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Abstract— In this paper a new approach is proposed to design

locally optimal robust output-feedback controllers. It is iterative by

nature, and starting from any initial feasible controller it performs

local optimization over a suitably defined non-convex function at

each iteration. The approach features the properties of computational

efficiency, guaranteed convergence to a local optimum, and applicability

to a very wide range of problems. The paper also proposes a fast

procedure for initially feasible controller computation based on LMIs.

The design objectives considered are H2, H∞, and pole-placement

constraints. The procedure consists of two steps: first an optimal robust

mixed H2/H∞/pole-placement state-feedback gain is designed, which

is consequently kept fixed at the second step during the design of

the remaining controller matrices. The approach is demonstrated on a

model of one joint of a real-life space robotic manipulator.

I. INTRODUCTION

It is well-known that the problem of output-feedback controller

design in the presence of polytopic model uncertainty is not convex

and can be represented in terms of bilinear (or rather bi-affine)

matrix inequalities (BMIs) [17]. These, however, are in general NP-

hard [15], which means that any algorithm which is guaranteed to

find the global optimum cannot be expected to have a polynomial

time complexity.

There exist different approaches to the solution of the BMI

problem, which can be classified into global [3], [5], [16], [18]

and local [8], [9], [7], [6]. Most of the global algorithms to the

BMI problem are variations of the Branch and Bound Algorithm

[16], [3]. Although the major focus of all global search algorithms is

the computational complexity, none of them is polynomial-time due

to the NP-hardness of the problem. As a result, these approaches

can currently be applied only to problems of modest size with no

more than just a few “complicating variables” [16]. Thus, the global

algorithms are at present not practical to output-feedback controller

design problems for polytopic systems, where even small problems

can result in lots of such complicating variables (for instance, in

the case study presented in Section §VI there are 40 complicating

variables).

Most of the existing local approaches, on the other hand, are

computationally fast but, depending on the initial condition, may not

converge to the global optimum. The simplest local approach makes

use of the fact that by fixing some of the variables, x, the BMI

problem becomes convex in the remaining variables y, and vice

versa, and iterates between them [9]. This is also the idea behind

the well-known D−K iteration for µ-synthesis. In some papers [9],

[10] the search is performed in other more suitably defined search

directions. Nevertheless, these type of algorithms, called coordinate

descent methods in [9], Alternating SDP Method in [3], and the dual

iteration in [9], are not guaranteed to converge to a local solution

[5], [3], [18].

*This work is sponsored by the Dutch Technology Foundation (STW)
under project number DEL.4506.

Another local approach is the so-called Path-Following Method

[7], which is based on linearization. The idea is that under the

assumption of small search steps the BMI problem can be ap-

proximated as an LMI problem by making use of the first-order

perturbation approximation [7]. In practise this approach can be

used for problems where the required closed-loop performance

is not drastically better than the open-loop system performance,

to solve the actuator/sensor placement problem, as well as the

controller topology design problem [7]. Yet another local approach

is the Rank-Minimization Method [8]. Although convergence is

established for a suitably modified problem, there are no guarantees

that the solution to this modified problem will be feasible for the

original BMI problem. The XY -Centering Algorithm, proposed in

[10] is also an alternative local approach, which focusses on a sub-

class of BMI problems in which the non-convexity can be expressed

in the form X = Y −1, and is thus applicable to a restricted class

of controller design problems. Finally, the Method of Centers (MC)

has guaranteed local convergence provided that a feasible initial

condition is given [5]. It is, however, the computationally most

involving approach, and it is also known that it can experience

numerical problems at later iterations [3].

Similarly to the MC, the approach in this paper performs local

optimization over a suitably defined non-convex function at each

iteration. It enjoys the property of guaranteed convergence to a local

optimum, while at the same time it is computationally faster and

numerically more reliable than the MC. In addition to that, a two-

step procedure is proposed for the design of an initially feasible

controller. At the first step an optimal robust mixed H2/H∞/pole-

placement state-feedback gain F is designed. This gain F is

consequently kept fixed during the design of the remaining state-

space matrices of the dynamic output-feedback controller. Although

the first step is convex, the second one remains non-convex.

However, by constraining a Lyapunov function for the closed-loop

system to have a block-diagonal structure, this second step is easily

transformed into an LMI optimization problem. Somewhat related is

the work of [14], where the authors attack a specific BMI problem

with quadratic terms by constructing LMIs. This is achieved at the

expense of some conservatism that results from an over-bounding

of the non-affine quadratic terms leading to the LMIs.

