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Robust Output-Feedback Controller Design via Local BMI
Optimization
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Mekelweg 2, 2628 CD Delft, The Netherlands,
+31-15-27-86707, fax: +31-15-27-86679

Abstract

The problem of designing a globally optimal full-order output-feedback controller for polytopic uncertain systems is known to
be a non-convex NP-hard optimization problem, that can be represented as a bilinear matrix inequality optimization problem
for most design objectives. In this paper a new approach is proposed to the design of locally optimal controllers. It is iterative
by nature, and starting from any initial feasible controller it performs local optimization over a suitably defined non-convex
function at each iteration. The approach features the properties of computational efficiency, guaranteed convergence to a local
optimum, and applicability to a very wide range of problems. Furthermore, a fast (but conservative) LMI-based procedure for
computing an initially feasible controller is also presented. The complete approach is demonstrated on a model of one joint of

a real-life space robotic manipulator.
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1 Introduction

In the last decade much research was focused on the
development of LMI approaches to controller design
(Boyd et al., 1994; Scherer et al., 1997; Gahinet, 1996;
Gahinet et al., 1995; Palhares et al., 1996; Oliveira
et al., 2002; Kothare et al., 1996), state estimation
(Geromel, 1999; Geromel et al., 2000; Geromel and
de Oliveira, 2001; Cuzzola and Ferrante, 2001; Palhares
et al., 2001), and system performance analysis (Oliveira
et al., 1999; Palhares et al., 1997; Zhou et al., 1995) due
to the recent development of computationally fast and
numerically reliable algorithms for solving convex opti-
mization problems subject to LMI constraints. In the
cases when no uncertainty is considered in the model
description, numerous LMI-based approaches exist that
address the problems of state-feedback (Oliveira et al.,
2002; Palhares et al., 1996; Peres and Palhares, 1995)
and dynamic output-feedback controller (Apkarian and
Gahinet, 1995; Gahinet, 1996; Geromel et al., 1999;
Oliveira et al., 2002) design for different design objec-
tives. In these approaches, in general, the controller
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state-space matrices are parametrized by a set of ma-
trices representing a feasible solution to a system of
LMIs that describes the control objective, plus (often)
the state-space matrices of the controlled system. For
an overview of the LMI methods for analysis and design
of control systems the reader is referred to (Boyd et al.,
1994; Scherer et al., 1997) and the references therein.

Whenever the controller parametrization is not explic-
itly dependent on the state-space matrices of the con-
trolled system, generalization to polytopic uncertainties
is trivial. Such cases include the LMI-based state-
feedback controller design approaches to Hs-control
(Palhares et al., 1996; Kothare et al., 1996), H »-control
(Palhares et al., 1996; Peres and Palhares, 1995; Zhou
et al., 1995), pole-placement in LMI regions (Chilali
et al., 1999; Scherer et al., 1997), etc. These, however,
require that the system state is measurable, thus impos-
ing a severe restriction on the class of systems to which
they are applicable.

Similar extension of most of the output-feedback con-
troller design approaches to the structured uncertainty
case is, unfortunately, not that simple due to the fact
that the controller parametrization explicitly depends
on the state-space matrices of the system, which are un-
known (Apkarian and Gahinet, 1995; Gahinet, 1996; Ma-



subuchi et al., 1998; Scherer et al., 1997). Clearly, when-
ever the uncertainty is unstructured (e.g. high-frequency
unmodeled dynamics), it can be recast into the general
linear fractional transformation (LFT) representation
and using the small gain theorem the design objective
can be translated into controller design in the absence
of uncertainty (Zhou and Doyle, 1998). Application of
this approach to systems with structured uncertainty,
i.e. disregarding the structure of the uncertainty, often
turns out to be excessively conservative. To overcome
this conservatism p-synthesis was developed (Zhou and
Doyle, 1998; Balas et al., 1998), which consists of an it-
erative procedure (known as D — K iteration) where at
each iteration two convex optimizations are executed -
one in which the controller K is kept fixed, and one in
which a certain diagonal scaling matrix D is kept fixed.
This procedure, however, is not guaranteed to converge
to a local optimum because optimality in two fixed di-
rections does not imply optimality in all possible direc-
tions, and it may therefore lead to conservative results
(VanAntwerp et al., 1997).

Recently, some attempts have been made towards the de-
velopment of LMI-based approaches to output-feedback
controller design for systems with structured uncertain-
ties in the contexts of robust quadratic stability with
disturbance attenuation (Kose and Jabbari, 1999b), lin-
ear parameter-varying (LPV) systems (Kose and Jab-
bari, 1999a), positive real synthesis (Mahmoud and Xie,
2000), and H control (Xie et al., 1992). In (Kose and
Jabbari, 1999b) the authors develop a two-stage pro-
cedure for the design of output-feedback controllers for
continuous-time systems and provide conditions under
which the two stages of the design can be solved se-
quentially. These conditions, however, restrict the class
of systems that can be dealt with by the proposed ap-
proach to minimum-phase, left-invertible systems. The
same idea has been used in (Kose and Jabbari, 1999a),
but extended to deal with LPV systems in which only
some of the parameters are measured and the others are
treated as uncertainty. In (Mahmoud and Xie, 2000) the
output-feedback design of positive real systems is inves-
tigated by expressing the uncertainty in an LFT form
and recasting the problem to a simplified, but still non-
linear, problem independent of the uncertainties. A pos-
sible way, based on eigenvalue assignment, to solve the
non-linear optimization problem is proposed that de-
termines the output-feedback controller. This approach
is applicable to square systems only. In the case when
the uncertainty consists of one full uncertainty block it
was shown in (Xie et al., 1992) how the problem can be
transformed into a standard H., problem along a line
search for a single scalar. However, as argued in (Kose
and Jabbari, 1999b), this approach may turn out to be
too conservative in cases when the uncertainty contains
repeated real scalars.

