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Abstract. We consider coordinated traffic control for networks consisting of both urban roads and freeways.

One of the main problems that has to be addressed when designing traffic control strategies for such networks

is that we should prevent a shift of problems from the urban network to the freeway network (or vice versa)

due to the applied control strategy.

First, we develop an integrated model to describe the evolution of the traffic situation in mixed urban

and freeway networks. For the freeways we use the METANET macroscopic traffic flow model. For the

urban traffic a new model is developed that is based on an earlier model by Kashani. Furthermore, we also

provide model equations that describe the connection between the two models via on-ramps and off-ramps.

Next, we present a model predictive control framework for mixed urban and freeway networks. The control

objective used in this paper is the total time spent by all vehicles in the network, and the control measures

are the urban traffic signals (but the method can easily be extended to include other objectives and/or control

measures). Finally, we illustrate our approach with a synthetic case study that captures the essential elements

of a mixed urban and freeway network.
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1 INTRODUCTION

In this paper we consider traffic control for networks containing both urban roads and freeways.

Freeway traffic control measures such as ramp metering often allow a better flow, and higher speeds

and throughput on the freeway at the cost of queues at the on-ramp, which may spill back and block urban

roads. On the other hand, many cities try to get the vehicles out of the urban road network as soon as possible,

thereby displacing the congestion to the neighboring ring roads and freeways. This shift of congestion

between urban and freeways, and vice versa, is often made worse by the fact that in many countries urban,

regional, and freeway roads are managed and controlled by different traffic management bodies, each with

their own traffic policies and objectives. However, the situation sketched above is certainly not optimal.

By considering an integrated and coordinated approach, the performance (taking into account the trade-

off between the often conflicting objectives and interests of different traffic management bodies) of the

overall network can be significantly improved. Therefore, our goal is to develop an integrated traffic control

approach for coordinated control of mixed urban and freeway traffic networks that makes an appropriate

trade-off between the performance of the urban and freeway traffic operations and that prevents a shift a

problems from urban roads to freeways, and vice versa.

For urban traffic networks, systems such as UTOPIA/SPOT and SCOOT use an integrated approach

that coordinates the operation of several traffic signal set-ups in a city to obtain a smoother flow and/or a

better circulation. For freeway traffic networks several authors (4, 7, 11, 12) have considered a coordinated

approach in which many different control measures (such as ramp metering, route guidance, variable speed

limits, etc.) are coordinated on a larger scale, which results in a better overall performance. However, up

to now little attention has been paid to integrated control of networks consisting of both urban and freeway

roads.

We propose to use a model predictive control (MPC) approach (2, 9), which has already been suc-

cessfully applied to coordinated control of freeway networks (1, 5). As MPC requires a model to predict the

future evolution of the traffic flow, a first requirement is a model that describes the evolution of the traffic in

a mixed urban/freeway traffic network. In this paper we will develop a macroscopic traffic model for net-

works containing both urban roads and freeways. We opt for a macroscopic model that yields a sufficiently

accurate description of the evolution of the traffic flows for given traffic demands, traffic conditions, and

output restrictions on the one hand, and that can be simulated sufficiently fast — so that it can be used in

on-line traffic control — on the other hand. In particular, we use an extended version of the METANET

(10, 13) traffic flow model to model the freeway traffic. For the urban network we use a modified and ex-

tended version of the Kashani model (6). Furthermore, we also model the interface between the urban and

the freeway model. This results in an integrated model for mixed freeway and urban traffic networks, which

is especially suited for use in a model predictive traffic control approach. We propose such an approach, and

we illustrate it using a simple synthetic case study.

2 MODEL FOR FREEWAY TRAFFIC: METANET

To model the evolution of the traffic flows on the freeway, we have selected the METANET macroscopic

traffic flow model developed by Messmer and Papageorgiou (10, 13). This model provides a balanced trade-

off between accuracy and computational complexity (Note that as the MPC strategy discussed in Section 6

involves on-line simulation and optimization, we require a model that can be simulated sufficiently fast).

For the sake of completeness, we will briefly present the (destination-independent) METANET

model below, with a focus on the parts of the model that are required to model the case study of Section

7 and to interpret the simulation results. For a more detailed explanation we refer to (10, 13) and (1, 5),

where some modifications to the METANET model are proposed. Note that for simplicity we assume that



Van den Berg, De Schutter, Hegyi, Hellendoorn 4

the control measures do not influence the route choice of the drivers such that we can to use the destination-

independent model. However, the approach can also be extended so as to include route choice.