The paper is organized as follows. In Sec. II the notation is

defined and the problem is formulated. The proposed algorithm

for locally optimal controller design is next presented in Sec.

III. For the purposes of its initialization, an approach to initially

feasible controller computation is proposed in Sec. IV, where a

multiobjective criterion is considered. A summary of the complete

algorithm is given in Sec. V. In Sec. VI the design approach is tested

on a model of one joint of a real-life space robotic manipulator.

Finally, Sec. VII concludes the paper.



II. PROBLEM FORMULATION

A. Notation

The symbol • in LMIs will denote entries that follow from sym-

metry. In addition to that the notation Sym(A) = A+A∗ will also

be used. Boldface capital letters denote variable matrices appearing

in matrix inequalities, and boldface small letters – vector variables.

The convex hull of a set of matrices S = {M1, . . . ,MN} is denoted

as co{S}. Also used is the notation 〈A,B〉 = trace(ATB). The set

of eigenvalues of a matrix A will be denoted as λ(A). The symbol

, will denote “equal by definition”. The direct sum of matrices Ai,

i = 1, 2, . . . , n will be denoted as
⊕n

i=1 Ai = A1 ⊕ · · · ⊕ An ,

blockdiag(A1, . . . , An). Also, vi will denote the i-th element of the

vector v. The projection onto the cone of symmetric positive-definite

matrices is defined as [A]+ = argminS≥0 ‖A−S‖F . Similarly, the

projection onto the cone of symmetric negative-definite matrices is

defined as [A]− = argminS≤0 ‖A−S‖F . Some useful properties

of these projections can be found in [1]. Finally, A⊗B denotes the

Kronecker product of A and B.

B. Problem Formulation

Consider the following uncertain system

Sσ :







σx = A∆x+B∆
ξ ξ +B∆

u u

z = C∆
z x+D∆

zξξ +D∆
zuu

y = C∆
y x+D∆

yξξ +D∆
yuu

(1)

where x(t) ∈ R
n is the system state, z(t) ∈ R

nz is the controlled

output of the system, u(t) ∈ R
m is the control action, and y(t) ∈

R
p is the measured output and ξ(t) ∈ R

nξ is the disturbance to

the system, and where the symbol σ represents the s-operator (i.e.

the time-derivative operator) for continuous-time systems, and the

z-operator (i.e. the shift operator) for discrete-time systems. The

uncertainty ∆ is then assumed to belong to a set ∆ defined as

∆ , {∆|





A∆ B∆
ξ B∆

u

C∆
z D∆

zξ D∆
zu

C∆
y D∆

yξ D∆
yu



 ∈Msyn}, (2)

where Msyn is a given convex polypope of system matrices

Msyn , co











Ai Bξ,i Bu,i

Cz,i Dzξ,i Dzu,i

Cy,i Dyξ,i Dyu,i



 , i = 1, 2, . . . N







. (3)

Interconnected to system (1) is the following full-order dynamic

output-feedback controller

Cσ :

{

σxc = Acx
c +Bcy

u = Fxc (4)

with xc ∈ R
n its state. This yields the closed-loop system

{

σx̃ = A∆
clx̃+B∆

clξ

z = C∆
cl x̃+D∆

clξ
(5)

where it is denoted x̃T = [xT , (xc)T ], and

[

A∆
cl B∆

cl

C∆
cl D∆

cl

]

,





A∆ B∆
u F B∆

ξ

BcC
∆
y Ac +BcD

∆
yuF BcD

∆
yξ

C∆
z D∆

zuF D∆
zξ



 . (6)

Denoting the transfer function from the disturbance ξ to the

controlled output z, corresponding to the state-space model (5), as

T
∆
cl (σ) , C

∆
cl (σI2n −A

∆
cl)

−1
B

∆
cl +D

∆
cl , (7)

then this paper addresses the following problem: given positive

scalars α2 and α∞ and a convex set D, defined as

D , {z ∈ C : LD + Sym(zMD) < 0}, (8)

for some given real matrices LD = LT
D and MD , find constant

matrices Ac, Bc, and F , parametrizing the controller (4), that solve

the following constrained optimization problem

min
γ2,γ∞,Ac,Bc,F

α2γ2 + α∞γ∞

subject to:

H2 objective: sup
∆∈∆

‖L2(T
∆
cl (σ)−D

∆
cl)R2‖

2
2 < γ2,

H∞ objective: sup
∆∈∆

‖L∞T
∆
cl (σ)R∞‖

2
∞ < γ∞,

Pole-placement: λ(A∆
cl) ∈ D, ∀∆ ∈∆.