It is well-known that most of the output-feedback con-
troller design problems are representable in terms of bi-

linear (or rather bi-affine) matrix inequalities (BMIs)
(VanAntwerp and Braatz, 2000), which however are in
general NP-hard (Toker and Ozbay, 1995). This means
that any algorithm which is guaranteed to find the global
optimum cannot be expected to have a polynomial time
complexity.

The method proposed in this paper belongs to the class
of approaches that directly aim at solving the BMI op-
timization problem at hand. There exist different ap-
proaches to the solution of this problem, which can be
classified into global (Beran et al., 1997; Fukuda and
Kojima, 2001; Goh et al., 1995; Tuan and Apkarian,
2000; Tuan et al., 2000a,b; VanAntwerp et al., 1997; Ya-
mada and Hara, 1998; Yamada et al., 2001) and local
(Ibaraki and Tomizuka, 2001; Iwasaki, 1999; Iwasaki and
Rotea, 1997; Hassibi et al., 1999; Grigoradis and Skel-
ton, 1996). Most of the global algorithms to the BMI
problem are variations of the Branch and Bound Al-
gorithm (Tuan and Apkarian, 2000; Goh et al., 1995;
Fukuda and Kojima, 2001; VanAntwerp et al., 1997; Be-
ran et al., 1997). Although the major focus of all global
search algorithms is the computational complexity, none
of them is polynomial-time due to the NP-hardness of
the problem. As a result, these approaches can currently
be applied only to problems of modest size (VanAntwerp
et al., 1997) with no more than just a few “complicat-
ing variables” ! (Tuan and Apkarian, 2000). Thus, the
global algorithms are not practical to output-feedback
controller design problems for polytopic systems, where
even small problems can result in lots of such complicat-
ing variables (for instance, in the case study presented
in Section §6 there are 40 complicating variables).

Most of the existing local approaches, on the other hand,
are computationally fast but, depending on the initial
condition, may not converge to the global optimum. The
simplest local approach makes use of the fact that by fix-
ing some of the variables, x, the BMI problem becomes
convex in the remaining variables y, and vice versa,
and iterates between them (Iwasaki, 1999). This is also
the idea behind the well-known D — K iteration for p-
synthesis (Doyle, 1983). In some papers (Iwasaki, 1999;
Iwasaki and Rotea, 1997; Iwasaki and Skelton, 1995)
the search is performed in other, more suitably defined
search directions. Nevertheless, these type of algorithms,
called coordinate descent methods in (Iwasaki, 1999), al-
ternating SDP method in (Fukuda and Kojima, 2001),
and the dual iteration in (Iwasaki, 1999), are not guar-
anteed to converge to a local solution (Goh et al., 1995;
Fukuda and Kojima, 2001; Yamada and Hara, 1998).

Recently, interior point methods have also been devel-
oped for nonconvex semidefinite programming (SDP)

! Generally speaking, this is the minimal number of vari-

ables in the BMI problem that, if kept fixed, results in an
LMI problem.



problems (Leibfritz and Mostafa, 2002; Hol et al., 2003;
Forsgren, 2000). The interior point approach tries to find
an approximate solution to the nonconvex SDP problem
by rewriting it as logarithmic barrier function optimiza-
tion problem. The approach then finds approximate so-
lutions to a sequence of barrier problems and in this way
produces an approximate solution to the original non-
convex SDP problem. In (Leibfritz and Mostafa, 2002)
a trust region method is proposed for the design of op-
timal static output-feedback gains. This is a nonconvex
BMI problem (Leibfritz, 2001).

Another local approach is the so-called path-following
method (Hassibi et al., 1999), which is based on lin-
earization. The idea is that under the assumption of
small search steps the BMI problem can be approxi-
mated as an LMI problem by making use of the first-
order perturbation approximation (Hassibi et al., 1999).
In practice this approach can be used for problems
where the required closed-loop performance is not dras-
tically better than the open-loop system performance,
to solve the actuator/sensor placement problem, as well
as the controller topology design problem (Hassibi et al.,
1999). Similar is the continuation algorithm proposed in
(Collins et al., 1999) that basically consists in iterating
between two LMI problems each obtain by linearization
using first order perturbation approximations. Yet an-
other local approach is the rank-minimization method
(Ibaraki and Tomizuka, 2001). Although convergence is
established for a suitably modified problem, there are no
guarantees that the solution to this modified problem
will be feasible for the original BMI problem. The XY-
centering algorithm, proposed in (Iwasaki and Skelton,
1995) is also an alternative local approach, which fo-
cusses on a subclass of BMI problems in which the non-
convexity can be expressed in the form X = Y1, and is
thus applicable to a restricted class of controller design
problems. Finally, the method of centers (MC) (Goh
et al., 1995) has guaranteed local convergence provided
that a feasible initial condition is given. It is, however,
the computationally most involving approach, and it is
also known that it can experience numerical problems
at later iterations (Fukuda and Kojima, 2001).

Similarly to the MC, the approach in this paper per-
forms local optimization over a suitably defined non-
convex function at each iteration. It enjoys the property
of guaranteed convergence to a local optimum, while at
the same time is computationally faster and numerically
more reliable than the MC. In addition to that, a two-
step procedure is proposed for the design of an initially
feasible controller. At the first step an optimal robust
mixed Ho/H o /pole-placement state-feedback gain F is
designed. This gain F' is consequently kept fixed dur-
ing the design of the remaining state-space matrices of
the dynamic output-feedback controller. Although the
first step is convex, the second one remains non-convex.
However, by constraining a Lyapunov function for the
closed-loop system to have a block-diagonal structure,

this second step is easily transformed into an LMI opti-
mization problem.

