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Abstract— We present a model predictive control (MPC)
approach to optimally coordinate variable speed limits for free-
way traffic. In particular, we consider discrete-valued variable
speed limits. Moreover, we also impose a safety constraint that
prevents drivers from encountering speed limit drops larger
than, say, 10 km/h. The control objective is to minimize the
total time that vehicles spend in the network. This approach
results in dynamic speed limits that reduce or even eliminate
shock waves.

I. INTRODUCTION

Traffic jams do not only cause considerable costs due

to unproductive time losses, but they also augment the

possibility of accidents, and they have a negative impact

on the environment and on the quality of life. On the short

term the most effective measures in the battle against traffic

congestion seem to be a selective construction of new roads

and a better control of traffic by dynamic traffic management

measures. We will concentrate on the latter option.

In practice, dynamic traffic management usually operates

based on local data only. However, it has many advantages

to consider the effect of the measures on the network level

instead. So, a network-wide coordination of control measures

based on global data is necessary. Since the effect of a control

measure on more distant locations might only be visible after

some time, a prediction of the network evolution is also

necessary to achieve optimal network control. The approach

presented in this paper contains both elements: network-

wide coordination and prediction. Furthermore, we consider a

special case of traffic control measures: variable speed limits

to reduce or eliminate shock waves.

Besides prediction and coordination, the speed limit con-

trol problem has other characteristics that impose certain

requirements on the control strategy:

1) There is a direct relation between the outflow of a

network and the total time spent (TTS) in the network,

assuming that the traffic demand is fixed. Papageorgiou

[1] showed that in a traffic network, an increase of

outflow of 5 % may result in an decrease of the total

time spent in the network of up to 20 %. As the outflow

is lower when the traffic is congested1, one should

try to prevent or postpone a breakdown as much as

possible. We can conclude that any control method

1The congestion after a breakdown usually has an outflow that is (only 5–
10 %!) lower than the available capacity; this is the so-called capacity-drop
phenomenon.

that resolves (reduces) congestion will at best achieve

a flow improvement of approximately 5–10 %, but

this improvement can decrease the TTS significantly.

This also means that the control strategy requires

great precision. For this reason and because there are

always (unpredictable) disturbances present in a traffic

network, feedback control is required.

2) In practice, the speed limit signs usually display speed

limits in increments of, e.g., 10 km/h. Therefore,

the controller should produce discrete-valued control

signals.

3) For safety it is often required (for practical implemen-

tation) that the driver should not encounter a decrease

in the displayed speed limit larger than a pre-specified

amount. The controller should be able to take this kind

of constraints into account.

The control strategy presented in this paper includes these

requirements.

In the literature, basically two views on the use of speed

limits can be found. The first emphasizes the homogenizing

effect [2], [3], [4], whereas the second is more focused on the

preventing traffic breakdown by reducing the flow by means

of speed limits [5], [6]. Several control methodologies are

used in literature to find a control law for speed control,

such as multi-layer control [7], sliding-mode control [6],

and optimal control [2]. In a previous paper [8] we have

demonstrated the effectiveness of continuous-valued speed

limits against shock waves. In this paper, we focus on

discrete-valued speed limits and the constraints following

from the safety considerations.

Most of the models used in literature represent the speed

limits by a factor that downscales the fundamental diagram

(see, e.g., [2], [6]). This can give too optimistic results (see

Section III-B.2), and therefore we use the METANET model

which we extend with an equation that models the effect

of a speed limit. We also introduce an equation to express

the difference in the drivers’ anticipation to increasing or

decreasing downstream densities.

This paper is organized as follows. In Section II the

problem and the basic idea of the solution to moving jams

is described. In Section III the basic ingredients of model

predictive control are introduced, and the prediction model

including the extensions is presented. The proposed control

method is applied to a benchmark problem in Section IV.



II. PROBLEM DESCRIPTION

It is well known (see, e.g., [9]) that some types of traffic

jams move upstream with approximately 15 km/h. These

jams can remain stationary for a long time, so every vehicle

that enters the freeway upstream of the jammed area will

have to pass through the jammed area, which increases the

travel time. Another disadvantage of the moving jams is

that they are potentially unsafe. Lighthill and Whitham [10]

introduced the term “shock wave” for waves that are formed

by several waves running together. At the shock wave, fairly

large reductions in velocity occur very quickly. In this paper

we will use the term “shock wave” for any wave (the moving

jammed areas) and will not distinguish between waves and

shock waves, because in practice any wave is undesired.

