
Delft University of Technology
Delft Center for Systems and Control

Technical report 03-012

Model predictive control for discrete-event
and hybrid systems∗

B. De Schutter and T.J.J. van den Boom

August 2003

Paper for the Workshop on Nonlinear Predictive Control (Workshop S-5) at
the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, Dec.

2003.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/03_012.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/03_012.html

Model Predictive Control for Discrete-Event and Hybrid Systems

B. De Schutter, T.J.J. van den Boom

Delft Center for Systems and Control, Delft University of Technology

Mekelweg 2, 2628 CD Delft, The Netherlands

{b.deschutter,t.j.j.vandenboom}@dcsc.tudelft.nl

Abstract— Model predictive control (MPC) is a very popu-
lar controller design method in the process industry. A key
advantage of MPC is that it can accommodate constraints on
the inputs and outputs. Usually MPC uses linear or nonlinear
discrete-time models. In this paper we give an overview of
some results in connection with model predictive control (MPC)
approaches for some tractable classes of discrete-event systems
and hybrid systems. In general the resulting optimization
problems are nonlinear and nonconvex. However, for some
classes tractable solution methods exist. In particular, we discuss
MPC for max-plus-linear systems, for mixed logical dynamical
systems, and for continuous piecewise-affine systems.

I. INTRODUCTION

Model predictive control (MPC) was pioneered simultane-

ously by Richalet et al. [65], and Cutler and Ramaker [25].

In the last decades MPC has shown to respond effectively to

control demands imposed by tighter product quality specifi-

cations, increasing productivity demands, new environmental

regulations, and fast changes in the market. As a result, MPC

is now widely accepted in the process industry. There are

several other reasons why MPC is probably the most applied

advanced control technique in this industry:

• MPC is a model-based controller design procedure that

can easily handle multi-input multi-output processes,

processes with large time-delays, nonminimum phase

processes, and unstable processes.

• It is an easy-to-tune method: in principle only three

parameters have to be tuned.

• MPC can handle constraints on the inputs and the

outputs of the process (due to, e.g., limited capacity of

buffers, actuator saturation, output quality specifications,

etc.) in a systematic way during the design and the

implementation of the controller.

• MPC can handle structural changes, such as sensor or

actuator failures, and changes in system parameters or

system structure, by adapting the model and by using a

moving horizon approach, in which the model and the

control strategy are regularly updated.

Conventional MPC uses discrete-time models (i.e., models

consisting of a system of difference equations). In this

paper we propose some extensions and adaptations of the

MPC framework to classes of discrete-event systems and

hybrid systems that ultimately result in “tractable” control

approaches. For each of these cases the proposed MPC ap-

proach has the following ingredients (which are also present

in conventional MPC): a prediction horizon, a receding

horizon procedure, and a regular update of the model and

re-computation of the optimal control input.

This paper is organized as follows. In Section II we

give a brief overview of conventional MPC for discrete-

time systems. Next, we introduce discrete-event systems

and max-plus-linear discrete-event systems in Section III.

Section IV then considers MPC for max-plus-linear discrete-

event systems. In Section V we present hybrid systems and

some specific subclasses of hybrid systems: piecewise affine

systems, mixed logical dynamical systems, and max-min-

plus-scaling systems. An MPC approach for these classes

of hybrid systems is then presented in Sections VI and VII.

For easy reference we here already list the abbreviations

used in this paper:

ELCP : extended linear complementarity problem

LP : linear programming

MIQP : mixed integer quadratic programming

MLD : mixed logical dynamical

MMPS : max-min-plus-scaling

MPC : model predictive control

MPL : max-plus linear

PWA : piecewise affine

QP : quadratic programming

SQP : sequential quadratic programming.

II. MODEL PREDICTIVE CONTROL

In this section we give a short and simplified introduction

to conventional model predictive control (MPC) for nonlinear

discrete-time systems. Since we will only consider the de-

terministic, i.e., noiseless, case for discrete-event and hybrid

systems in this paper (cf. Remark 3.2), we will also omit the

noise terms in this brief introduction to MPC for nonlinear

systems. More extensive information on MPC can be found

in [1], [10], [17], [22], [38], [53] and the references therein.

A. Prediction model

Consider a plant with m inputs and l outputs that can be

modeled by a nonlinear discrete-time state space description

of the following form:

x(k+1) = f (x(k),u(k)) (1)

y(k) = h(x(k),u(k)) (2)

where f and h are smooth functions of x and u.

future

k

control horizon
prediction horizon

k +1 +k Nc +k Np

computed control inputs u

predicted outputs y

past
setpoint r

Fig. 1. Representation of the MPC control scheme.

In MPC we consider the future evolution of the system

over a given prediction period [k + 1,k + Np], which is

characterized by the prediction horizon Np, and where k is

the current sample step (see Figure 1). For the system (1)–

(2) we can make an estimate ŷ(k + j|k) of the output at

sample step k+ j based on the state1 x(k) at step k and the

future input sequence u(k),u(k+ 1), . . . ,u(k+ j− 1). Using

successive substitution, we obtain an expression of the form

ŷ(k+ j|k) = Fj(x(k),u(k),u(k+1), . . . ,u(k+ j−1)) (3)

for j = 1, . . . ,Np. If we define the vectors

ũ(k) =
[

uT(k) . . . uT(k+Np −1)
]

T (4)

ỹ(k) =
[

ŷT(k+1|k) . . . ŷT(k+Np|k)
]

T , (5)

we obtain the following prediction equation:

ỹ(k) = F̃(x(k), ũ(k)) . (6)

B. Cost criterion and constraints

The cost criterion J used in MPC reflects the reference

tracking error (Jout) and the control effort (Jin):

J(k) = Jout(k)+λJin(k)

= ‖ỹ(k)− r̃(k)‖2
Q +λ‖ũ(k)‖2

R

=
(

ỹ(k)− r̃(k)
)

TQ
(

ỹ(k)− r̃(k)
)

+λ ũT(k)Rũ(k)

where λ is a nonnegative integer, and r̃(k) contains the

reference signal (defined similarly to ỹ(k) (cf. (5))), and Q,

R are positive definite matrices.