The paper is organized as follows. In §2 the notation is
defined and the problem is formulated. The proposed
algorithm for locally optimal controller design is next
presented in §3. For the purposes of its initialization, an
approach to initially feasible controller computation is
proposed in §4, where a multiobjective criterion is con-
sidered. A summary of the complete algorithm is given
in §5. In §6 the design approach is tested on a case study
with a linear model of a space robotic manipulator and,
in addition, a comparison is made between several ex-
isting methods for local BMI optimization. Finally, §7
concludes the paper.

2 Preliminaries and Problem Formulation
2.1 Notation

The symbol e in LMIs will denote entries that follow from
symmetry. In addition to that the notation Sym(A) =
A+ A* will also be used. Boldface capital letters denote
variable matrices appearing in matrix inequalities, and
boldface small letters — vector variables. The convex hull
of a set of matrices S = {My,..., My} is denoted as
co{S}, and is defined as the intersection of all convex
sets containing all elements of S. Also used is the nota-
tion (A, B) = trace(A” B) for any matrices A and B of
appropriate dimensions, and ||A||r denotes the Frobe-
nius norm of A. The set of eigenvalues of a matrix A will
be denoted as A(A), while for a complex number z € C,
the complex conjugate is denoted as Z. The symbol £
will denote “equal by definition”. The direct sum of ma-
trices A;, 7 =1,2,...,n will be denoted as

@Ai =A@ @A, 2diag(A}, Ay, ..., Ay).
i=1

Also, v; will denote the i-th element of the vector v. For
two matrices A € R™*™ and B € RP*?, AQ B € R™P*™4
denotes the Kronecker product of A and B.

The projection onto the cone of symmetric positive-
definite matrices is defined as

+ : _
[A]" = argmin |4 — S (1)

Similarly, the projection onto the cone of symmetric
negative-definite matrices is defined as

[A]” = argmin||A — 5. (2)

This projection has the following properties.



Lemma 1 (Properties of the projection) For a
symmetric matriz A, the following properties hold

(1) A= [A]* +[A]",

(2) ([A]*.[A]7) =0,

(3) Let A = UAUT, where U is an orthogonal
matrix containing the eigenvectors of A, and
A is a diagonal matriz with the eigenvalues

Ai, i = 1,....n, of A appearing on its di-
agonal. Then [A]T = Udiag{\],...,\;J}UT,
with A} = max(0,)\;), i = 1,...,n. Equiv-
alently, [A]= = Udiag{\y,...,\;}UT, with

A; =min(0,\;),i=1,...,n.
(4) [A]" and [A]~ are continuous in A.

For a proof see (Calafiore and Polyak, 2001).

In the remaining part of this section we summarize some
existing results for system analysis and controller syn-
thesis which lie at the basis of the developments in the
next Section.

2.2 Ha and Hoo Norm Computation for Uncertain Sys-
tems

Consider the uncertain state-space model

{ or = A%z + BA¢ 3)

2z = C%z + D¢

where x(t) € R™ is the system state, z(t) € R"= is the
controlled output of the system, and £(¢) € R"¢ is the
disturbance to the system, and where the symbol ¢ rep-
resents the s-operator (i.e. the time-derivative operator)
for continuous-time systems, and the z-operator (i.e. the
shift operator) for discrete-time systems. Define the ma-
trix

A” BA
OA DA

A s

an

(4)

where the subscript “an” denotes that it will be used for
the purposes of analysis only. Later on, a similar ma-
trix for the synthesis problem will be defined. The ma-
trices (A%, BA,C?, D?) in (3) are assumed unknown,
not measurable, but are known to lie in a given convex
set My, defined as

} e

Next, the transfer function from £ to z is denoted as

A1 By
C1 Dy

AN By
Cn Dy

ge ey

Mon 2 co{

TZ(0) £ C*(oI, — A®)"'B® + D=, (6)

The following Lemma, which can be found in e.g. (Chi-
lali et al., 1999), can be used to check whether the eigen-
values of a matrix are all located inside an LMI region.

Lemma 2 Let A be a real matriz, and define the LMI
region

D2{zcC: Lp+ Sym(zMp) < 0}, (7)

for some given real matrices Lp = LL and Mp. Then

M(A) C D ifand only if there exists a matriz P = PT > 0
such that

Lp ® P+ Sym(Mp ® (PA)) < 0. (8)

The class of LMI regions, defined in Equation (8), is
fairly general — it can represent convex regions that are

symmetric with respect to the real axis (Gahinet et al.,
1995).

In (Scherer et al., 1997; Masubuchi et al., 1998) LMI
conditions are provided for the evaluation of the Hs and
Hoo norm of the transfer function (6) in the case when
there is no uncertainty present in the system, i.e. for the
case when the matrix M2, in (4) is exactly known and
time-invariant. The following two results are immediate
generalizations to the case when M2, is only known to
lie in a certain convex set M, , and as such will be left
without proof. Define

A
L(C3 W, P,5) = (4 - traceW)) & | 7 € ]
o P
-5 PA”) PBA
MCT(AA,BA,P) _ ym( )
) I 9)
P PAA PBA
Mpr(A®, B2, P)=| e P 0
e o I

Lemma 3 (H2 norm) Assume that D® = 0. Then

A
sup [T (0)]5 <
MA EMan

an

if there exist matrices P = PT and W = W7 such that
for all M2, € Map

‘C(CAa W7P?7> @MCT(AAaBA7P) > 07
(continuous case),

E(CAaW7P?7> EBMDT(AAaBAvp) > Oa

(discrete case).