To suppress shock waves one can use speed limits in the

following way. In some sections upstream of a shock wave,

speed limits are imposed and consequently the inflow of the

jammed area is reduced. When the inflow of the jammed area

is smaller than its outflow, the jam will eventually dissolve.

In other words, the speed limits create a low-density wave

(with a density lower than that in the uncontrolled situation)

that propagates downstream. This low-density wave meets

the shock wave and compensates its high density, which

reduces or eliminates the shock wave.

III. APPROACH

A. Model Predictive Control

We use a model predictive control (MPC) scheme to solve

the problem of optimal coordination of speed limits. In MPC,

at each time step k the optimal control signal is computed

(by numerical optimization) over a prediction horizon Np. A

control horizon Nc (<Np) is selected to reduce the number of

variables and to improve the stability of the system. (After

the control horizon has been passed, the control signal is

usually taken to be constant.) From the resulting optimal

control signal only the first sample k+ 1 is applied to the

process. In the next time step k + 1, a new optimization

is performed (with a prediction horizon that is shifted one

time step further) and of the resulting control signal again

only the first sample is applied, and so on. This scheme,

called rolling horizon, allows for updating the state (from

measurements), or even for updating the model in every

iteration step. Updating the state results in a controller that

has a low sensitivity to prediction errors, and updating the

model results in an adaptive control system, which could be

useful in situations where the model significantly changes,

such as in case of incidents or changing weather conditions.

For more information on MPC we refer the interested reader

to [11], [12] and the references therein.

B. Prediction model

The MPC procedure includes a prediction of the network

evolution as a function of the current state and a given

control input. For this prediction we use a slightly modified

freeway link m

traffic flow

. . .. . .segment 1 segment i segment Nm

Fig. 1. In the METANET model, a freeway link is divided into segments.

version of the (destination-independent) METANET model

[13], [14]. The modifications are introduced to model shock

waves better and to include the effect of speed limits. Note

that the MPC approach is generic and will find the optimal

speed limits independently of the model that is used (e.g.,

independently of the way in which speed limits enter the

model), so the modifications are not necessary for the effec-

tiveness of MPC. For the sake of brevity, we describe only

those parts of the model that are relevant for the benchmark

network of Section IV.

1) Original METANET model: The METANET model

represents a network as a directed graph with the links

corresponding to freeway stretches. Each freeway link has

uniform characteristics, i.e., no on-ramps or off-ramps and no

major changes in geometry. Each link m is divided into Nm

segments of length Lm (see Figure 1). Each segment i of link

m is characterized by the traffic density ρm,i(k) (veh/lane/km),

the mean speed vm,i(k) (km/h), and the traffic volume or flow

qm,i(k) (veh/h), where k indicates the time instant t = kT , and

T is the time step used for the simulation of the traffic flow

(typically T = 10 s).

The following equations describe the evolution of the

network over time [13], [14]:

qm,i(k) = ρm,i(k)vm,i(k)λm (1)

ρm,i(k+1) = ρm,i(k)+
T

Lmλm

(

qm,i−1(k)−qm,i(k)
)

(2)

vm,i(k+1) = vm,i(k)+
T

τ

(

V
(

ρm,i(k)
)

− vm,i(k)
)

+

T

Lm

vm,i(k)
(

vm,i−1(k)− vm,i(k)
)

−

ηT

τLm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
, (3)

where λm is the number of lanes in link m; τ , η and κ are

model parameters; and the desired speed V is given by

V
(

ρm,i(k)
)

= vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

, (4)

with am a model parameter, and where the free-flow speed

vfree,m is the average speed that drivers assume if traffic is

flowing freely, and the critical density ρcrit,m is the density

at which the traffic flow becomes unstable.

Origins are modeled with a simple queue model:

wo(k+1) = wo(k)+T
(

do(k)−qo(k)
)

.



with wo the length of the queue at origin o, do(k) the demand,

and qo(k) the outflow, which is given by

qo(k) = min

[

do(k)+
wo(k)

T
,Qo

ρmax −ρµ ,1(k)

ρmax −ρcrit,µ

]

, (5)

where Qo is the on-ramp capacity (veh/h) under free-flow

conditions, ρmax is the maximum density, and µ the index of

the link to which the on-ramp is connected.

2) Extensions: Since the original METANET model does

not describe the effect of speed limits, we will slightly

modify the equation for the desired speed (4) to incorporate

speed limits. The second extension regards the modeling of

a mainstream origin, which has a different nature than an

on-ramp origin. The third extension describes the different

effects of a positive or negative downstream density gradient

on the speed.