In practical situations, there will be constraints on the input

and output signals (caused by limited capacity of buffers,

limited transportation rates, saturation, etc.). This is reflected

in the nonlinear constraint function

Cc(k, ũ(k), ỹ(k))6 0 , (7)

1For the sake of simplicity, we assume that all the components of the
state can be measured, or that the system is observable such that the current
state can be reconstructed from the past output sequence.

which is often taken to be linear:

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) . (8)

The MPC problem at sample step k consists in minimizing

J(k) over all possible future input sequences subject to the

constraints. This is usually a nonconvex optimization prob-

lem. To reduce the complexity of the optimization problem a

control horizon Nc is introduced in MPC, which means that

the input is taken to be constant beyond sample step k+Nc:

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1. (9)

In addition to a decrease in the number of optimization

parameters and thus also the computational burden, a smaller

control horizon Nc also gives a smoother control signal,

which is often desired in practical situations.

C. Receding horizon approach

MPC uses a receding horizon principle. At time step k the

future control sequence u(k), . . . ,u(k+Np −1) is determined

such that the cost criterion is minimized subject to the

constraints. At time step k the first element of the optimal

sequence (u(k)) is applied to the process. At the next time

instant the horizon is shifted, the model is updated with new

information of the measurements, and a new optimization at

time step k+1 is performed.

D. The standard MPC problem

So the MPC problem at sample step k for the nonlinear

discrete-time system described by (1)–(2) is defined as

follows:

Find the input sequence {u(k), . . . ,u(k + Np − 1)} that

minimizes the cost criterion J(k) subject to the evolution

equations (1)–(2) of the system, the nonlinear constraint

(7), and the control horizon constraint (9).

For linear discrete-time systems and with linear constraints

(8) only, the MPC problem boils down to a convex quadratic

programming problem, which can be solved very efficiently.

Furthermore, in this case the solution can be even computed

off-line and reduces to the simple evaluation of an explicitly

defined piecewise linear function [8].

Traditionally MPC uses linear discrete-time models for

the process to be controlled. In this paper we consider the

extension and adaptation of the MPC framework to discrete-

event systems and hybrid systems. In general, MPC for

discrete-event systems and hybrid systems results in hard

nonconvex nonlinear and often even nonsmooth optimization

problems with integer and real-valued variables, but — as we

shall see — for some classes of discrete-event systems and

hybrid systems tractable solution methods exist.

MPC AND DISCRETE-EVENT SYSTEMS

III. DISCRETE-EVENT SYSTEMS

A. General discrete-event systems

Typical examples of discrete-event systems are flexible

manufacturing systems, telecommunication networks, par-

allel processing systems, traffic control systems and logis-

tic systems. The class of discrete-event systems essentially

consists of man-made systems that contain a finite number

of resources (e.g., machines, communications channels, or

processors) that are shared by several users (e.g., product

types, information packets, or jobs) all of which contribute to

the achievement of some common goal (e.g., the assembly of

products, the end-to-end transmission of a set of information

packets, or a parallel computation) [5].

One of the most characteristic features of a discrete-event

system is that its dynamics are event-driven as opposed

to time-driven: the behavior of a discrete-event system is

governed by events rather than by ticks of a clock. An event

corresponds to the start or the end of an activity. For a

production system possible events are: the completion of

a part on a machine, a machine breakdown, or a buffer

becoming empty. Events occur at discrete time instants.

Intervals between events are not necessarily identical; they

can be deterministic or stochastic.

There exist many different modeling and analysis frame-

works for discrete-event systems such as Petri nets, finite

state machines, queuing networks, automata, (extended) state

machines, semi-Markov processes, max-plus algebra, formal

languages, temporal logic, perturbation analysis, process al-

gebra, and computer models (see [5], [18], [35], [46]–[48],

[62], [76] and the references therein).

Although in general discrete-event systems lead to a

nonlinear description in conventional algebra, there exists

a subclass of discrete-event systems for which this model

becomes “linear” when we formulate it in the max-plus

algebra [5], [23], [24], which has maximization and addition

as its basic operations. Discrete-event systems in which

only synchronization2 and no concurrency3 or choice occur

can be modeled using the operations maximization (cor-

responding to synchronization: a new operation starts as

soon as all preceding operations have been finished) and

addition (corresponding to durations: the finishing time of

an operation equals the starting time plus the duration). This

leads to a description that is “linear” in the max-plus algebra.

Therefore, discrete-event systems with synchronization but

2Synchronization requires the availability of several resources at the same
time (e.g., before we can assemble a product on a machine, the machine
has to be idle and the various parts have to be available).

3Concurrency appears when at a certain time there is a choice among
several resources (e.g., a job may be executed on one of the several machines
that can handle that job and that are idle at that time).

no concurrency are called max-plus-linear discrete-event sys-

tems. Typical examples are serial production lines, production

systems with a fixed routing schedule, and railway networks.