(9)

where the matrices L2, R2, L∞, and R∞, are used to select

the desired input-output channels that need to satisfy the required

constraint in (9).

As discussed in the introduction, this problem is not convex and is

NP-hard. In the next section we will present a new algorithm which

can be used for finding a locally optimal solution to the problem

defined in (9). As most local approaches, this approach requires

an initially feasible solution from which the local optimization is

initiated. For the purposes of its initialization, a computationally fast

approach based on LMIs for finding an initially feasible controller is

later on proposed in Sec. IV. A summary of the complete algorithm

is given in Sec. V.

III. DESIGN VIA BMI OPTIMIZATION

Define the following N biaffine functions

BMI(k)(x,y) ,

F
(k)
00 +

N1
∑

i=1

F
(k)
i0 xi +

N2
∑

j=1

F
(k)
0j yj +

N1
∑

i=1

N2
∑

j=1

F
(k)
ij xiyj ,

(10)

where F
(k)
ij = (F

(k)
ij )T , i = 0, 1, . . . , N1, j = 0, 1, . . . , N2, k =

1, . . . , N are given symmetric matrices. In this paper we consider

the following BMI optimization problem

(P) :







min γ, over x ∈ R
N1 ,y ∈ R

N2 , and γ ∈ R

BMI(k)(x,y) ≤ 0, k = 1, 2, . . . , N,

〈c,x〉+ 〈d,y〉 ≤ γ.

(11)

This problem is known to be NP-hard [15].

It is a fact that for systems with polypotic uncertainty the output-

feedback controller design problem can be written as BMIs in the

general form (11) [17].

Let us, for now, consider the feasibility problem for a fixed γ.

Denote

BMI(N+1)(x,y) , 〈c,x〉+ 〈d,y〉 − γ.

The feasibility problem is then defined as

(FP) :

{

Find x ∈ R
N1 ,y ∈ R

N2

such that
⊕N+1

k=1 BMI
(k)(x,y) ≤ 0.

(12)

Define the following cost function

vγ(x,y) ,

∥

∥

∥

∥

∥

∥

[

N+1
⊕

k=1

BMI(k)(x,y)

]+
∥

∥

∥

∥

∥

∥

2

F

≥ 0. (13)

From the definition of the projection [.]+, and from the properties

of the Frobenius norm we can write

vγ(x,y) =

N+1
∑

k=1

∥

∥

∥

∥

[

BMI(k)(x,y)
]+

∥

∥

∥

∥

2

F

,

N+1
∑

k=1

v
(k)
γ (x,y).



It is therefore clear that

(FP) is feasible ⇔ 0 ∈ min
x,y

vγ(x,y).

In this way we have rewritten the initial BMI problem into an

equivalent optimization problem. The goal is now to search for a

local minimum of vγ . However, the function vγ(x,y) is not convex.

Even worse, it may have multiple local minima. Now, if (x∗,y∗)
is a local minimum for vγ and is such that vγ(x

∗,y∗) = 0, then

(x∗,y∗) is also a feasible solution to (FP). However, if (x∗,y∗)
is such that vγ(x

∗,y∗) > 0, then we cannot say anything about the

feasibility of (FP). The idea is then to start from a feasible solution

for a given γ, and then apply the method of bisection over γ to

achieve a local minimum with a desired precision, at each iteration

searching for a feasible solution to (FP). This is described in more

detail in Sec. V.

Let us now concentrate on the problem of finding a local solution

to

min
x,y

vγ(x,y). (14)

The goal is to develop an approach that has a guaranteed conver-

gence to a local optimum of vγ(x,y). To this end, we first note that

the function vγ(x,y) is differentiable, and we derive an expression

for its gradient.

Theorem 1: Consider the function

(f ◦G)(x,y) , ‖[G(x,y)]+‖2F ,

where G : RN1 × R
N2 7→ R

q×q is defined as follows

G(x,y) = F00+

N1
∑

i=1

Fi0xi+

N2
∑

j=1

F0jyj+

N1
∑

i=1

N2
∑

j=1

Fijxiyj . (15)

The function (f ◦G)(x,y) is differentiable, and

∇(f ◦G)(x,y) ,

[

∂

∂x1
. . .