The METANET model describes the network as a directed graph, with links and nodes. A link

corresponds to (parts of) freeway stretches that have uniform characteristics, like maximum capacity and

number of lanes. Each link f is divided into Nf segments with length Lf . In the METANET model the

following variables are used:

f : index of the freeway link

m : segment index

Tf : time step of the freeway simulation (h; a typical value is about 10 s ≈ 0.0028 h)

k : freeway time step counter

Nf : number of segments in freeway link f
λf : number of lanes in freeway link f
Lf : length of the segments in link f (km)

τ , κ, af , η : constant parameters reflecting street geometry, vehicle characteristics, drivers’ behav-

ior, etc.

ρcrit,ff : critical density (veh/km/lane) in link f
ρmax : maximum density (veh/km/lane)

vfree,ff : speed that the vehicles tend to drive at under free flow conditions (km/h/lane) in link f
Qf : capacity of the segments of freeway link f (veh/h)

ρf,m(k) : density of segment m of freeway link f at time t = kTf (veh/km/lane)

vf,m(k) : speed in segment m of freeway link f at time t = kTf (km/h)

wo(k) : length of the queue waiting on on-ramp o at time t = kTf (veh)

qarr,orig,f (k) : flow that enters freeway link f on the mainstream origin in the time interval [kTf , (k+
1)Tf) (veh/h)

qdep,f,m(k) : flow leaving segment m of freeway link f in [kTf , (k + 1)Tf) (veh/h)

dorigin,f (k) : flow arriving at the origin of freeway link f in [kTf , (k + 1)Tf) (veh/h).

Remark 1: As we will explicitly make a difference between the simulation time step Tf for the freeway

part of the network, the simulation time step Tu for the urban part of the network, and the controller sample

time Tc, we will also use three different counters for the freeway network model (k), the urban model (l),
and the controller (z). For the sake of simplicity, we assume that Tu is an integer divisor of Tf , and that Tf

is an integer divisor of Tc:

Tf = T Tu, Tc = LTf = LT Tu ,

with T and L integers. ✸

In the METANET model the traffic state in segment m of link f at time t = kTf is described with the

macroscopic variables density ρf,m(k), speed vf,m(k), and flow qdep,f,m(k). These variables evolve as

follows:

ρf,m(k + 1) = ρf,m(k) +
Tf

Lfλf,m

[qdep,f,m−1(k)− qdep,f,m(k)] (1)

qdep,f,m(k) = ρf,m(k)vf,m(k)λf (2)

vf,m(k + 1) = vf,m(k) +
Tf

τ
(V (ρf,m(k))− vf,m(k))

︸ ︷︷ ︸

relaxation

+

Tf

Lf

vf,m(k) [vf,m−1(k)− vf,m(k)]

︸ ︷︷ ︸

convection

−
ηTf [ρf,m+1(k)− ρf,m(k)]

τLf [ρf,m(k) + κ]
︸ ︷︷ ︸

anticipation

, (3)



Van den Berg, De Schutter, Hegyi, Hellendoorn 5

where V (ρf,m(k)) is given by

V (ρm,f (k)) = vfree,f exp

[

−
1

af

(
ρf,m(k)

ρcrit,f

)af
]

.

Origins are described with a flow that enters and a queue waiting to enter:

qdep,f,origin(k) = min

[

dorigin,f (k) +
wf (k)

Tf
, Qf

ρmax − ρf,1(k)

ρmax − ρcrit,f

]

wf (k + 1) = wf (k) + Tf(dorigin,f (k)− qarr,orig,f (k)) .

Now we describe the node equations. Traffic enters a node n from freeway links f ∈ On according to

qarr,n(k) =
∑

f∈On

qdep,f,Nf
(k) ,

where On is the set of freeway links entering node n, and qarr,n(k) the total flow arriving at the node. The

traffic leaves a node n towards freeway links f ∈ Dn according to

qdep,n,f (k) = βn,f (k)qarr,n(k) ,

with Dn the set of freeway links leaving the node, and βn,f (k) the turning rate from node n towards link f
in the period [kTf , (k + 1)Tf).

3 URBAN MODEL

Several authors have already developed models to describe traffic flows in urban traffic networks (3, 6, 8).