B. Max-plus algebra and max-plus-linear discrete-event

systems

1) Max-plus algebra: The basic operations of the max-

plus algebra are maximization and addition, which will be

represented by ⊕ and ⊗ respectively:

x⊕ y = max(x,y) and x⊗ y = x+ y

for x,y ∈ Rε
def
= R∪ {−∞}. Define ε = −∞. The structure

(Rε ,⊕,⊗) is called the max-plus algebra [5], [24]. The

operations ⊕ and ⊗ are called the max-plus-algebraic addi-

tion and max-plus-algebraic multiplication respectively since

many properties and concepts from linear algebra can be

translated to the max-plus algebra by replacing + by ⊕ and

× by ⊗ [5], [24]. The rules for the order of evaluation

of the max-plus-algebraic operators are similar to those of

conventional algebra. So ⊗ has a higher priority than ⊕.

The matrix εm×n is the m × n max-plus-algebraic zero

matrix: (εm×n)i j = ε for all i, j. The matrix En is the n×n

max-plus-algebraic identity matrix: (En)ii = 0 for all i and

(En)i j = ε for all i, j with i 6= j. The basic max-plus-algebraic

operations are extended to matrices as follows. If A,B ∈
R

m×n
ε , C ∈ R

n×p
ε then

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n

⊕

k=1

aik ⊗ ck j = max
k

(aik + ck j)

for all i, j. Note the analogy with the definitions of matrix

sum and product in conventional linear algebra. The max-

plus-algebraic matrix power of A ∈ R
n×n
ε is defined as

follows: A⊗0
= En and A⊗k

= A⊗A⊗k−1
for k = 1,2, . . .

2) Max-plus-linear discrete-event systems: Discrete-event

systems with only synchronization and no concurrency can

be modeled by a max-plus-algebraic model of the following

form [5] (see also Example 3.3):

x(k+1) = A⊗ x(k) ⊕ B⊗u(k) (10)

y(k) =C⊗ x(k) (11)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m is the

number of inputs and l the number of outputs.

For a manufacturing system, u(k) would typically repre-

sent the time instants at which raw material is fed to the

system for the (k+1)th time, x(k) the time instants at which

the machines start processing the kth batch of intermediate

products, and y(k) the time instants at which the kth batch

of finished products leaves the system.

Note the analogy of the description (10) – (11) with the

state space model for conventional linear time-invariant

discrete-time systems. This analogy is another reason why

the symbols ⊕ and ⊗ are used to denoted max and +.

P1

P2

✲

✲

P
P
P
P
P

PPq

✏
✏
✏
✏
✏

✏✏✶
P3

✲u(k) y(k)

t1 =2

t2 =0

t3 =1

t4 =0

t5 =0

d1 =11

d2 =12

d3 =7

Fig. 2. A simple manufacturing system.

Remark 3.1 Apart from the fact that in (10)–(11) the

components of the input, output and state vector are event

times, an important difference between the descriptions (10)–

(11) for discrete-event systems and (1)–(2) for discrete-time

systems is that the counter k in (10)–(11) is an event counter

(and event occurrence instants are in general not equidistant),

whereas in (1)–(2) k is a sample counter that increases each

clock cycle. ✷

A discrete-event system that can be modeled by (10) –

(11) will be called a max-plus-linear (MPL) time-invariant

discrete-event system.

Remark 3.2 For (linear) discrete-time systems the influence

of noise is usually modeled by adding an extra noise term

to the state and/or output equation. For MPL models the

entries of the system matrices correspond to production times

or transportation times. So instead of modeling noise (i.e.,

the variation in the processing times), by adding an extra

max-plus-algebraic term in (10) or (11), noise should rather

be modeled as an additive term to these system matrices.

However, this would not lead to a nice model structure.

Therefore, and for the sake of simplicity, we will use the

MPL model (10) – (11) as an approximation of a discrete-

event system with uncertainty and/or modeling errors when

we present the extension of the MPC framework to MPL

systems. This also motivates the use of a receding horizon

strategy when we define MPC for MPL systems, since then

we can regularly update our model of the system as new

measurements become available. Note, however, that the

approach given in Section IV below can also be extended

to the case where noise is present (see [70], [71]). ✷

Example 3.3 Consider the production system of Fig. 2. This

manufacturing system consists of three processing units: P1,

P2 and P3, and works in batches (one batch for each finished

product). Raw material is fed to P1 and P2, processed and

sent to P3 where assembly takes place. The processing times

for P1, P2 and P3 are respectively d1 = 11, d2 = 12 and d3 = 7

time units. It takes t1 = 2 time units for the raw material to get

from the input source to P1, and t3 = 1 time unit for a finished

product of P1 to get to P3. The other transportation times and

the set-up times are assumed to be negligible. At the input of

the system and between the processing units there are buffers

with a capacity that is large enough to ensure that no buffer

overflow will occur. A processing unit can only start working

on a new product if it has finished processing the previous

product. Each processing unit starts working as soon as all

parts are available.

Let u(k) be the time instant at which a batch of raw

material is fed to the system for the (k + 1)th time, xi(k)
the time instant at which Pi starts working for the kth time,

and y(k) the time instant at which the kth finished product

leaves the system. Now consider x1(k+1), the time instant

at which P1 starts processing the (k+1)st batch. As we have

to wait for the (k+ 1)st batch of raw material to arrive at

P1 (which happens at time instant u(k)+ t1 = u(k)+2), and

for the kth batch to be processed completely at P1 (which

happens at time instant x1(k)+ d1 = x1(k)+ 11), and since

we assume that P1 starts processing a new batch as soon as

the raw material is available and as the processing unit is

idle again, we have

x1(k+1) = max(x1(k)+11, u(k)+2)

= 11⊗ x1(k)⊕2⊗u(k) .