In some publications, the effect of the speed limit is

expressed by scaling down the desired speed-density diagram

[2], [6]. This changes the whole speed-density diagram, also

for the states where the speed would otherwise be lower

than the value of the speed limit. This means, e.g., that if

the free flow speed is 120 km/h and the displayed speed

limit is 100 km/h, then the speed and flow of the traffic are

reduced even when the vehicles are traveling at 80 km/h.

Furthermore, scaling down the desired speed also reduces

the capacity, while there is no reason to assume that a speed

limit above the critical speed (speeds where the flow has not

reached capacity yet) would reduce the capacity of the road).

These assumptions are rather unrealistic, and they exaggerate

the effect of speed limits. However, to get a more realistic

model for the effects of the speed limits, we assume that the

desired speed is the minimum of the following two quantities:

the desired speed based on the experienced density, and the

desired speed caused by the speed limit displayed on the

variable message sign:

V
(

ρm,i(k)
)

=min

(

(1+α)vctrl,m,i(k),

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

)

, (6)

where vctrl,m,i(k) is the speed limit imposed on segment i,

link m at time k, and 1+α expresses the non-compliance.

To express the different natures of a mainstream origin link

o and a regular on-ramp (the queue at a mainstream origin is

in fact an abstraction of the sections upstream of the origin

of the part of the freeway network that we are modeling), we

use a modified version of (5) with another flow constraint,

because the inflow of a segment (and thus the outflow of the

mainstream origin) can be limited by an active speed limit

or by the actual speed in the first segment (when either of

them is lower than the speed at critical density). Hence, we

assume that the maximal flow equals the flow that follows

from the speed-flow relationship from (1) and (4) with the

speed equal to the speed limit or the actual speed in the first

segment, whichever is smaller. So if o is the origin of link

µ , then we have

qo(k) = min

[

do(k)+
wo(k)

T
, qlim,µ ,1(k)

]

,

where qlim,µ ,1(k) is the maximal inflow determined by the

limiting speed in the first segment of link µ :

qlim,µ ,1(k) =






























λµ vlim,µ ,1(k)ρcrit,µ

[

−aµ ln

(

vlim,µ ,1(k)

vfree,m

)]
1

aµ

if vlim,µ ,1(k)<V (ρcrit,µ)

qcap,µ if vlim,µ ,1(k)≥V (ρcrit,µ),

with vlim,µ ,1(k) = min(vctrl,µ ,1(k),vµ ,1(k)) the speed that lim-

its the flow, and qcap,µ = λµV (ρcrit,µ)ρcrit,µ the capacity flow.

Since the effect of a higher downstream density is usually

stronger than the effect of a lower downstream density, we

distinguish between these two cases. The sensitivity of the

speed to the downstream density is expressed by parameter η .

In (3), η is a global parameter and has the same value for all

segments. However, here we take different values for ηm,i(k),
depending on whether the downstream density is higher or

lower than the density in the actual segment:

ηm,i(k) =

{

ηhigh if ρm,i+1(k)≥ ρm,i(k)

ηlow if ρm,i+1(k)< ρm,i(k).

In addition, when there is no entering link (but a mainstream

origin), we assume that the speed of the (virtual) entering

link equals the speed of the first segment:

vm,0(k) = vm,1(k) . (7)

This is a good approximation of the speed behavior when

there are enough (e.g., three or more) uncontrolled upstream

segments.

C. Objective function

We consider the following objective function:

J(k) = T

k+Np−1

∑
l=k

{

∑
(m,i)∈Iall

ρm,i(l)Lmλm + ∑
o∈Oall

wo(l)

}

+

aspeed

k+Nc−1

∑
l=k

∑
(m,i)∈Ispeed

(vctrl,m,i(l)− vctrl,m,i(l −1)

vfree,m

)2

,

where Iall and Oall are the sets of indices of all pairs of

segments and links and of all origins respectively, and Ispeed

is the set of pairs of indices (m, i) of the links and segments

where speed control is applied. This objective function con-

tains a term for the TTS, and a term that penalizes abrupt

variations in the speed limit control signal, which is weighted

by the nonnegative parameter aspeed.