(10)



Lemma 4 (H, norm)

A
s TR <7

an EMan

if there exists a matriz P = PT such that for all M2, €
Man

T
A A A A
Meor(AS, B2, P) [c D } -
. ~I

Pg

)

(continuous case),
T
Mpr(A%, B4, P) [0, CcA, DA}
° ~vI

(11)

>0,

(discrete case).

The infinite number of LMIs in Lemmas 3 and 4 over
all possible elements of the set M,,, can be substituted
by a finite number of LMIs by using the fact that the
set M, is convex. This can be achieved by substituting
the matrices (A;, B;, Ci, D;) from (A%, B2, C?, D) in
the LMIs (10) and (11), and then searching for a feasible
solution for alli=1,..., V.

2.3 Problem Formulation

We next focus our attention to the synthesis problem.
To this end, consider the following uncertain system

or = Alx + B?f + BLu
So: z = C2u+ D&+ Do (12)
Yy = CyAZ‘ + DyAgg + DyAuu
where the signals x, £, and z have the same meaning and

the same dimensions as in (3), and where u € R™ is the
control action, and y € R? is the measured output.

Similarly as in §2.2, we define the matrix

AR BgA BA
M5, 2 | c2 DA DA, (13)
A DA pA
Cy D 73 D yu
where the subscript “syn” denotes that it will now be

used for the purposes of synthesis. We also define the
convex set

A; B¢y Buy
Cz,i Dz&,i Dzu,i L= 1,...7N . (14)
Cy,i Dyg,i Dyu,i

A
Msyn = co

Interconnected to system (12) is the following full-order
dynamic output-feedback controller

C — AC C Bc
C,: {” v Bey (15)

u = Fa°
with z¢ € R™ its state. This yields the closed-loop system

{ o = A5% + B4 16)

z = C’CAIL%—FDCAZ

where it is denoted 7 = [27, (2¢)T], and

A A A
48] Ba A BAF B§
© < B.C® A.+ B.DA F|B.DA | . (17)
CA DA Y yu y&
cl cl CZA DﬁLF ‘ Dﬁé

Denoting the transfer function from the disturbance ¢
to the controlled output z, corresponding to the state-
space model (16), as

[I>

T3 (o) & Ci(olen — AZ) ' By + D3, (18)
this paper addresses the following problem:

Multiobjective Design: Given positive scalars s
and a and a convex set M, defined in Equation (7),
find constant matrices A., B., and F', parametrizing
the controller (15), that solve the following con-
strained optimization problem

72,70012{23“ @272 % QocTloe

s.t.

Ho: sup  [|La(T3 (o) = D) Ral3 < 72 (19)
Mﬁ,neMsyn

Hoo: sup  [|LocT3(0)Roo % < oo
Mg, EMsyn

PP: \(A9) € D, VM5, € My,

where the matrices Lo, Ro, Lo, and R, are used to
select the desired input-output channels that need to
satisfy the required constraint in (19).

As discussed in the introduction, this problem is not con-
vex and is NP-hard. In the next section we will present
a new algorithm which can be used for finding a locally
optimal solution to the problem defined in (19). As most
local approaches, this approach requires an initially fea-
sible solution from which the local optimization is ini-
tiated. For the purposes of its initialization, a compu-
tationally fast approach based on LMIs for finding an
initially feasible controller is later on proposed in §4. A
summary of the complete algorithm is given in §5.



3 Locally Optimal Robust Controller Design

It is well-known that for systems with polytopic un-
certainty the output-feedback controller design prob-
lem can be written as BMIs in the general form (21)
(VanAntwerp and Braatz, 2000). In this section a
method for solving BMI problems is proposed. To this
end, define the following IV biaffine functions

BMI® (@, y) £ Fi§+

Ny N> N1 N2
§ (k) E (k) (k)

FiO x; + Foj Y; + E E F’L’j TiY;,
i=1 j=1 i=1 j=1

(20)

where FV = (FI)T i =0,1,...,N1,j =0,1,..., Ny,

k=1,..., M are given symmetric matrices. In this pa-
per we consider the following BMI optimization problem

min-~y, over x, y, and y

where 2,7 € RVt and y,7 € R™V? are given vectors with
finite elements. This problem is known to be NP-hard
(Toker and Ozbay, 1995). The bounds on the variables
x and y in (21) are included here for technical reasons
that will become clear shortly. The problem of selecting
these bounds in practice is not critical — taking the upper
bounds large enough (e.g. 101%), and the lower bounds
small enough is often sufficient. Notice that in this way
one could also ensure, for implementation reasons, that
the resulting controller does not have excessively large
entries in its state-space matrices.

It should also be pointed out that the BMI problem de-
fined in (21) actually addresses a wider class of problems
than those represented by (19), e.g. the design of reduced
order output-feedback control (Goh et al., 1996). How-
ever, the focus of the paper is restricted to (19) since
the initial controller design method, discussed later on
in §4, is developed only for the case of full order output-
feedback control problems.

Let us, for now, consider the feasibility problem for a
fixed v. Denote

BMI(M+1)(:1:,y) £ <Cv :13> + <d7 y> -
BMI(JW+2)(CC, y) = x T, BMI(M+3)(CC, Y)
BMIWMH) (z,y) £ y — 5, BMIWM ) (2, y)

(1>
[

_x7

(>

<

-Y,

and let N = M + 5. The feasibility problem is then

defined as

Find (z,y)
(FP): (22)
such that @p_, BMI® (z,y) < 0.

Define the following cost function

2

N +
vy (@, y) 2 [@BMI(’“)(@y)] >0. (23
k=1 F

From the definition of the projection [.|T, and from the
properties of the Frobenius norm we can write

U’Y(wa y) =

S| [BMI® @) .