In a similar way we find

x2(k+1) = max(x2(k)+12, u(k)+0)

= 12⊗ x2(k)⊕0⊗u(k)

x3(k+1) = max(x1(k+1)+11+1, x2(k+1)+12,

x3(k)+7)

= max(x1(k)+11+11+1, u(k)+11+1+2,

x2(k)+12+12, u(k)+12+0, x3(k)+7)

= max(x1(k)+23, x2(k)+24, x3(k)+7, u(k)+14)

= 23⊗ x1(k) ⊕ 24⊗ x2(k) ⊕ 7⊗ x3(k) ⊕ 14⊗u(k)

y(k) = x3(k)+7

= 7⊗ x3(k),

or, in max-plus-algebraic matrix notation (with ε =−∞):

x(k+1) =

11 ε ε
ε 12 ε

23 24 7

⊗ x(k) ⊕

2

0

14

⊗u(k)

y(k) =
[

ε ε 7
]

⊗ x(k) . ✷

IV. MPC FOR MPL DISCRETE-EVENT SYSTEMS

A. Prediction

Consider a discrete-event system modeled by a MPL

model of the form (10)–(11). We assume that x(k), the state

at event step k, can be measured or estimated using previous

measurements. We can then use (10) – (11) to estimate the

evolution of the output of the system for the input sequence

u(k), . . . ,u(k+Np −1) (cf. (3)):

ŷ(k+ j|k) =C⊗A⊗ j
⊗ x(k) ⊕

j−1
⊕

i=0

C⊗A⊗ j−i
⊗B⊗u(k+ i) ,

or, in matrix notation, ỹ(k) = H ⊗ ũ(k)⊕g(k) (cf. (6)) with

H =

C⊗B ε . . . ε
C⊗A⊗B C⊗B . . . ε

...
...

. . .
...

C⊗A⊗
Np−1

⊗B C⊗A⊗
Np−2

⊗B . . . C⊗B

,

g(k) =

C⊗A

C⊗A⊗2

...

C⊗A⊗
Np

⊗ x(k) .

where ũ(k) and ỹ(k) are defined by (4)–(5). Note the analogy

between these expressions and the corresponding expressions

for conventional linear time-invariant discrete-time systems.

B. Cost criterion

Just as in conventional MPC we define a cost criterion of

the form

J(k) = Jout(k)+λJin(k) .

For the tracking error or output cost criterion Jout and the

input cost criterion Jin several criteria are possible in a

discrete-event systems context.

A straightforward translation of the cost criterion used

in conventional MPC systems (with Q the identity matrix)

would yield

Jout =
(

ỹ(k)− r̃(k)
)

T ⊗
(

ỹ(k)− r̃(k)
)

= 2

Np
⊕

j=1

l
⊕

i=1

(

ŷi(k+ j|k)− ri(k+ j)
)

= 2 max
j=1,...,Np

max
i=1,...,l

(

ŷi(k+ j|k)− ri(k+ j)
)

. (12)

This objective function does not force the difference between

ŷ(k+ j|k) and r(k+ j) to be small since there is no absolute

value in (12). Therefore, it is not very useful in practice.

If the due dates r for the finished products are known and

if we have to pay a penalty for every delay, a well-suited

cost criterion is the tardiness:

Jout,tard =
Np

∑
j=1

l

∑
i=1

max(ŷi(k+ j|k)− ri(k+ j),0) .

If we have perishable goods, then we could want to minimize

the differences between the due dates and the actual output

time instants. This leads to

Jout,1 =
Np

∑
j=1

l

∑
i=1

|ŷi(k+ j|k)− ri(k+ j)|= ‖ỹ(k)− r̃(k)‖1 .

If we want to balance the output rates, we could consider the

following cost criterion:

Jout,∆ =
Np

∑
j=2

l

∑
i=1

|∆2ŷi(k+ j|k)|

where

∆2s(k) = ∆s(k)−∆s(k−1) = s(k)−2s(k−1)+ s(k−2) .

A straightforward translation of the conventional MPC

input cost criterion ũT(k)ũ(k) (where we have taken R equal

to the identity matrix) would lead to a minimization of the

input time instants. Since this could result in input buffer

overflows, a better objective is to maximize the input time

instants. For a manufacturing system, this would correspond

to a scheme in which raw material is fed to the system as

late as possible. As a consequence, the internal buffer levels

are kept as low as possible. This also leads to a notion of

stability if we let instability for the manufacturing system

correspond to internal buffer overflows. So for MPL systems

an appropriate cost criterion is

Jin,2 =−ũT(k)ũ(k) .

Note that this is exactly the opposite of the input effort

cost criterion for conventional discrete-time systems. Another

objective function that leads to a maximization of the input

time instants is

Jin,Σ =−
Np

∑
j=1

m

∑
i=1

ui(k+ j−1) .

If we want to balance the input rates we could take

Jin,∆ =
Np−1

∑
j=1

l

∑
i=1

|∆2ui(ik+ j| .