∂

∂xN1

,
∂

∂y1
. . .

∂

∂yN2

]T

(f ◦G)(x,y),

with

∂

∂xi

(f ◦G)(x,y) = 2

〈

[G(x,y)]+, Fi0 +

N2
∑

j=1

Fijyj

〉

, (16)

∂

∂yj

(f ◦G)(x,y) = 2

〈

[G(x,y)]+, F0j +

N1
∑

i=1

Fijxi

〉

, (17)

is its gradient.

Proof: Using the properties of the projection [.]+ we infer for

any matrices G and ∆G, that

f ◦ (G+∆G) = ‖[G+∆G]+‖2F = ‖G+∆G− [G+∆G]−‖2F
= min

S≤0
‖G+∆G− S‖2F ≤ ‖G+∆G− [G]−‖2F

= ‖[G]+ +∆G‖2F = ‖[G]+‖2F + 2〈[G]+,∆G〉+ ‖∆G‖2F .

On the other hand,

f ◦ (G+∆G) = ‖[G+∆G]+‖2F = ‖G+∆G− [G+∆G]−‖2F
= ‖[G]+ + [G]− +∆G− [G+∆G]−‖2F
≥ ‖[G]+‖2F + 2〈[G]+,∆G〉+ 2〈[G]+, [G]−〉+ 2〈[G]+,−[G+∆G]−〉

≥ ‖[G]+‖2F + 2〈[G]+,∆G〉.

Thus we have f ◦(G+∆G) = f ◦G+2〈[G]+,∆G〉+O(‖∆G‖2F ).
Now, let G(x,y) be defined as in (15), and define

∆G(x,y) = G(x+∆x,y +∆y)−G(x,y)

=

N1
∑

i=1

F̃i0∆xi +

N2
∑

j=1

F̃0j∆yj +

N1
∑

i=1

N2
∑

j=1

Fij∆xi∆yj ,

where it is denoted

F̃i0 = Fi0 +

N2
∑

j=1

Fijyj , F̃0j = F0j +

N1
∑

i=1

Fijxi.

Then

(f ◦G)(x+∆x,y +∆y) = (f ◦G)(x,y)

+2

N1
∑

i=1

〈

[G(x,y)]+, F̃i0

〉

∆xi + 2

N2
∑

j=1

〈

[G(x,y)]+, F̃0j

〉

∆yj

+2

N1
∑

i=1

N2
∑

j=1

〈

[G(x,y)]+, Fij∆xi∆yj

〉

+O(‖(∆x,∆y)2‖).

It is thus clear that f is differentiable and its partial derivatives are

given by the expressions (16) and (17).

The partial derivatives of our original function vγ(x,y) can then

be directly derived using the result of Theorem 1:

∂vγ(x,y)

∂xi
= 2

N+1
∑

k=1

〈

[

BMI(k)(x,y)
]+

, F
(k)
i0 +

N2
∑

j=1

F
(k)
ij yj

〉

(18)

∂vγ(x,y)

∂yj
= 2

N+1
∑

k=1

〈

[

BMI(k)(x,y)
]+

, F
(k)
0j +

N1
∑

i=1

F
(k)
ij xi

〉

(19)

Note that these partial derivatives are continuous functions, so

that vγ ∈ C1. Note also, that a lower bound on the cost function in

(11) can always be obtained by solving the so-called relaxed LMI

optimization problem [16]

γLB = min
x,y

〈c,x〉+ 〈d,y〉,

F
(k)
00 +

N1
∑

i=1

F
(k)
i0 xi +

N2
∑

j=1

F
(k)
0j yj +

N1
∑

i=1

N2
∑

j=1

F
(k)
ij wij ≤ 0, ∀k.

(20)

If this problem is not feasible, then the original BMI problem is

also not feasible.

Now that it was shown that the function vγ ∈ C1 and an

expression for its gradient has been derived, the cautious BFGS

quasi-Newton type of optimization algorithm, adopted from [11],

can be used for finding a local minimum of vγ ∈ C1. Assuming that

the level set Ω = {x,y : vγ(x,y) ≤ vγ(x
(0),y(0)))} is compact,

the convergence of this algorithm is established in [11] provided

that the following conditions hold: (a) vγ(x,y) is continuously

differentiable on Ω with gradient denoted as g(x,y), and (b) there

exists a constant L > 0 such that the global Lipschitz condition

holds:

‖g(x,y)− g(x̄, ȳ)‖2 ≤ L

∥

∥

∥

∥

[

x
y

]

−

[

x̄
ȳ

]
∥

∥

∥

∥

2

, ∀(x,y), (x̄, ȳ) ∈ Ω.