2
N k
25N o (@, y).
F

It is therefore clear that

(FP) is feasible < 0 = minv,(x,y).
w’y

In this way we have rewritten the BMI feasibility prob-
lem (FP) as an optimization problem, where the goal is
now to find a local minimum of v,. However, the func-
tion v, (x,y) is not convex. Even worse, it may have
multiple local minima. Now, if (€ opt, Y, ) 18 @ local min-
imum for v, and is such that v, (Zopt, Y,pr) = 0, then
(Topts Yop) 18 also a feasible solution to (FP). However,
if (Topts Yope) 18 such that vy (Topt, Yop) > 0, then we
cannot say anything about the feasibility of (FP). The
idea is then to start from a feasible solution for a given ~,
and then apply the method of bisection over -y to achieve
a local minimum with a desired precision, at each iter-
ation searching for a feasible solution to (FP). A more

extensive description of this bisection algorithm is pro-
vided in §5.

Let us now concentrate on the problem of finding a local
solution to

min v, (x,y). (25)
w’y

The goal is to develop an approach that has a guaranteed
convergence to a local optimum of v, (x, y). To this end,
we first note that the function v, (z,y) is differentiable,
and we derive an expression for its gradient.

Theorem 5 With continuously differentiable G

RV s RI¥4, G = GT, and f : R — R defined aé
f(M) = |[[M]*||%, the function

(f o &) (v) =[G [F



is differentiable, and its gradient

T
V(foG)(v) 2 {a%’ 8%2, ..%} (f 0 G)(v),
s given by
0

5o (1 2G)(0) =2 (GO 5o-Glo) ). (20

PROOF. Using the properties of the projection [.]* we
infer for any symmetric matrices G and AG, that

fo(G+AG) = ||G+AG — [G+ AG]™ |3
— min |G+ AG - S|} < G+ AG ~ (6]}
= [[[G]* + AG|1% = [[[G]T[|F + 2([G] T, AG) + | AG| %
On the other hand,
fo(G+AG) =|G+AG - [G+AG]|%
= [[G]T +[G]” + AG — [G+ AG]™||%
> [[[GIF]1F + 2([G]F, AG) + 2([G], [G]7)
+2([GIT, =[G+ AG]™) > [I[G]F [ + 2([G]F, AG).

Thus we have f o (G + AG) = f o G+ 2([G]T, AG) +
o(||AG||F) for any symmetric AG.

Now, take AG(v) £ G(v + Av) — G(v). Since G(v) is
contlnuously differentiable it follows that

Glv+ Av) = +Z (G )A'ui+o(||Av|2).
Therefore
(foG)(v+Av) = (foG)(v)+

2%_:1 (<[G(v)]+, aamG(”)> Avi) + o[| Av]]2).

Hence (f o G) is differentiable and its partial derivatives
are given by the expressions (26). O

The partial derivatives of the function v, (x,y) can then
be directly derived using the result of Theorem 5:

1)7 T, y) = 22 < [BMI(k) T,y ] Fl(ol€> + ZF(k)

N
sy v (@ y) =2y < [BMI® (@, y)} JF Z FPa
k=1 =1

Note that these partial derivatives are continuous func-
tions (see Lemma 1), so that v, € C'. Note also, that a
lower bound on the cost function in (21) can always be
obtained by solving the so-called relaxed LMI optimiza-
tion problem (Tuan and Apkarian, 2000)

+(d,y),

subject to: x € [z,7],y € [y, 7], wi; € [w;;, Wij]

YLB = min(c, $>
.Y

N1 N2
Fo) + > Fmi+ Y Fyy,+ (27)
i=1 =1
N1 Ns !
SN FPwy <o0fork=1,2,...,M
=1 j=1
where w,; = min{gigj,L@j,@yj,@yj}, and w;; =

If this problem is not feasible, then the original BMI
problem is also not feasible.

Now that it was shown that the function v, is C! and
an expression for its gradient has been derived, the cau-
tious BFGS method (Li and Fukushima, 2001), a quasi-
Newton type optimization algorithm, could be used for
finding a local minimum of v, € C'. The convergence
of this algorithm is established in (Li and Fukushima,
2001) under the assumption that, (a) the level set Q =
(2,9 : vy(@y) < 0@, y®))} is bounded, (b)
vy (@, y) is continuously differentiable on €2, and (c) there
exists a constant L > 0 such that the global Lipschitz

condition holds:
T — T
Yy—y

For the problem considered in this section the level set
) is compact (see equation (21)), so that condition (a)
holds. Condition (b) was shown in Theorem 5. Condi-
tion (c) follows by observing that the projection [.|T is
Lipschitz, and hence, since BMI(k)(IB, y) is smooth, the
functions in partial derivatives dv,/dx; and dv, /0y,
satisfy a local Lipschitz condition. The compactness of
the set € then implies the desired global Lipschitz con-
dition.

M2 < L , Y(x,y), (&,7) € Q.

2

Hg(way) - g(j,/y

Note that the optimization problem discussed above
applies to a more general class of problems with smooth
nonlinear matrix inequality (NMI) constraints. How-
ever, finding an initially feasible solution to start the lo-
cal optimization is a rather difficult problem, for which
reason NMI problems fall outside the scope of this pa-
per. It also needs to be noted here that any algorithm
with guaranteed convergence to a local minimum could
be used instead of the BFGS algorithm.



In the next section we focus on the problem of finding an
initial feasible solution to the BMI optimization prob-
lem.