C. Constraints

Just as in conventional MPC we can consider the linear

constraint (8). Furthermore, it is easy to verify that typical

constraints for discrete-event systems such as minimum or

maximum separation between input and output events:

a1(k+ j)6 ∆u(k+ j)6 b1(k+ j) for j = 0, . . . ,Nc−1, (13)

a2(k+ j)6 ∆ŷ(k+ j|k)6 b2(k+ j) for j = 1, . . . ,Np, (14)

or maximum due dates for the output events:

ŷ(k+ j|k)6 r(k+ j) for j = 1, . . . ,Np , (15)

can also be recast as a linear constraint of the form (8).

Since for MPL systems the input and output sequences

correspond to occurrence times of consecutive events, they

should be nondecreasing. Therefore, we should always add

the condition ∆u(k+ j)> 0 for j = 0, . . . ,Np−1 to guarantee

that the input sequences are nondecreasing.

A straightforward translation of the conventional control

horizon constraint would imply that the input should stay

constant from event step k+Nc on, which is not very useful

for MPL systems since there the input sequences should

normally be increasing. Therefore, we change this condition

as follows: the feeding rate should stay constant beyond

event step k+Nc, i.e., ∆u(k+ j) = ∆u(k+Nc − 1) for j =
Nc, . . . ,Np −1, or

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1 . (16)

This condition introduces regularity in the input sequence and

it prevents the buffer overflow problems that could arise when

all resources are fed to the system at the same time instant

as would be implied by the conventional control horizon

constraint (9).

D. The MPL MPC problem

If we combine the material of previous subsections, we

finally obtain the following problem:

min
ũ(k)

Jout(k)+λJin(k) (17)

subject to

ỹ(k) = H ⊗ ũ(k)⊕g(k) (18)

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) (19)

∆u(k+ j)> 0 for j = 0, . . . ,Np −1 (20)

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1. (21)

This problem will be called the MPL MPC problem for event

step k. MPL MPC also uses a receding horizon principle.

E. Algorithms to solve the MPL MPC problem

1) Nonlinear optimization: In general the problem (17) –

(21) is a nonlinear nonconvex optimization problem: al-

though the constraints (19) – (21) are convex in ũ and ỹ, the

constraint (18) is in general not convex. So we could use

standard multi-start nonlinear nonconvex local optimization

methods to compute the optimal control policy.

The feasibility of the MPC-MPL problem can be verified

by solving the system of (in)equalities (18) – (21)4. If the

problem is found to be infeasible we can use the same tech-

niques as in conventional MPC and use constraint relaxation

[17].

2) The ELCP approach: Now we discuss an alternative

approach which is based on the Extended Linear Comple-

mentarity problem (ELCP) [28]. Consider the ith row of (18)

and define Ji = { j |hi j 6= ε}. We have

ỹi(k) = max
j∈Ji

(hi j + ũ j(k),gi(k)) ,

or, equivalently,

ỹi(k)> hi j + ũ j(k) for j ∈ Ji

ỹi(k)> gi(k)

4In general this is a nonlinear system of equations but if the constraints
depend monotonically on the output, the feasibility problem can be recast
as a linear programming problem (cf. Theorem 4.2).

with the extra condition that at least one inequality should

hold with equality (i.e., at least one residue or slack variable

should be equal to 0):

(ỹi(k)−gi(k)) · ∏
j∈Ji

(ỹi(k)−hi j − ũ j(k)) = 0 . (22)

Hence, (18) can be rewritten as a system of the form

Aelcpỹ(k)+Belcpũ(k)+ celcp(k)> 0 (23)

∏
j∈φi

(Aelcpỹ(k)+Belcpũ(k)+ celcp(k)) j = 0

for i = 1, . . . , lNp (24)

for appropriately defined matrices and vectors

Aelcp,Belcp,celcp and index sets φi. We can rewrite the

linear constraints (19) – (21) as

Delcp(k)ỹ(k)+Eelcp(k)ũ(k)+ felcp(k)> 0 (25)

Gelcpũ(k)+helcp = 0 . (26)

So the feasible set of the MPC problem (i.e., the set of

feasible system trajectories) coincides with the set of solu-

tions of the system (23) – (26), which is a special case of

an Extended Linear Complementarity Problem (ELCP) [28].

In [28] we have also developed an algorithm to compute

a compact parametric description of the solution set of an

ELCP. In order to determine the optimal MPC policy we

can use nonlinear optimization algorithms to determine for

which values of the parameters the objective function J over

the solution set of the ELCP (23) – (26) reaches its global

minimum. The algorithm of [28] to compute the solution

set of a general ELCP requires exponential execution times,

which that the ELCP approach is not feasible if Nc is large.

3) Monotonically nondecreasing objective functions: Now

consider the relaxed MPL MPC problem, which is also

defined by (17) – (21) but with the =-sign in (18) replaced by

a >-sign. Note that whereas in the original problem ũ(k) is

the only independent variable, since ỹ(k) can be eliminated

using (18), the relaxed problem has both ũ(k) and ỹ(k) as

independent variables. It is easy to verify that the set of

feasible solutions of the relaxed problem coincides with the

set of solutions of the system of linear inequalities (23),

(25), (26). So the feasible set of the relaxed MPC problem is

convex. Hence, the relaxed problem is much easier to solve

numerically.

A function F : y → F(y) is a monotonically nondecreasing

function if ȳ 6 y̌ implies that F(ȳ) 6 F(y̌). Now we show

that if the objective function J and the linear constraints are

monotonically nondecreasing as a function of ỹ (this is the

case for J = Jout,tard, Jin,2, Jin,Σ, or Jin,∆, and, e.g., (Bc)i j > 0

for all i, j), then the optimal solution of the relaxed problem

can be transformed into an optimal solution of the original

MPC problem. So in that case the optimal MPC policy can

be computed very efficiently. If in addition the objective

function is convex (e.g., J = Jout,tard or Jin,Σ), we finally get

a convex optimization problem.