Condition (a) was shown in Theorem 1. Condition (b) fol-

lows by observing that the projection [.]+ is Lipschitz, and since

BMI(k)(x,y) is smooth the functions in (18) and (19) satisfy a

local Lipschitz condition. The compactness of the set Ω then implies

the global Lipschitz condition.

In the next section we focus on the problem of finding an initial

feasible solution to the BMI optimization problem.

IV. INITIAL CONTROLLER DESIGN

In this Section, a two-step procedure is presented for the design

of an initial feasible robust output-feedback controller. It consists

of two steps. In the first step a robust state-feedback gain matrix

F is designed such that the multiobjective criterion of the form (9)

is satisfied for the closed-loop system with state-feedback control

u = Fx. This problem is convex and is considered in Subsection



Sec. IV-A. In the second step the computed state-feedback gain

matrix F is plugged into the original closed-loop system (5), and

the multiobjective control problem, defined in (9), is solved in terms

of the remaining unknown controller matrices Ac and Bc. This

problem is discussed in Sec. IV-B.

Before we present the solutions to these problem we summarize

the following standard results, adopted from [12], [4], [2].

Lemma 1: Let A be a real matrix. Then λ(A) ∈ D, with D
defined in (8), if and only if there exists a matrix P = P T > 0
such that LD ⊗ P + Sym(MD ⊗ (PA)) < 0.

Define

L(C∆,W ,P , γ) = (γ − trace(W ))⊕

[

W C∆

• P

]

,

MCT (A∆, B∆,P ) =

[

−Sym(PA∆) PB∆

• I

]

,

MDT (A∆, B∆,P ) =





P PA∆ PB∆

• P 0
• • I



 .

(21)

Lemma 2 (H2 norm): Assume that D∆ = 0. Then

sup∆∈∆ ‖T
∆
cl (σ)‖

2
2 < γ if there exist matrices P = P T

and W = W T such that for all ∆ ∈∆

L(C∆
cl ,W ,P , γ)⊕MCT (A

∆
cl, B

∆
cl ,P ) > 0, (cont. case),

L(C∆
cl ,W ,P , γ)⊕MDT (A

∆
cl, B

∆
cl ,P ) > 0, (discr. case).

Lemma 3 (H∞ norm): sup∆∈∆ ‖T
∆
cl (σ)‖

2
∞ < γ if there exists

a matrix P = P T such that for all ∆ ∈∆

P ⊕

[

MCT (A∆
cl , B

∆
cl ,P )

[

C∆
cl , D∆

cl

]T

• γI

]

> 0, (cont. case),

[

MDT (A∆
cl , B

∆
cl ,P )

[

0, C∆
cl , D∆

cl

]T

• γI

]

> 0, (discr. case).

A. Step 1: Robust Multiobjective State-Feedback Design

The state-feedback case the for system (1) is equivalent to taking

C∆
y = In, D∆

yξ = 0n×nξ
, D∆

yu = 0n×m, so that y ≡ x.

Furthermore, we consider the constant state-feedback controller

u = Fx, which results in the closed-loop transfer function

T̃∆
cl (σ) , (C∆

z +D∆
zuF )

(

σIn − (A∆ +B∆
u F )

)−1
B∆

ξ +D∆
zξ. (22)

The following Theorem can be used for robust multiobjective

state-feedback design for discrete-time and continuous-time sys-

tems. The proof is based on [13], [12] and follows after rewriting

Lemmas 2 and 3 for the closed-loop system (22) as LMIs in

Q = P−1, with subsequent change of variables.