4 Initial Robust Multiobjective Controller De-
sign

In this Section, a two-step procedure is presented for
the design of an initial feasible robust output-feedback
controller. It can be summarized as follows:

Step 1: Design a robust state-feedback gain matrix
F such that the multiobjective criterion of the form
(19) is satisfied for the closed-loop system with state-
feedback control uw = F'z. This problem is convex and
is considered in Subsection §4.1.

Step 2: Plug the state-feedback gain matrix F', com-
puted at Step 1, into the original closed-loop system
(16), and search for a solution to the multiobjective
control problem, defined in Equation (19), in terms
of the remaining unknown controller matrices A. and
B.. This problem, in contrast to the one in Step 1
above, remains non-convex. It is discussed in §4.2.

In the remaining part of this Section we proceed with
proposing a solution to the problems in the two steps
above.

4.1 Step 1: Robust Multiobjective State-Feedback De-
sgn

The state-feedback case for the system (12) is equivalent
to taking CyA =1,, DyA5 = Onxnes Dﬁu = 0y, 5m, S0 that
y = x. Furthermore, we consider the constant state-
feedback controller © = Fx, which results in the closed-

loop transfer function

T (o) & DA+

_ 28
(C2 + DAF) (o, — (A® + BLF)) 1B§A. (28)

The following Theorem can be used for robust mul-
tiobjective state-feedback design for discrete-time and
continuous-time systems. The proof follows after rewrit-
ing Lemmas 3 and 4 for the closed-loop system (28) as
LMIs in Q = P!, with subsequent change of variables.
It will be omitted here (Scherer et al., 1997; Oliveira
et al., 2002).

Theorem 6 (State-Feedback Case) Consider the
system (12), and assume that CyA =1,, DyA5 = Onxnes

DyAu = Opxm- Consider the controller u = Fx resulting
in the closed-loop transfer function T4 (0), defined in

(28). Given Lo, Ry, Loy, and Ry, the conditions

sup || Lao(T5 (o)
M2, EMoyn

syn

sup || Lo T3 (0) R 1% < Yoo (29)
M2 EMsyn

syn

MA® + BEF) € D, VM, € Mgyn.

syn

- DzA§>R2”§ <72,

hold if there exist matrices Q = QT, W = WT, R =
RT, and L such that for alli = 1,...,N the following
LMIs hold

PP: (—Q) @ (Lp ® Q + Sym(Mp ® A;)) <0 (30)
R L,C;

Ho: (v2 — trace(R)) ®

[ —Sym(Al) B£7iR2

>0, (cont. case)

_Q A; Be iRy (31)
e Q 0 >0, (discr. case).
[ o o I
[ —Sym(A;) BeiRoo  CTLTL,
x I RLDL LT |@
* * Yool

Q > 0 (continuous case)

Hoo: { [ Q A; BeiRoo 0 (32)
* 0 CrrT
@ to >0
« « I RLDT LT
* ok * Yool

(discrete case)

where A; = A;Q+ B,iL and C; £ C,iQ+ D,y ;L. The
state-feedback gain matriz F is then given by F = LQ™".

4.2 Step 2: Robust Multiobjective Output-Feedback De-
s1gn

In what follows we assume that the optimal state-
feedback gain F' has already been computed at Step
1. In contrast to Step 1, the problem defined in Step
2 of the algorithm at the beginning of §4 is certainly
non-convex in the variables P, W, A., and B, since
application of Lemmas 3 and 4 to the closed-loop system
in Equation (17) leads to non-linear matrix inequalities
due to the fact that the variables A, and B, appear in
the closed-loop system matrices A% and B4 (for which
reason the last two are typed in boldface).



Note that the function V = 7 PZ% acts as a Lyapunov
function for the closed-loop system. This can easily be
seen by observing that the matrix inequalities in Lem-
mas 3 and 4, when applied to the closed-loop system (16)
imply (A5)TPA~5 — P < 0 for the discrete-time case,
and PA% + (A5)T P < 0 for the continuous-time case.

The purpose of this section is to show how by intro-
ducing some conservatism by means of constraining the
Lyapunov matrix P to have block-diagonal structure

P=XaY, (33)

the nonlinear matrix inequalities in question can be writ-
ten as LMIs. However, it can easily be seen that a neces-
sary condition for the existence of a structured Lyapunov
matrix of the form (33) for A5 defined in (17) is that
the matrix A2 is stable for all Ms&z‘/n € Myn. Luckily,
this restriction can be removed by introducing a change
of basis of the state vector of the closed-loop system

‘ C] : (34)

This changes the state-space matrices of the closed-loop
system to

AL =TAAT =

AD 4 BAF -BAF
A% 4+ BSF — BeC — Ac — BeDJ,F Ac+ BeDJ, F — BYF
A
_A B
Bu =TBi = BA ;3 DA]
& Peye

C3 =CAT = |2 4 DAF —DAF|
D4 = D5 = D%

Now, searching for a structured Lyapunov matrix for
this (equivalent) closed-loop system only necessitates
the stability of the matrix (A 4+ B2F) for all M3, €

Myn, which is guaranteed to hold by the design o%{ %he
state-feedback gain F'.

We are now ready to present the following result.

Theorem 7 (Output-Feedback Case) Consider the
closed-loop system (16), with transfer function T4 (o)
defined in Equation (18), formed by interconnecting the
plant (12) with the dynamic output-feedback controller
(15), in which the state-feedback gain matriz F' is given.
Then given matrices Lo, Ra, Lo, and R, of appropriate

dimensions, the conditions

sup || La(T7' (o) —
M5, eEMan

sup || Loo T3 (0) Roo 1% < Yoo (35)
MZ, EMan

MNAS) € D, VM5, € M.