D. Constraints

In general, for the safe operation of a speed control system,

it is required that the maximum decrease in speed limits

that a driver can encounter (vmaxdiff) is limited. There are

three situations where a driver can encounter a different

speed limit value: (1) when the speed limit changes in a

given segment (and there are more speed limit signs on the

same segment), (2) when a driver enters a new segment, (3)

when the driver enters a new segment and the speed limit

changes. The maximum speed difference constraints for the

three situations are formulated as follows:

vctrl,m,i(l −1)− vctrl,m,i(l)≤ vmaxdiff

vctrl,m,i(l)− vctrl,m,i′(l)≤ vmaxdiff

vctrl,m,i(l −1)− vctrl,m,i′(l)≤ vmaxdiff

for all (m, i) ∈ Ispeed with (m, i′) the segment following (m, i)
and (m, i′) ∈ Ispeed and for l = k, . . . ,k+Nc −1. In addition,

the speed limits are often subject to a minimum value vctrlmin:

vctrl,m,i(l)> vctrlmin

for all (m, i) ∈ Ispeed and l = k, . . . ,k+Nc−1. In practice, the

variable speed limit signs display speed limits in increments

of, e.g., 10 or 20 km/h. Therefore, the controller should

produce discrete-valued control signals:

vctrl,m,i(l) ∈ Vm,i

for all (m, i)∈ Ispeed where Vm,i is the set of possible discrete

speed limit values in segment i of link m.

IV. A BENCHMARK PROBLEM

A. Set-up

The benchmark set-up consists of one origin, one freeway

link, and one destination, as in Figure 1 with N1 = 12. The

mainstream origin O1 has two lanes with a capacity of 2000

veh/h each. The freeway link L1 follows with two lanes, and

is 12 km long, consisting of twelve segments of 1 km each.

Segments 1 up to 5 and segment 12 are uncontrolled, while

segments 6 up to 11 are equipped with a variable message

sign where speed limits can be set. We choose to include the

five uncontrolled upstream segments to be sure that boundary

condition of equation (7) does not play a dominant role. Link

L1 ends in destination D1.

We use the same network parameters as in [13]: T = 10 s,

τ = 18 s, κ = 40 veh/lane/km, ρmax = 180 veh/lane/km, ρcrit =
33.5 veh/lane/km, am = 1.867 and vfree = 102 km/h. Further-

more, we take ηhigh = 65 km2/h, ηlow = 30 km2/h, α = 0.05

and aspeed = 2. For the variable speed limits we have assumed

that they can change only every minute, and that they cannot

be less than vctrlmin = 50 km/h. This is imposed as a hard

constraint in the optimization problem. If there is a safety

constraint, then vmaxdiff = 10 km/h. The input of the system

is the traffic demand at the upstream end of the link and

the (virtual) downstream density at the downstream end of
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Fig. 2. The downstream density scenario considered in the experiments.

the link. The traffic demand (inflow) has a constant value of

3900 veh/h, close to capacity (4000 veh/h). The downstream

density equals the steady-state value of 28 veh/km, except

for the pulse that represents the shock wave. The pulse was

chosen large enough to cause a backpropagating wave in the

segments, see Figures 2 and 3. It is assumed that the upstream

demand and downstream density is known, or predicted by

an external algorithm. A combination of traffic measurements

outside the controlled area and historical data could be used

for prediction.

For the above scenario the performance (TTS) of the

continuous and discrete-valued controls with or without

safety constraints are examined. In the discrete control case,

the control values vctrl,m,i are in the set {50, 60, 70, 80,

90, 100, 110}. The solution of the continuous-valued speed

control problem is calculated using sequential quadratic

programming. The discrete-valued control signal is a rounded

version of the continuous optimization result. Three different

types of discretization are examined: The first (“round”)

rounds the continuous control values to the nearest discrete

value, the second (“ceil”) rounds them to the nearest discrete

value that is higher than the continuous value, and the third

(“floor”) to the nearest discrete value that is lower than

the real value. This method of obtaining discrete control

signals is heuristic but fast. It is also possible to use dis-

crete optimization techniques such as tabu search, simulated

annealing or genetic algorithms, but since for this set-up and

input the discretization method results in a performance that

is comparable to that of the continuous version, it is not

necessary to do so.

The rolling horizon strategy is now implemented as fol-

lows. After the discretization, the first sample of the con-

trol signal is applied to the traffic system and then the

optimization–discretization steps are repeated. Note that this

way of rounding is not the same as first rounding the

continuous signal and then applying the resulting signal for

the whole prediction horizon at once, because in out approach

the different traffic behavior caused by the discretization is

already taken into account in the next iteration.
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Fig. 3. The shock wave propagates through the link in the no control
case (top). In the coordinated control case, the shock wave disappears after
approximately 2 hours (bottom).