Theorem 2 (Robust Multiobjective State-Feedback Control):

Consider the system (1), and assume that C∆
y = In, D∆

yξ = 0n×nξ
,

D∆
yu = 0n×m. Consider the controller u = Fx resulting in the

closed-loop transfer function T̃∆
cl (σ), defined in (22). Given

matrices L2, R2, L∞, and R∞, the conditions

sup
∆∈∆

‖L2(T̃
∆
cl (σ)−D

∆
zξ)R2‖

2
2 < γ2,

sup
∆∈∆

‖L∞T̃
∆
cl (σ)R∞‖

2
∞ < γ∞,

λ(A∆ +B
∆
u F ) ∈ D, ∀∆ ∈∆.

hold if there exist matrices Q = QT , W = W T , R = RT , and

L such that for all i = 1, . . . , N the following LMIs hold

PP: (−Q)⊕ (LD ⊗Q+ Sym(MD ⊗Σi)) < 0,

H2: (γ2 − trace(R))⊕

[

R L2Ωi

• Q

]

⊕























[

−Sym(Σi) Bξ,iR2

• I

]

> 0, (continuous case)




Q Σi Bξ,iR2

• Q 0
• • I



 > 0, (discrete case).

H∞:



































Q ⊕





−Sym(Σi) Bξ,iR∞ Ω
T
i LT

∞

• I RT
∞

DT
zξ,iL

T
∞

• • γ∞I



 > 0, (cont.)









Q Σi Bξ,iR∞ 0
• Q 0 Ω

T
i LT

∞

• • I RT
∞DT

zξ,iL
T
∞

• • • γ∞I









> 0, (discr. case).

with Σi = AiQ+Bu,iL, Ωi = Cz,iQ+Dzu,iL.

The state-feedback gain matrix F is then given by F = LQ−1.

B. Step 2: Robust Multiobjective Output-Feedback Design

In what follows we assume that the optimal state-feedback gain

F has already been computed at Step 1. In contrast to Step 1,

the problem defined in Step 2 of the algorithm at the beginning

of Sec. IV is certainly non-convex in the variables P , W , Ac,

and Bc since application of Lemmas 2 and 3 to the closed-loop

system in (6) leads to non-linear matrix inequalities due to the fact

that the variables Ac and Bc appear in the closed-loop system

matrices A∆
cl and B∆

cl (for which reason the last two are typed in

boldface). However, by introducing some conservatism by means

of constraining the Lyapunov matrix P to have block-diagonal

structure

P = X ⊕ Y , (23)

the nonlinear matrix inequalities in question can be written as

LMIs. However, it can easily be seen that a necessary condition

for the existence of a structured Lyapunov matrix of the form

(23) for A∆
cl defined in (6) is that the matrix A∆ is stable for

all ∆ ∈∆. Luckily, this restriction can be removed by introducing

a change of basis of the state vector of the closed-loop system to

x̄ = [xT , xT − (xc)T ]T . For the resulting closed-loop system the

structured Lyapunov matrix P does not impose the restriction for

stability of A∆. This is summarized in the following result.

Theorem 3 (Robust Multiobjective Output-Feedback Control):

Consider the closed-loop system (5), with transfer function T∆
cl (σ)

defined in (7), formed by interconnecting the plant (1) with the

dynamic output-feedback controller (4), in which the state-feedback

gain matrix F is given. Then given matrices L2, R2, L∞, and

R∞ of appropriate dimensions, the conditions

sup
∆∈∆

‖L2(T
∆
cl (σ)−D

∆
cl)R2‖

2
2 < γ2,

sup
∆∈∆

‖L∞T
∆
cl (σ)R∞‖

2
∞ < γ∞,

λ(A∆
cl) ∈ D, ∀∆ ∈∆.

(24)

hold if there exist matrices W = W T , X = XT , Y = Y T ,

Z and G such that the following system of LMIs has a feasible



solution for all i = 1, . . . , N

PP: (−P )⊕ (LD ⊗ P + Sym(MD ⊗M i)) < 0,

H2: (γ2 − trace(W ))⊕

[

W L2C̄cl,i

• P

]

⊕























[

−Sym(M i) N iR2

• I

]

> 0, (cont. case)




P M i N iR2

• P 0
• • I



 > 0, (discr. case).

H∞:







































P ⊕





−Sym(Mi) NiR∞ C̄T
cl,iL

T
∞

• I RT
∞

DT
zξ,iL

T
∞

• • γ∞I



 > 0, (cont. case)









P Mi NiR∞ 0

• P 0 C̄T
cl,iL

T
∞

• • I RT
∞

DT
zξ,iL

T
∞

• • • γ∞I









> 0, (discr. case).

where the matrices M i, N i, R, and P are defined as

M i =

[

X(Ai +Bu,iF )
Y (Ai +Bu,iF )−Z −G(Cy,i +Dyu,iF )

−XBu,iF

Z +GDyu,iF − Y Bu,iF

]

,

N i =

[

XBξ,i

Y Bξ,i −GDyξ,i

]

, P =

[

X

Y

]

,

C̄cl,i =
[

Cz,i +Dzu,iF, −Dzu,iF
]

.