Recall that we will use the model for on-line traffic control, and that we have to select a model that offers an

appropriate trade-off between accuracy and computational complexity.

Our model to describe the traffic in the urban parts of the network is based on the Kashani model

(6), but it has the following extensions:

• We use horizontal queues, which allows us to take into account the blocking effect that arises when a

link is full of vehicles and other vehicles from an upstream intersection cannot enter anymore.

• We use turning-direction-dependent queues, which correctly model the queue dynamics if one turning

direction is blocked and the other directions are free.

• The Kashani model uses the cycle time of the traffic signal set-up as the simulation time step. Such

a large simulation time step poses problems when we want to model the blocking effect accurately.

Furthermore, as we also want to allow different cycle times for different traffic signal installations, we

will use a fixed simulation step Tu (typically 1 to 5 s) for the urban network that is independent of the

cycle times of the traffic signal installations.

The new model is described using the following parameters (see also Figure 1):

s, σ : index of the intersection

Tu : time step used for the urban simulation (h)

l : urban time step counter

os,i : origin number i of intersection s
Os : set of origins of intersection s
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ds,j : destination number j of intersection s
Ds : set of destinations of intersection s
xoi,s,dj (l) : queue length at time t = lTu in number of vehicles of the queue at intersection s, for

traffic that goes from origin oi to destination dj
ls,σ : link connecting intersections s and σ
βoi,s,dj (l) : relative fraction of the traffic arriving from origin oi on intersection s that wants to go

to destination dj in the time interval [lTu, (l + 1)Tu)
Ls,σ : length of link ls,σ in number of vehicles

Lkm,s,σ : length of link ls,σ (km)

Ss,σ(l) : available free space of link ls,σ at time t = lTu in number of vehicles (i.e., the buffer

capacity Ls,σ minus the number of vehicles that are already present at time t = lTu)

marr,s,dj (l) : number of vehicles arriving at the tail of the queue in link ls,dj during [lTu, (l+ 1)Tu)

marr,oi,s,dj (l) : number of vehicles coming from intersection oi arriving at the tail of the queue in link

ls,dj during [lTu, (l + 1)Tu)
mdep,oi,s,dj (l) : number of vehicles departing from link loi,s towards destination dj in [lTu, (l + 1)Tu)

mdep,s,dj (l) : number of vehicles departing from intersection s towards link ls,dj in [lTu, (l + 1)Tu)
goi,s,dj (l) : indicates whether the traffic sign at intersection s for the traffic going from oi to dj is

green (1) or red (0) during [lTu, (l + 1)Tu)
Qoi,s,dj : capacity of intersection s for traffic arriving from oi and turning to dj (veh/s)

vs,σ : mean speed for the urban traffic in link ls,σ (km/h)

δs,σ(l) : time required to reach the end of the queue waiting in link ls,σ at time t = lTu

Lvehicle : average length of the vehicles (m)

o : index of freeway node connected to on-ramp or off-ramp

ws,o,n(l) : queue length in number of vehicles on on-ramp o coming from intersection s waiting

to depart towards freeway node n at time t = lTu .

The new model is formulated as follows. The traffic leaving the link loi,s towards destination dj is given by

mdep,oi,s,dj (l) =

{

0 if goi,s,dj (l) = 0,

min
(
xoi,s,dj (l) +marr,oi,s,dj (l), Ss,dj (l), TuQoi,s,dj

)
if goi,s,dj (l) = 1.

The free space Ss,dj in link ls,dj is equal to the number of vehicles that can enter the link. The free space

is an implicit constraint on the number of vehicles that can depart towards each link, mdep,oi,s,dj , and it can

never be larger than the link length. It is computed as

Ss,dj (l + 1) = Ss,dj (l)−mdep,s,dj (l) +
∑

oi∈Os

mdep,oi,s,dj (l) . (4)

The total flow towards one destination consists of several flows from different origins. These different flows

do not have to have the same value because not all the queues from which they are coming have the same

length and not all incoming flows have the same priority to enter the link. To illustrate how the effective

values of mdep,oi,s,dj (l) can be computed we assume there are two origins, and so two queues from which

vehicles want to drive into the same link. Let mdep,int,1(l) and mdep,int,2(l) denote the number of vehicles

wishing to enter the link ls,dj from respectively origin 1 and origin 2. If we assume without loss of generality

that mdep,int,1(l) ≤ mdep,int,2(l), then the effective values for mdep,1(l) and mdep,2(l) can be computed as

follows:

• if mdep,int,1(l) +mdep,int,2(l) ≤ Ss,dj (l), then

mdep,1(l) = mdep,int,1(l) and mdep,2(l) = mdep,int,2(l) .