Remark 4.1 Note that Jin,Σ is a linear function. So for

J = Jin,Σ the problem even reduces to a linear programming

(LP) problem, which can be solved very efficiently. It easy to

verify that for J = Jout,tard the problem can also be reduced

to an LP problem by introducing some additional dummy

variables. ✷

Theorem 4.2: Let the objective function J and mapping

ỹ → Bc(k)ỹ be monotonically nondecreasing functions of

ỹ. Let (ũ∗, ỹ∗) be an optimal solution of the relaxed MPC

problem. If we define ỹ♯ = H ⊗ ũ∗⊕g(k) then (ũ∗, ỹ♯) is an

optimal solution of the original MPC problem.

Proof: First we show that (ũ∗, ỹ♯) is a feasible solution

of the original problem. Clearly, (ũ∗, ỹ♯) satisfies (18), (20)

and (21). Since ỹ∗ > H⊗ ũ∗⊕g(k) = ỹ♯ and since ỹ → Bc(k)ỹ
is monotonically nondecreasing, we have

Ac(k)ũ
∗+Bc(k)ỹ

♯
6 Ac(k)ũ

∗+Bc(k)ỹ
∗
6 cc(k) .

So (ũ∗, ỹ♯) also satisfies the constraint (19). Hence, (ũ∗, ỹ♯)
is a feasible solution of the original problem. Since the set

of feasible solutions of the original problem is a subset

of the set of feasible solutions of the relaxed problem, we

have J(ũ, ỹ) > J(ũ∗, ỹ∗) for any feasible solution (ũ, ỹ) of

the original problem. Hence, J(ũ∗, ỹ♯) > J(ũ∗, ỹ∗). On the

other hand, we have J(ũ∗, ỹ♯) 6 J(ũ∗, ỹ∗) since ỹ♯ 6 ỹ∗ and

since J is a monotonically nondecreasing function of ỹ. As a

consequence, we have J(ũ∗, ỹ♯) = J(ũ∗, ỹ∗), which implies

that (ũ∗, ỹ♯) is an optimal solution of the original MPC

problem.

F. Example

Consider the production system of Example 3.3. Let us

now compare the efficiency of the methods discussed in

Section IV-E when solving one step of the MPC problem

for the objective function J(k) = Jout,tard(k) + Jin,Σ(k) (so

λ = 1) with the additional constraints 2 6 ∆u(k + j) 6 12

for j = 0, . . . ,Nc − 1. We take Nc = 5 and Np = 8. Assume

that k = 0, x(0) = [0 0 10]T, u(−1) = 0, and r̃(k) =
[40 45 55 66 75 85 90 100]T.

The objective function J and the linear constraints are

monotonically nondecreasing as a function of ỹ so that

we can apply Theorem 4.2. We have computed a solution

ũelcp obtained using the ELCP method and the ELCP algo-

rithm of [28], a solution ũnlcon using nonlinear constrained

optimization, a solution ũpenalty using linearly constrained

optimization with a penalty function for the nonlinear con-

straints, a solution ũrelaxed for the relaxed MPC problem,

and an LP solution ũlp (cf. Remark 4.1). For the nonlinear

constrained optimization we have used a sequential quadratic

programming algorithm, and for the linear optimization a

variant of the simplex algorithm. All these methods result in

the same optimal input sequence:

{uopt}
7
k=0 = 12,24,35,46,58,70,82,94.

TABLE I

THE CPU TIME NEEDED TO COMPUTE THE OPTIMAL INPUT SEQUENCE

VECTORS FOR THE EXAMPLE OF SECTION IV-F FOR Nc = 4,5,6,7. FOR

Nc = 7 WE HAVE NOT COMPUTED THE ELCP SOLUTION SINCE IT

REQUIRES TOO MUCH CPU TIME.

CPU time

ũopt
Nc = 4 Nc = 5 Nc = 6 Nc = 7

ũelcp 5.525 106.3 287789 —

ũnlcon 0.870 1.056 1.319 1.470

ũpenalty 0.826 0.988 1.264 1.352

ũrelaxed 0.431 0.500 0.562 0.634

ũlp 0.029 0.030 0.031 0.032

The corresponding output sequence is

{yopt(k)}
8
k=1 = 33,45,56,67,79,91,103,115,

and the corresponding value of the objective function is J =
−381.

In Table I we have listed the CPU time needed to compute

the various input sequence vectors ũ for Nc = 4,5,6,7 on a

Pentium II 300 MHz PC with the optimization routines called

from MATLAB and implemented in C (average values over

10 experiments). For the input sequence vectors that have

to be determined using a nonlinear optimization algorithm

selecting different (feasible) initial points always leads to the

same numerical value of the final objective function (within

a certain tolerance). Therefore, we have only performed one

run with a random feasible initial point for each of these

cases.

The CPU time for the ELCP algorithm of [28] increases

exponentially as the number of variables increases (see also

Table I). So in practice the ELCP approach cannot be used

for on-line computations if the control horizon or the number

of inputs or outputs are large. In that case one of the other

methods should be used instead. Looking at Table I we see

that the ũlp solution — which is based on Theorem 4.2 and

an LP approach — is clearly the most interesting. For more

results we refer the interested reader to [30].