Dg)Ral3 < 72,

hold if there exist matrices W = wl x=x%"y =
YT, Z and G such that the following system of LMIs has
a feasible solution for alli =1,... N

PP: (-P)® (Lp ® P+ Sym(Mp ® M;)) <0, (36)
W Ly,

Ho: (v2 — trace(W)) @

[ —Sym(M;) NiR,

>0 (cont. case)

[P M, N;R, (37)
e P 0 >0 (discr. case).
e o I

[ —Sym(M,;) N;R, QTLT

o I RLDI LT | &

i ° ) Yool

P > 0 (continuous case)

o P 0 Q?L&

>0
e o [ RIDL.LT
o o ° Yool

(discrete case).

where the matrices M ;, N;, P, and Q; are defined as

M, 2 X(A; + By F)
Y (A + BuiF) — Z — G(Cyi + DyuiF)
~XB,;F
Z +GDyy ;F —YB,F | (39)
N A X Bg, ] L [X ]
Y Be;, — GDye s Y

Qi £ |:Cz,z +Dzu,zF _Dzu,sz| .

Furthermore, the controller (15) with Ac = Y ' Z and
B. =Y 'G achieves (35).

PROOF. For the sake of brevity, only an outline of the



proof is given. Application of Lemmas 3 and 4 to the
closed-loop system matrices results in the bilinear terms

PAS, and PB?l from the matrices MCT(AQ, B?‘l, p)

and Mpr(A5, B5, P), defined in (9). Clearly, with P
defined as in (33) we can write

PAA — X (A% + B&F)
“ | Y(4% + BAF) - YB.(C2 + DAF) - Y A,
~XBAF
YA.+YB.DAF - YBAF
A
PBS = X B :

cl —

A A
YBZ —YB:D,;
Making the one-to-one change of variables
{YAc YBC} = {Z G}

results in Pﬁcl,i = M;, and PBcM = IN;, with the
matrices M; and IN; defined as in (39), being linear in
the new variables. O

5 Summary of the Approach

We next summarize the proposed approach to robust
dynamic output-feedback controller design.

Algorithm 1 (Robust Output-Feedback Design)

Use the result in Theorem 7 to find an initially feasi-
ble controller, represented by the variables (xo, Yy, Y0)
related to the corresponding BMI problem (21). Set

(sc*,y*fY[(Jo)g) = (®0,Yg,70). Solve the relaxed LMI

problem (27) to obtain ’yEOE);. Select the desired precision
(relative tolerance) TOL and the mazimum number of
iterations allowed kyqr. Set k = 1.

,Y<k71>+,y<k71>
Step 1. TAKE ~, = -YE—-LE  AND SOLVE THE

2
PROBLEM (Zk,Yy}) arg minv,, (¢,y) STARTING
WITH INITIAL CONDITION (z*, y*).
(k)

Step 2. IF vy, (T, y,) = 0 THEN SET (z*,y*, v 5)

k
(K, Yy, V&) ELSE SET W(Lz; = Vg

Step 3. Ir 75, — 4" < ToLlyFL| OR k > ks
THEN STOP ((a;*,y*,y((]’%) IS THE BEST (LOCALLY)
FEASIBLE SOLUTION WITH THE DESIRED TOLER-
ANCE) ELSE SET k < k+ 1 AND GO TO STEP 1.

Note, that y;p at each iteration represents an infeasi-
ble value for v, while vy p - a feasible one. At each it-
eration of the algorithm the distance between these two
bounds is reduced in two. It should again be noted that
if for a given ~; the optimal value for the cost function
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’ Parameter: ‘ Sym. ‘ Value:
gearbox ratio N -260.6
joint angle of inertial azis Q variable
effective joint input torque T;‘f f variable
motor torque constant K 0.6
the damping coefficient 154 [0.36, 0.44]
deformation torque of gearbozx | Tyes variable
inertia of the input axis Im 0.0011
inertia of the output system Ison 400
joint angle of the output axis € variable
motor current Te variable
spring constant c [117000, 143000]

Table 1
The nominal values of the parameters in the linear model of
one joint of the SRM.

Uy, (T, Yy,) is nonzero then the algorithm assumes -y as
infeasible. Since the algorithm converges to a local min-
imum it may happen that the original BMI problem is
actually feasible for this 74 (e.g. corresponding to the
global optimum) but the local optimization is unable
to confirm feasibility — an effect that cannot be circum-
vented

6 An Illustrative Example

6.1 Locally Optimal Robust Multiobjective Controller
Design

The example considered consists of a linear model of
one joint of a real-life space robot manipulator (SRM)
system, taken from (Kanev and Verhaegen, 2000). The
state-space model of the system is given by

0 1 0 0 0
0 0 —f— 0 Lo

i(t) = N2 I, z(t)+ | Mmoo u(t)
0 0 0 1 0
0--8B __ ¢ _ _c _ B _ K
- IS(J’IL N2I7n I‘SO’!L ISO’IZ NI7Y7,
0ONOO

y(t) = x(t) + &(t)
1010

) = [1010]a®+&®)

The system parameters are given in Table 1. Note that
the damping coefficient 8 and the spring constant c are
considered uncertain. A Bode plot of the open-loop sys-
tem for different values of the two uncertain parameters
is given in Figure 1.

The objective (see Figure 2) is to find a controller that
achieves for all possible values of the uncertain parame-
ters a disturbance rejection of at least 1:100 for constant



Bode plots of perturbed open-loop system u— Y,
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Fig. 1. Bode plot of the perturbed open-loop transfer from

u to ya.
¥, augmented system
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d

Fig. 2. Closed-loop system with the selected weighting func-
tion Wp(s).