Van den Berg, De Schutter, Hegyi, Hellendoorn 7

• if mdep,int,1(l) +mdep,int,2(l) ≥ Ss,dj (l), then

{

mdep,1(l) = mdep,int,1(l) and mdep,2(l) = Ss,dj (l)−mdep,int,1(l) if mdep,int,1(l) ≤
1
2Ss,dj (l),

mdep,1(l) = mdep,2(l) =
1
2Ss,dj (l) if mdep,int,1(l) ≥

1
2Ss,dj (l).

The extension to a link with more queues with vehicles waiting to enter it is straightforward.

The traffic arriving at link ls,dj can be computed as

mdep,s,dj (l) =
∑

oi∈Os

mdep,oi,s,dj (l) .

These vehicles drive from the beginning of the link ls,dj towards the tail of the queue waiting on the link.

This gives a time delay δs,dj (l):

δs,dj (l) = ceil

(
Ss,dj (l)Lvehicle

vs,dj

)

, (5)

where ceil(x) with x a real number denotes the smallest integer larger than or equal to x. The traffic arriving

at the tail of the queue should be added to the traffic that arrived in the link in earlier time steps but needed

more time to reach the tail of the queue. This results in:

marr,s,dj (l + δs,dj (l))new = marr,s,dj (l + δs,dj (l))old +mdep,s,dj (l) .

The traffic reaching the tail of the queue in link ls,dj divides itself over the sub-queues according to the

turning rates βoi,s,dj (l). The number of vehicles arriving at the end of each turning-direction-dependent

sub-queue is then given by:

marr,oi,s,dj (l) = βoi,s,dj (l)marr,oi,s(l) .

Finally, the sub-queue lengths are updated as follows:

xoi,s,dj (l + 1) = xoi,s,dj (l) +marr,oi,s,dj (l)−mdep,oi,s,dj (l) .

4 ON-RAMPS AND OFF-RAMPS

Both the urban model and the freeway model have now been presented. The next step is to make the

connection between the two models. This connection consists of on-ramps and off-ramps.

Recall that we assume that the freeway time step is an integer multiple of the urban time step

(cf. Remark 1):

Tf/Tu = T ,

with T is a positive integer. Hence, at a given time t = lTu = kTf the urban time counter l and the freeway

counter are related by l = Tk.

4.1 On-ramps

Consider an on-ramp o that connects intersection s of the urban network to node n of the freeway network.

The traffic that enters the on-ramp from the urban network is given by mdep,s,n(l). This traffic has a delay

given by δs,n(l), and is determined similarly as in equation (5).

The vehicles arrive at the tail of the on-ramp queue. The queue length ws,o,n(l) is computed as

ws,o,n(l + 1) = ws,o,n(l) +marr,s,o,n(l)−mdep,s,o,n(l) .
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The number of departures at the front of the on-ramp queue depends on the available space on the freeway,

which space depends on the density on the first segment of freeway f downstream of node n. This results

in a maximum flow that can leave the on-ramp:

qdep,max,o,n(k) =







Qf

(

1−
ρf,1(k)− ρcrit,f
ρmax − ρcrit,f

)

if ρf,1(k) > ρcrit,f ,

Qf otherwise.

The flow qdep,o,n(k) that enters the freeway is then given by

qdep,o,n(k) = min




1

Tf



ws,o,n(kT ) +

(k+1)T−1
∑

l=kT

marr,s,o,n(l)



 , qdep,max,o,n(k)



 .

This flow should be translated into the number of vehicles that leaves the on-ramp. This is done by distribut-

ing the flow equally over the urban time step:

mdep,s,o,n(l) =
qdep,o,n(k)Tf

T
for l = Tk, ..., T (k + 1)− 1 .

The free space Ss,o(l) is also computed using equation (4).

4.2 Off-ramps

Consider the off-ramp o that connects freeway node n to urban intersection s. When it is assumed that no

vehicle can enter and leave the link in one time freeway step, the departing traffic does not depend on the

arriving traffic. Therefore, the departing traffic from intersection s can be computed first, and afterwards the

traffic entering the link lo,s can be computed.