G. Extensions and related research

The approach presented above can also be extended to the

case where modeling errors and disturbances are present [70],

[71]. Tuning rules and properties such as stability, timing

issues, etc. have been discussed in [69]. The method derived

above can also be used for MPC for discrete-event systems

with hard and soft synchronization constraints [33] such as

railway networks (where some connections may be broken

— but at a cost — if delays become too large), or logistic

systems.

Above we have presented an MPC framework for MPL

discrete-event systems. Several other authors have already

developed methods to compute optimal control sequences

for MPL discrete-event systems [5], [12], [51], [54]–[56].

Compared to these methods one of the main advantages of

the MPL MPC approach is that it allows to include general

linear inequality constraints on the inputs and outputs of the

system such as (19), or even simple constraints of the form

(13) or (14).

MPC AND HYBRID SYSTEMS

V. HYBRID SYSTEMS

A. General hybrid systems

Hybrid systems arise throughout business and industry

in areas such as interactive distributed simulation, traffic

control, plant process control, aircraft and robot design, and

path planning. There are several possible definitions of hybrid

systems. For some authors a hybrid system is a coupling of

a continuous-time or analog system and a discrete-time or

digital system (in practice often a continuous-time, analog

plant and an asynchronous, digital controller). We shall use

a somewhat different definition.

For us, hybrid systems arise from the interaction between

continuous-variable systems5 and discrete-event systems. In

general we could say that a hybrid system can be in one

of several modes of operation, whereby in each mode the

behavior of the system can be described by a system of

difference or differential equations, and that the system

switches from one mode to another due to the occurrence of

events (see Figure 3). The mode transitions may be caused

by an external control signal, by an internal control signal

(if the controller is already included in the system under

consideration), or by the dynamics of the system itself, i.e.,

when a certain boundary in the state space is crossed. At

a switching time instant there may be a reset of the state

(i.e., a jump in the values of the state variables) and/or the

dimension of the state may change.

There are many modeling and analysis techniques for

hybrid systems. Typical modeling techniques are predicate

calculus, real-time temporal logics, timed communicating

sequential processes, hybrid automata, timed automata, timed

Petri nets, and object-oriented modeling languages such

as Modelica, SHIFT or Chi. Current analysis techniques

for hybrid systems include formal verification, perturba-

tion analysis, and computer simulation. Furthermore, special

mathematical analysis techniques have been developed for

specific subclasses of hybrid systems. We shall only discuss

some of these methods. For more information on the other

methods the interested reader is referred to [3], [4], [45],

[57], [68], [73] and the references cited therein. An important

trade-off in this context is that of modeling power versus

5Continuous variable systems are systems that can be described by a
difference or differential equation.

x(k+1) = f1(x(k),u(k))

y(k) = g1(x(k),u(k))

x(k+1) = f2(x(k),u(k))

y(k) = g2(x(k),u(k))

x(k+1) = f3(x(k),u(k))

y(k) = g3(x(k),u(k))

x(k+1) = f4(x(k),u(k))

y(k) = g4(x(k),u(k))

x(k+1) = fN(x(k),u(k))

y(k) = gN(x(k),u(k))

Fig. 3. Schematic representation of a hybrid system with N modes. In
each mode the behavior of the hybrid system is described by a system of
difference (or differential) equations. The system goes from one mode to
another due to the occurrence of an event (this is indicated by the arrows).

decision power: the more accurate the model is the less

we can analytically say about its properties. Furthermore,

many analysis and control problems lead to computationally

hard problems for even the most elementary hybrid systems

[11]. As tractable methods to analyze general hybrid systems

are not available, several authors have focused on special

subclasses of hybrid dynamical systems for which analysis

and/or control design techniques are currently being devel-

oped. Some examples of such subclasses are:

• mixed logical dynamical (MLD) systems [6], [7],

• piecewise-affine (PWA) systems [67],

• linear complementarity systems [44], [72],

• extended linear complementarity systems [43],

• max-min-plus scaling (MMPS) systems [26],

• timed automata [2],

• timed Petri nets [58], [63].

In this paper we will consider PWA systems, MLD systems,

and MMPS systems. Note that some of these classes (in

particular MLD, PWA, (extended) linear complementarity

and constrained MMPS systems) are equivalent [43], possibly

under mild additional assumptions related to well-posedness

and boundedness of input, state, output or auxiliary variables.

Each subclass has its own advantages over the others. E.g.,

stability criteria were proposed for PWA systems [49], con-

trol and verification techniques for MLD hybrid models [6],

[7], [9] and for MMPS systems [26], [29], [31], and con-

ditions of existence and uniqueness of solution trajectories

(well-posedness) for linear complementarity systems [44],

[72]. So it really depends on the application, which of these

classes is best suited.

In the next sections we will discuss some tractable classes

of hybrid systems, for which MPC control design methods

are available as we will see in Sections VI and VII.

Note that in the next sections k is again a sample step

counter and not on event step counter k as in Sections III

and IV, which dealt with discrete-event systems.

B. PWA systems

PieceWise Affine (PWA) systems [67] are described by

x(k+1)=Aix(k)+Biu(k)+ fi

y(k)=Cix(k)+Diu(k)+gi
for

[

x(k)
u(k)

]

∈ Ωi, (27)

for i = 1, . . . ,N where Ω1, . . . ,ΩN are convex polyhedra

(i.e., given by a finite number of linear inequalities) in the

input/state space. PWA systems have been studied by several

authors (see [6], [21], [49], [50], [67] and the references

therein) as they form the “simplest” extension of linear sys-

tems that can still model nonlinear and nonsmooth processes

with arbitrary accuracy and are capable of handling hybrid

phenomena.

