9) ≥ 4

x1(9)− u2(10) ≥ 1
or

x1(10)− x3(10) ≥ 4

x1(10)− u2(11) ≥ 1
(27)

If we assume that the components of m̃ are between 0 and 100,

we get MP = −100 (cf. (16)). Following the lines of the proof

of Proposition 4.1 we obtain then the following ELCP7

x1(9)− x3(9)− 104δ2 ≥ −100 (28)

x1(9)− u2(10)− 101δ2 ≥ −100 (29)

x1(10)− x3(10)− 104δ3 ≥ −100 (30)

x1(10)− u2(11)− 101δ3 ≥ −100 (31)

δ2 + δ3 ≥ 1 (32)

δ2, δ3 ≥ 0, 1− δ2, 1− δ3 ≥ 0 (33)

δ2(1− δ2) + δ3(1− δ3) = 0 (34)

x1(9) ≥ 38 (35)

x1(9)− u1(9) ≥ 0 (36)

x3(9) ≥ 39 (37)

6We have selected a small value Ni = 3 to keep the number of equations

limited, so that all the equations of the ELCP can be listed explicitly.
7As x2(k) and x4(k) do not appear in (27) and as they do not directly

influence the values of x1(k) and x3(k), we have — for the sake of brevity —

omitted the equations corresponding to x2(k) and x4(k). The same holds for

the prediction equation for x(11) as x(11) does not appear in (27). Note that

δ1 = 0 as (25) does not hold for k = k0 = 8.



x3(9)− u2(9) ≥ 1 (38)

x1(10)− x1(9) ≥ 4 (39)

x1(10)− x3(9) ≥ 3 (40)

x1(10)− u1(10) ≥ 0 (41)

x3(10)− x1(9) ≥ 5 (42)

x3(10)− x3(9) ≥ 4 (43)

x3(10)− u2(10) ≥ 1 (44)

d(35)d(36) + d(37)d(38)+

d(39)d(40)d(41) + d(42)d(43)d(44) = 0, (45)

where d(i) denotes the difference between the left–hand side

and the right–hand side of equation (i). Note that (35)–(45)

correspond to the prediction equation (11). We also add the

condition that all variables should lie in the interval [0, 100]
(cf. the determination of MP ). In order to guarantee a minimal

separation of input times (cf. (19)), we also the condition

u(9)− u(8) ≥ 1, u(10)− u(9) ≥ 1, u(11)− u(10) ≥ 1 .

Finally, as we use the measurements of the state x(8) as a

starting point for the estimation, we have to wait at least un-

til t = maxi(xi(8)) = 35 before we can start the estimation,

which implies that, e.g., u(9) ≥ 36. The solution set of the

resulting ELCP consists of a polytope with 188 vertices. If we

(arbitrarily) select the vertex with δ2 = 1, δ3 = 0 closest to the

origin, we obtain the input sequence and corresponding state

sequence listed in the last 3 columns of table 1. If we now

use the total input–state sequence to make new estimates of the

system matrices, we obtain the correct value â31 = 4 = a31.

6 Conclusions

The focus of the present contribution is on input signal design

methods that are required for an accurate parameter estimation

of max–plus–linear systems. Based on an already existing pa-

rameter estimation method and a condition for the determina-

tion of the true system parameters, a new input signal design

method is developed and illustrated in an example. The method

constitutes an improvement with respect to the already existing

approaches in the sense that the set of all possible solutions

can be characterized. Furthermore, additional requirements on

the input signals can be incorporated in the design procedure,

leading to an optimal input signal design.
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