The flow leaving the freeway cannot be larger than allowed by the free space on the off-ramp. This

free space depends on the length of the off-ramp, on the queue currently waiting on it, and on the traffic that

is going to leave the link lo,s during the period [kTf , (k+1)Tf). The flow that wants to enter the off-ramp is

a fraction of the flow on the freeway:

qdep,demand,n,s(k) = βn,s(k)qdep,f,Nf
(k) ,

where βn,s(k) denotes the turning fraction. This flow is not always able to enter the off-ramp, due to the

maximum capacity of the off-ramp, Qn,o,s, and the free space on the off-ramp, So,s. This free space in fact

varies over the time interval [kTf , (k + 1)Tf), as vehicles are leaving at the front of the queue during the

time interval, and so the free space grows. This results in the following expression for the actual flow that

arrives at the off-ramp from the freeway:

qdep,n,o(k) = min



qdep,demand,n,s(k), Qn,o,s,
1

Tf

[

So,s(l) +
l+T−1∑

ℓ=l

∑

dj∈Ds

mdep,o,s,dj (ℓ)

]


 .

The flow entering the off-ramp is translated into the number of vehicles per urban time step:

mdep,o,s(l) =
qdep,n,o(k)Tf

T
for l = kT + 1, . . . , (k + 1)T .

This traffic undergoes a delay δo,s(l) and then arrives at the tail of the queue in the urban network.
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A constraint for the leaving flow in METANET can be implemented by adjusting the flow of the

incoming traffic. The flow is computed using equation (2). A way to influence the flow is changing the

speed that is used to compute this flow. This speed can be adapted as follows:

vf,Nf
(k)new =







vf,Nf
(k)old if qdep,demand,n,s(k) ≤ qdep,n,o(k),

vf,Nf
(k)old

qdep,n,o(k)

qdep,demand,n,s(k)
otherwise,

where vf,Nf
(k)old is the value originally computed using equation (3). The density of the off-ramp is

computed with:

ρoff,o(k) =
Ln,s − Sn,s((k + 1)T − 1)

Lkm,n,s

. (6)

5 OVERALL MODEL

If we combine the model equations presented in Sections 2–4 for the freeway network, the urban network,

and their interface respectively, we get a model for the mixed urban and freeway network.

Note that to be able to compute all the variables, some attention should be payed to the order

in which they are determined. We will now briefly discuss the order in which the equations should be

processed. For the current time t = kTf = lTu all the variables are assumed to be known. These variables

are: density, speed, flows, and origin queue lengths for the freeways, queue lengths, free space and arriving

vehicles for the urban network, and queue lengths and free space for the ramps. To compute the values of

the variables for the next time step, we apply the following computation order:

1. Simulate the urban traffic (with the on-ramp outflows and off-ramp inflows excluded) for the urban

time steps l, ..., l + T − 1. This also gives the arrivals on the on-ramps and the traffic leaving the

off-ramps, which makes it possible to compute the free space on the off-ramps.

2. Compute the on-ramp traffic. The amount of traffic that will enter the freeway from the on-ramps,

qdep,o,n(k) is distributed evenly over the whole freeway time step, and used to compute the evolution

of the queue length on the on-ramp.

3. Compute the off-ramp traffic. The traffic that is able to enter the off-ramp is computed based on the

traffic that wants to enter it and the amount of free space that is available at the end of the period, i.e.,

at urban time step l = (k + 1)T − 1.

4. Now the freeway traffic can be simulated. For the next time step (i.e., the (k + 1)st) the densities and

speeds are determined. The flow qdep,n,o(k + 1) that wants to enter the off-ramp is computed.

This order of computing makes it possible to simulate the whole network without redundant computations

and predictions.

6 CONTROL STRATEGY

6.1 Model predictive control

We will apply a model predictive control (MPC) strategy for coordinated traffic control of mixed urban

and freeway networks. MPC (2, 9) is an on-line optimization-based controller design procedure that has its

roots in the process industry. In general, MPC offers the following features and advantages, which are also

relevant for traffic control:
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• MPC is a model-based controller design procedure that can easily handle multi-input multi-output

processes.

• It is an easy-to-tune method: in principle only a few parameters have to be tuned.

• It can handle constraints on the inputs and the outputs of the process in a systematic way during the

design and the implementation of the controller.

• MPC can handle structural changes, such as sensor or actuator failures, and changes in system param-

eters or structure, by adapting the model and by using a moving horizon approach, in which the model

and the control strategy are regularly updated.