(25)

Furthermore, the unknown matrices Ac and Bc of the controller

(4) are given by Ac = Y −1Z and Bc = Y −1G.

Proof: For the sake of brevity, only an outline of the proof

is given. Let the Ā
∆
cl , B̄

∆
cl , C̄

∆
cl , and D̄∆

cl , denote the closed-loop

system matrices obtained after performing the change of basis of the

state vector x̄ = [xT , xT−(xc)T ]T . Then application of Lemmas 2

and 3 to this transformed closed-loop system results in the bilinear

terms PĀ
∆
cl , and PB̄

∆
cl from the matricesMCT (Ā

∆
cl, B̄

∆
cl,P ) and

MDT (Ā
∆
cl, B̄

∆
cl,P ), defined in (21). Clearly, with P defined as in

(23) we can write

P Ā∆
cl =

[

X(A∆ +B∆
u F )

Y (A∆ +B∆
u F )− Y Bc(C

∆
y +D∆

yuF )− Y Ac

−XB∆
u F

Y Ac + Y BcD
∆
yuF − Y B∆

u F

]

,

P B̄∆
cl =

[

XB∆
ξ

Y B∆
ξ − Y BcD

∆
yξ

]

.

Making the one-to-one change of variables
[

Y Ac Y Bc

]

=
[

Z G
]

results in PĀcl,i = M i, and PB̄cl,i = N i, with the

matrices M i and N i defined as in (25), being linear in the new

variables.

V. SUMMARY OF THE APPROACH

We next summarize the proposed approach to robust dynamic

output-feedback controller design.

Algorithm 1 (Robust Output-Feedback Controller Design):

Use the result in Theorem 3 to find an initially feasible

controller, represented by the variables (x0,y0, γ0) related to

the corresponding BMI problem (11). Set (x∗,y∗, γ
(0)
UB) =

(x0,y0, γ0). Solve the relaxed LMI problem (20) to obtain γ
(0)
LB .

Select the desired precision (relative tolerance) TOL and the

maximum number of iterations allowed kmax. Set k = 0.

Step 1. TAKE γk =
γ
(k)
UB

+γ
(k)
LB

2
, AND SOLVE THE PROBLEM

(xk,yk) = argmin vγk
(x,y) STARTING WITH INI-

TIAL CONDITION (x∗,y∗).

Step 2. IF vγk
(xk,yk) = 0 THEN SET (x∗,y∗, γ

(k)
UB) =

(xk,yk, γk) ELSE SET γ
(k)
LB = γk .

Step 3. IF |γ
(k)
UB − γ

(k)
LB | < TOL|γ

(k)
UB | OR k ≥ kmax THEN

STOP ((x∗,y∗, γ
(k)
UB) IS THE BEST FEASIBLE SOLU-

TION WITH THE DESIRED TOLERANCE) ELSE SET k ←
k + 1 AND GO TO STEP 1.

Note, that γLB at each iteration represents an infeasible value

for γ, while γUB represents a feasible one. At each iteration of the

algorithm the distance between these two bounds is reduced in two.

VI. CASE STUDY

The example considered consists of a linear model of one joint

of a real-life space robot manipulator (SRM) system. A continuous

state-space model of the system is given by

ẋ =









0 1 0 0
0 0 c

N2Im
0

0 0 0 1

0 −
β

Ison
− c

N2Im
− c

Ison
−

β
Ison









x +









0
Kt

NIm
0

−
Kt

NIm









u

y =

[

1 0 1 0
0 N 0 0

]

x,

where x = [Ω, Ω̇, ǫ, ǫ̇]T is the state, and u = ic (A) is the input. The

system parameters are given in Table I. The damping coefficient β

and the spring constant c are considered uncertain.

Parameter: Sym. Value:

gearbox ratio N -260.6

joint angle of inertial axis Ω variable

effective joint input torque T
eff
j variable

motor torque constant Kt 0.6

the damping coefficient β [0.36, 0.44]
deformation torque of the gearbox Tdef variable

inertia of the input axis Im 0.0011

inertia of the output system Ison 400

joint angle of the output axis ǫ variable

motor current ic variable

spring constant c [1.17 × 105, 1.43 × 105]

TABLE I

PARAMETERS IN THE MODEL OF SRM.