B. Results

The results of the simulations of the no-control and the

control case with continuous speed limits without constraints

is displayed in Figures 3. In the controlled case the shock

wave disappears after approximately 2 hours, while in the

no-control case, the shock wave travels through the whole

link. The speed limits are active in segments 6 up to 10;

the speed limit in segment 11 has higher values than the

critical speed and is not limiting the flow (see Figure 4).

The active speed limits start to limit the flow at t = 4 min

and create a low-density wave traveling downstream (the

small dip in Figure 3). This low-density wave meets the

shock wave traveling upstream and reduces its density just

enough to stop it. So, the tail of the shock wave has a fixed

location while the head dissolves into free flow traffic as in

the uncontrolled situation, which means that the shock wave

eventually dissolves completely.

The speed limits persist until the shock wave (to be precise,

the high-density region) is completely dissolved. The speed

limits in Figure 4 start to increase after t = 17 min and

Fig. 4. The speed for the continuous case without safety constraints and
Np = 11, Nc = 8 (top). The speed limits for the discrete (“ceil”) case with
safety constraints and Np = 11, Nc = 8. For the purpose of visibility, the
travel direction is opposite to that in Figure 3.

return gradually to a high value that is not limiting the flow

anymore.

The TTS was 1862.0 veh.hours in the no-control case

and 1458.0 veh.hours in the controlled (continuous, uncon-

strained) case, which is an improvement of 21.7 %.

The result of the several types of discretization is shown

in Table I. The performance loss caused by the discretized

speed limits is small in the “round” and “ceil” cases, but

large for “floor”. The performance degradation in case of

“floor” can be probably explained by the effect of the safety

constraints2, but the detailed analysis is a topic for future

research.

The results of including the safety constraints are compa-

rable to those in Table I, and are not shown here. The perfor-

mance improvement for Np = 11, Nc = 8 in the constrained

case is 21.4 %, compared to 21.7 % in the unconstrained case.

Figure 4 shows the values of the optimal speed limits discrete

(“ceil”) case with safety constraints and Np = 11, Nc = 8.

2After discretizing the speed limits, the constraints could force the speed
limits in the next iteration step to be too low from optimality point of view.



TABLE I

THE RELATIVE IMPROVEMENT OF THE PERFORMANCE (TOTAL TIME

SPENT) FOR SEVERAL COMBINATIONS OF Np AND Nc , AND FOR THE

CONTINUOUS-VALUED SPEED LIMITS AND THE THREE

DISCRETE-VALUED SPEED LIMITS: “ROUND”, “CEIL”, AND “FLOOR”;

WITHOUT SAFETY CONSTRAINTS.

Horizon Relative improvement (%)

Np Nc continuous round ceil floor

9 4 21.1 20.6 21.5 1.4

9 6 20.9 18.3 21.3 5.8

9 8 21.1 15.9 21.6 10.1

11 4 21.5 20.1 21.5 1.2

11 6 21.6 21.0 21.7 2.2

11 8 21.7 21.5 21.7 6.6

12 4 21.6 18.8 21.6 -0.1

12 6 21.7 21.5 21.7 2.0

12 8 21.7 21.5 21.7 12.7

V. CONCLUSIONS AND FUTURE RESEARCH

We have presented a model predictive control framework

to optimally coordinate variable speed limits. The purpose of

the control was to find the control signals that minimize the

total time that vehicles spend in the network.

We have applied the developed control framework to a

benchmark network consisting of a link of 12 km, where

6 segments of 1 km are controlled by speed limits. It was

shown that coordinated control with continuous-valued speed

limits (base case) is effective against shock waves. The

performance of the discrete-valued safety-constrained speed

limits was comparable that of the base case if the discrete-

valued speed limits were generated by “round” or “ceil”. In

all of these cases the coordination of speed limits eliminated

the shock wave entering from the downstream end of the

link. The coordinated case resulted in a network where the

outflow was sooner restored to capacity, and in a decrease of

the total time spent of 21 %.

Topics for further research include: explanation of the

performance degradation in case of “floor” discretization;

comparison of the discrete MPC approach with other existing

approaches; further examination of the trade-off between

efficiency and optimality for rounding versus full discrete

optimization; study of a real freeway stretch, including model

calibration with real data,; and inclusion of extra control

measures (such as ramp metering, dynamic lane assignment,

route information, reversible lanes, etc.).
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