4 SRM

Controller

Inverse wighting function Wp(s) and closed-loop sensitivity S(s)

107 v s W) T :

Log Magnitude

frequency (rad/sec)

Fig. 3. Sensitivity function of the closed-loop system for the
nominal values of the parameters and the inverse of the
weighting function Wp,.

disturbances on the shaft angular position (i.e. z(t)) of
the motor (such as, e.g., load), and a bandwidth of at
least 1 [rad/sec]|. This can be achieved by selecting the
following performance weighting function (see the upper
curve on Figure 3) W,(s) = 1/(s + 0.01) and then re-
quiring that ||W,(s)S(s)|l < 1 holds for all uncertain-
ties, where S(s) is the transfer function from the distur-
bance d to the controlled output z = ys. In other words,
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the design specifications would be achieved with a given
controller K (s) if the closed-loop transfer function from
the disturbance d to the z lies below the Bode magni-
tude plot of W, !(s).

It should be noted here that this problem is of a rather
large scale: the BMI optimization problem (21) con-
sists of 4 bilinear matrix inequalities, each of dimension
12 x 12, and each a function of 95 variables (40 for the
controller parameters, and 55 for the closed-loop Lya-
punov matrix). Also note, that the number of compli-
cating variables, defined in (Tuan and Apkarian, 2000)
as min{dim(x), dim(y)}, in this example equals 40. This
makes it clear that the problem is far beyond the ca-
pabilities of the global approaches to solving the under-
lying BMI problem, which can at present deal with no
more than just a few complicating variables.

First, using the result in Theorem 7 an initial controller
was found achieving an upper bound of Yo jni+ = 1.0866,
which was subsequently used to initialize the newly pro-
posed BMI optimization (see Algorithm 1). The toler-
ance of ToL = 103 was selected. The new algorithm
converged in 10 iterations to 7. npw = 0.6356. The
computation took about 100 minutes on a computer with
a Pentium IV CPU 1500 MHz and 1 Gb RAM.

Next, four other algorithms were tested on this exam-
ple with the same initial controller, the same tolerance
and the same stopping conditions. These algorithms
were Rank Minimization Approach (RMA) (Ibaraki
and Tomizuka, 2001), the Method of Centers (MC)
(Goh et al., 1995), the Path-Following Method (PATH)
(Hassibi et al., 1999), and the Alternating coordinate
method (DK) (Iwasaki, 1999). The results are summa-
rized in Table 2. From among these four approaches only
two were able to improve the initial controller, namely
the MC which achieved 7Yoo, psc = 0.8114 in about 610
minutes, and the DK iteration that terminated in about
20 minutes with v, px = 0.8296. The MC method was
unable to improve the the performance further due to
numerical problems. Similar problems were reported in
(Fukuda and Kojima, 2001). The PATH converged to
an infeasible solution due to the fact that the initial
condition is not “close enough” to the optimal one, so
that the first order approximation that is made at each
iteration is not accurate. Finally, the RMA method was
also unable to find a feasible solution.

This experiment shows that after initializing all BMI ap-
proaches with the same controller, the newly proposed
method outperforms the other compared methods by
achieving the lowest value for the cost function. On the
other hand, the initial controller itself also achieves a
value for the cost function that is rather close to the op-
timal costs obtained by the DK and the MC methods,
i.e. these methods were not able to significantly improve
the initial solution. This implies that the initial con-
troller design method could provide a good initial point



method | achieved 7yopt
NEW 0.6356
RMA -
MC 0.8114
PATH infeas.
DK 0.8296

Table 2
Performance achieved by the five local BMI approaches ap-
plied to the model of SRM.

Upper and lower bounds at each iteration.

- DK: 0.8296
- MC:0.8114
___ NEW: 063561

1 2 3 4 5 6 7 8 9 10
iteration number

Fig. 4. Upper and lower bounds on v during the BMI opti-
mization.

for starting a local optimization.

For the newly proposed method, the upper and the lower
bounds on v at each iteration are plotted in Figure 4.
Note that at each iteration the upper bound represents
a feasible value for v, and the lower bound — an infeasi-
ble one. Also plotted on the same figure are the values
achieved by the DK iteration and the MC methods. We
note that the difficulties that some of the other local ap-
proaches experienced is mainly due to the large scale of
the problem that causes numerical difficulties and very
slow convergence.

The optimal controller obtained after the execution of
the newly proposed method has the form (15). With this
optimal controller, the closed-loop sensitivity function
is depicted in Figure 3, together with the inverse of the
selected performance weighting function W, ! (s). It can
be seen from the figure that the sensitivity function re-
mains below W~ 1(s), implying that the desired robust
performance has been achieved.
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7 Conclusions

In this paper a new approach to the design of locally opti-
mal robust dynamic output-feedback controllers for sys-
tems with structured uncertainties was presented. The
uncertainty is allowed to have a very general structure
and is only assumed to be such that the state-space ma-
trices of the system belong to a certain convex set. The
approach is based on BMI optimization that is guaran-
teed to converge to a locally optimal solution provided
that an initially feasible controller is given. This algo-
rithm enjoys the useful properties of computational effi-
ciency and guaranteed convergence to a local optimum.
An algorithm for fast computation of an initially feasi-
ble controller is also provided and is based on a two-step
procedure, where at each step an LMI optimization prob-
lem is solved — one to find the optimal state-feedback
gain and one to find the remaining state-space matrices
of the output-feedback controller. The design objectives
considered are Hs, Hoo, and pole-placement in LMI re-
gions. The approach was tested on a model of one joint of
a real-life space robotic manipulator, for which a robust
Hoocontroller was designed. In addition, the proposed
approach was compared to several existing approaches
on a simpler BMI optimization and it became clear that
it can act as a good alternative for some applications.
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