The objective is to find a controller that achieves for all possible

values of the uncertain parameters a disturbance rejection of at least

1:100 for constant disturbances on the shaft angular position of the

motor (such as, e.g., load), and a bandwidth of at least 1 [rad/sec].

This can be achieved by selecting the following performance

weighting function (see the upper curve on Fig. 1 (bottom))

Wp(s) =
1

s+ 0.01
,

and then requiring that ‖Wp(s)S(s)‖∞ < 1, for all ∆ ∈∆, where

S(s) is the transfer function from the disturbance d to the angular

velocity y2 = NΩ̇. In other words, the design specifications would

be achieved with a given controller K(s) if the closed-loop transfer

function from the disturbance d to the controlled output y2 lies

below W−1
p (s) in the magnitude plot.

It should be noted here that this problem is of a rather large scale:

the BMI optimization problem (11) consists of 4 bilinear matrix

inequalities, each of dimension 12× 12, and each a function of 95

variables (40 for the controller parameters, and 55 for the closed-

loop Lyapunov matrix). Also note, that the number of complicating

variables, defined in [16] as min{dim(x), dim(y)}, in this example

equals 40. This makes it clear that the problem is far beyond the

capabilities of the global approaches to solving the underlying BMI

problem, which can at present deal with no more than just a few

complicating variables.
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Fig. 1. Left: Upper and lower bounds on γ during the BMI optimization.
Right: Sensitivity function of the closed-loop system for the nominal values
of the parameters and the inverse of the weighting function Wp.

First, using the result in Theorem 3 an initial controller was found

achieving an upper bound of γ∞,init = 1.0866, which was sub-

sequently used to initialize the newly proposed BMI optimization

(see Algorithm 1). The tolerance of TOL = 10−3 was selected, and

γ
(0)
LB = 0 since we know that γ > 0 for the problem at hand. The

new algorithm converged in 10 iterations to γ∞,NEW = 0.6356.

The computation took about 100 minutes on a PC with Intel(R)

Pentium IV CPU 1500 MHz and 1 Gb RAM.

Next, four other algorithms were tested on this example with the

same initial controller, the same tolerance and the same stopping

conditions. These algorithms were Rank Minimization Approach

(RMA) [8], the Method of Centers (MC) [5], the Path-Following

Method (PATH) [7], and the Alternating coordinate method (DK)

[9]. From among these four approaches only two were able to

improve the initial controller, namely the MC which achieved

γ∞,MC = 0.8114 in about 610 minutes. It was unable to improve

the the performance further due to numerical problems. Similar

problems were also reported in [3]. The DK iteration method

terminated in about 20 minutes with γ∞,DK = 0.8296. The PFM

converged to an infeasible solution due to the fact that the initial

condition is not “close enough” to the optimal one, so that the first

order approximation that is made at each iteration is not accurate.

Finally, the RMA method was also unable to find a feasible solution.

For the newly proposed method, the upper and the lower bounds

on γ at each iteration are plotted in Fig. 1 (top). Note that at each

iteration the upper bound represents a feasible value for γ, and the

lower bound - an infeasible one. Also plotted on the same figure are

the values achieved by the DK iteration and the MC methods. With

the optimal controller obtained with the newly proposed approach,

the closed-loop sensitivity function is depicted in Fig. 1 (bottom),

together with the inverse of the selected performance weighting

function W−1
p (s). It can be seen from the figure that the sensitivity

function remains below W−1
p (s), implying that the desired robust

performance has been achieved.

VII. CONCLUSIONS

In this paper a new approach to the design of locally optimal

robust dynamic output-feedback controllers for systems with struc-

tured uncertainties was presented. The uncertainty is allowed to

have a very general structure and is only assumed to be such

that the state-space matrices of the system belong to a certain

convex set. The approach is based on BMI optimization that is

guaranteed to converge to a locally optimal solution provided that an

initially feasible controller is given. This algorithm enjoys the useful

properties of computational efficiency and guaranteed convergence

to a local optimum. An algorithm for fast computation of an initially

feasible controller is also provided and is based on a two-step

procedure, where at each step an LMI optimization problem is

solved – one to find the optimal state-feedback gain and one to find

the remaining state-space matrices of the output-feedback controller.

The design objectives considered are H2, H∞, and pole-placement

in LMI regions. The approach was tested on a model of one joint

of a real-life space robotic manipulator, for which a robust H∞

controller was designed.
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