In (1, 5), we have already extended MPC to coordinated control of freeway networks while retaining the

advantages mentioned above. Below we will describe how MPC can be used for the integrated control of

mixed urban/freeway traffic networks using the integrated urban/freeway traffic model of Sections 2–4 as

the prediction model.

The goal of MPC is to find the control signal that minimizes the cost function over a given prediction

period. The cost function should give an indication for the performance of the system. To compute the

control signal that minimizes the cost function, the MPC approach uses a model to predict of the behavior

of the traffic. We use the model described in Sections 2–4 as the prediction model. Note, however, that the

MPC approach is generic so that we could also work with other traffic flow models.

The MPC approach proceeds as follows. Assume we are at time t = zTc where Tc is the controller

time step (typically 1 to 5 min). Now a model of the system is used to predict the behavior of the system for

the period t = [zTc, (z +Np)Tc) defined by the prediction horizon Np. When the optimal control signal is

determined, the first step of it is applied to the system. Then a new situation arises, and the whole process is

started again, with the horizons shifted one step ahead. This is called the receding horizon principle.

6.2 Control signal, cost function, and constraints

The control signal contains the offsets of the phases of each intersection, the durations of the green times,

and the cycle time. In a separate control module the offsets and durations of the green times will be translated

into the binary signals goi,s,dj .

We choose the total time spent (TTS) as cost function because it can easily be computed for the

urban part as well as for the freeway part. Note, however, that the MPC approach works equally well for

other objective functions (or (weighted) combinations of objective functions). To compute the TTS the

number of vehicles in each link, nvehicles,s,σ, is required:

nvehicles,s,σ(l) = Ls,σ − Ss,σ(l) ,

where σ can be any intersection connected to intersection s. The number of vehicles must be computed for

all the urban links, on-ramps and off-ramps.

Assume we are at time t = z0Tc. The TTS will be computed over a period [z0Tc, (z0 + Np)Tc).
Define l0 and k0 such that z0Tc = l0Tu = k0Tf , and define l0,end and k0,end such that (z0 + Np)Tc =
(l0,end + 1)Tu = (k0,end + 1)Tf .

The TTS in the urban network in the period [z0Tc, (z0 +Np)Tc) is then given by:

TTSurban(z0) = Tu

l0,end∑

l=l0




∑

(s,σ)∈I

nvehicles,s,σ(l) +
∑

(s,o)∈Ron

nvehicles,s,o(l) +
∑

o∈O

nvehicles,origins,o,(l)



+
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Tf

k0,end∑

k=k0

∑

(o,s)∈Roff

nvehicles,o,s(k) ,

where I the set of all links (s, σ) in the urban network, Ron the set of links (s, o) connected to the on-ramps,

Roff the set of links (o, s) connected to the off-ramps, and O the set of all origins in the urban network.

The TTS in the freeway part of the network is computed using the density of the segments:

TTSfreeway(z0) = Tf

k0,end∑

k=k0

∑

f∈F



Lfλf

∑

m∈Mf

ρf,m(k) +
∑

o∈Of

nvehicles,origin,f,o(k)



 ,

where F is the set of freeway links in the network, Mf the set of segments of freeway link f , and Of the set

of origins of freeway link f .

The two above formulas together give the TTS for the entire network. Two positive weighting

factors α1, α2 are added to give more or less importance to one of the two parts:

TTS(z0) = α1TTSfreeway(z0) + α2TTSurban(z0) .

Furthermore, we can impose constraints such as maximum queue lengths at intersections, on-ramps

or off-ramps, minimum and maximum green times, etc.

7 CASE STUDY

In order to illustrate the model and the MPC control approach presented above we have selected a simple test

network (see Figure 2), that contains some essential elements of mixed urban and freeway networks. The

test network consists of a two-way freeway with two on-ramps and two off-ramps. Furthermore, there are

two urban intersections, which are connected to the freeway and to each other. Between these intersections

and the freeways there are some crossing roads, where there is only crossing that does not turn into other

directions (e.g., pedestrian traffic, bicycles, etc.).

The traffic that arrives at the origins is given as a flow, with a demand dorigin,s(k) = 1000 veh/h

for urban origins and dorigin,f (k) = 3600 veh/h for freeway origins. At the beginning of the simulation the

network is completely empty, so all the traffic enters it from the origins.

In order to obtain a preliminary assessment of the MPC approach, two simulations are considered:

1. A simulation using a fixed control scheme, in which the offset is zero and the green percentage of all

urban intersections is 50%.

2. A simulation using MPC. To show the effect of MPC, the results will be compared with the results of

the first simulation.

7.1 Fixed-time control

The first simulation is done with a fixed-time controller. This simulation will be used to illustrate the features

of the extended urban traffic model and of the overall model.

The results for the freeway are shown in Figure 3. Figure 3(a) shows the density on one of the

freeways. At the beginning the freeway is empty. During the first 400 s the freeway fills up slowly. This

causes the triangle at the left-hand side of Figure 3(a). Then a regular density is reached on the whole

freeway, until at 800 s an off-ramp connected to the third segment becomes full. Some traffic that wants to

turn into the city stays on the freeway, causing a higher density. When some vehicles leave the off-ramp, a
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few vehicles can leave the freeway, causing a somewhat lower density. This happens several times after each

other with waves as a result. The plot of the speed, Figure 3(b), also shows the effect of the vehicles driving

onto the freeway at the beginning. When the off-ramp gets full, the higher density occurs, which leads to

a lower speed. Moreover, since the density varies near the filled off-ramp, the speed also varies during the

rest of the simulation.

The flow on the off-ramps is shown in Figure 4. One of the off-ramps is full after 1000 s. Then the

variations in the flow can clearly be seen.

In the urban network there are four interesting kinds of queues, which are shown in Figure 5. The

first two are origin queues. The first origin queue clears during the green time, the second queue does not

clear, resulting in a longer queue building up. The sinusoidal variations in the arriving traffic can be seen

clearly. The third and fourth plots show queue lengths of the queues in some links in the network. The traffic

comes from another intersection and arrives in platoons. The queue in Figure 5(c) can in fact clear during

the green time. After 1400 s this queue becomes shorter. This happens because there are three sub-queues

waiting in this link, which together cannot be longer than the total link length. When one of these sub-queues

becomes very long there is less space for the other two sub-queues so they stay shorter. Plot 5(d) shows a

queue in a link that cannot clear during the green time. The traffic comes from two other intersections, and

arrives in two platoons. This can be seen by the two horizontal parts when the queues build up. After 1200 s

the queue is full, and no traffic can enter the link until some vehicles leave the link at the front side.

The TTS in this situation is 642.3 veh·h.

7.2 Model Predictive Control

When we apply MPC to the network of the case study, the change due to the control scheme can be seen the

best in the urban network. The traffic is held waiting at the origins, so all the traffic in the network itself can

drive faster. The queues at the origins build up, while the queues on the link are shorter than before. When

MPC is used, the queues vary more because the control scheme changes during the simulation. This results

in varying sizes of platoons, and different timing between the intersections.

When MPC is applied the TTS becomes 593.1 veh·h, which implies a performance improvement of

about 8 % compared to the fixed-time control scheme.

8 CONCLUSIONS

We have proposed a new, extended model for urban traffic that is based on Kashani’s model, but that has

the following additional features: horizontal queues, a shorter time step, and destination-dependent queues,

which results in a more accurate description of the urban traffic. The urban model was combined with the

METANET freeway traffic flow model, and with a model that described the interaction between the urban

and the freeway model. This resulted in an overall model for mixed urban and freeway traffic networks.

Next, we have used this model as a basis for a model predictive control (MPC) approach for coordinated

traffic control of mixed urban and freeway traffic networks. The model and the control approach have been

illustrated via a simple case study, for which MPC control resulted in a reduction with about 8 % of the total

time spent with respect to fixed-time control.

Topics for future research include: thorough assessment of the trade-off between accuracy and com-

putational complexity of the model for various set-ups and choices of simulation steps and control parame-

ters, calibration of the model parameters based on measured traffic data (a first step could be a comparison

to available integrated microscopic models such as CORSIM), refinement of the models, development of

a decentralized MPC approach for larger networks, and application of the proposed approach to real-life

case-studies.
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FIGURE 3 Freeway density and speed for fixed-time control.
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FIGURE 4 Flow entering the off-ramps for fixed-time control.
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(a) Origin queue that clears during the green time at intersection
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(b) Origin queue that builds up.
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(c) Queue that clears during the green time at intersection C.
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(d) Queue that reaches maximum queue length on link C–B.

FIGURE 5 Urban queue lengths for fixed-time control.