Example 5.1 As a very simple example of a PWA model

we can consider an integrator with upper saturation:

x(k+1) =

{

x(k)+u(k) if x(k)+u(k)6 1

1 if x(k)+u(k)> 1 .

y(k) = x(k)

(28)

If we rewrite (28) as in (27) then we have

Ω1 =
{

(x(k),u(k)) ∈ R
2
∣

∣ x(k)+u(k)6 1
}

Ω2 =
{

(x(k),u(k)) ∈ R
2
∣

∣ x(k)+u(k)> 1
}

A1 = 1, A2 = 0, B1 = 1, B2 = 0

f1 = 0, f2 = 1, C1 =C2 = 1

D1 = D2 = 0, g1 = g2 = 0 . ✷

C. MLD systems6

1) Preliminaries: First, we will provide some tools to

transform logical statements involving continuous variables

into mixed-integer linear inequalities.

We will use capital letters X1 to represent statements, e.g.,

“x ≤ 0” or “temperature is hot”; Xi is commonly referred

to as a literal, and has a truth value of either “T” (true)

or “F” (false). We use the following notation for boolean

connectives: “∧” (and), “∨” (or), “∼” (not), “⇒” (implies),

“⇔” (if and only if), “xor” (exclusive or). These connectives

are defined by means of the truth table given in Table II, and

they satisfy several properties (see, e.g., [20]), such as:

X1 ⇒ X2 is the same as ∼X1 ∨X2 (29)

X1 ⇒ X2 is the same as ∼X2 ⇒∼X1 (30)

X1 ⇔ X2 is the same as (X1 ⇒ X2)∧ (X2 ⇒ X1) . (31)

One can associate with a literal Xi a logical variable δi ∈
{0,1}, which has a value of either 1 if Xi = T, or 0 if

Xi = F. A propositional logic problem, where a statement

6This section is based on [7].

X must be proved to be true given a set of (compound)

statements involving literals X1, . . . ,Xn, can thus be solved by

means of an integer linear program, by suitably translating

the original compound statements into linear inequalities

involving logical variables δ1, . . . ,δn. In fact, the following

propositions and linear constraints can easily be seen to be

equivalent [74, p. 176]:

X1 ∧X2 is equivalent to δ1 = δ2 = 1 (32)

X1 ∨X2 is equivalent to δ1 +δ2 ≥ 1 (33)

∼X1 is equivalent to δ1 = 0 (34)

X1 ⇒ X2 is equivalent to δ1 −δ2 ≤ 0 (35)

X1 ⇔ X2 is equivalent to δ1 −δ2 = 0 (36)

X1 xorX2 is equivalent to δ1 +δ2 = 1 . (37)

We can use this computational inference technique to model

logical parts of processes (on/off switches, discrete mecha-

nisms, combinational and sequential networks), and heuris-

tics knowledge about plant operation as integer linear in-

equalities. In this way we can construct models of hybrid

systems.

As we are interested in systems which contain both

logic and continuous dynamics, we wish to establish a

link between the two worlds. As will be shown next, we

end up with mixed-integer linear inequalities, i.e., linear

inequalities involving both continuous variables x ∈ R
n and

logical variables δ ∈ {0,1}nδ .

Consider the statement X
def
= [f (x)≤ 0], where f : Rn 7→R.

Assume that x ∈ X , where X is a given bounded set, and

define

M = max
x∈X

f (x), m = min
x∈X

f (x) . (38)

Theoretically, an over-estimate (under-estimate) of M (m)

suffices for our purpose. However, more realistic estimates

provide computational benefits [74, p. 171]. Now it is easy

to verify that

[f (x)≤ 0]∧ [δ = 1] is true if and only if

f (x)−δ ≤−1+m(1−δ) (39)

[f (x)≤ 0]∨ [δ = 1] is true if and only if

f (x)≤ Mδ (40)

∼[f (x)≤ 0] is true if and only if

f (x)≥ εtol , (41)

where εtol is a small tolerance (typically the machine preci-

sion), beyond which the constraint is regarded as violated.

By (29) and (40), it also follows that

[f (x)≤ 0]⇒ [δ = 1] is true if and only if

f (x)≥ ε +(m− ε)δ (42)

[f (x)≤ 0]⇔ [δ = 1] is true if and only if

TABLE II

TRUTH TABLE.

X1 X2 X1 ∧X2 X1 ∨X2 ∼X1 X1 ⇒ X2 X1 ⇔ X2 X1 xorX2

T T T T F T T F

T F F T F F F T

F T F T T F F T

F F F F T F T T

{

f (x)≤ M(1−δ)

f (x)≥ ε +(m− ε)δ .
(43)

Finally, we report procedures to transform products of

logical variables, and of continuous and logical variables,

in terms of linear inequalities, which however require the

introduction of auxiliary variables [74, p. 178]. The product

term δ1δ2 can be replaced by an auxiliary logical variable

δ3 = δ1δ2. Then, [δ3 = 1]⇔ [δ1 = 1]∧ [δ2 = 1], and therefore

δ3 = δ1 δ2 is equivalent to

−δ1 +δ3 ≤ 0

−δ2 +δ3 ≤ 0

δ1 +δ2 −δ3 ≤ 1 .

Moreover, the term δ f (x), where f : Rn 7→R and δ ∈ {0,1},

can be replaced by an auxiliary real variable y = δ f (x) that

satisfies [δ = 0]⇒ [y = 0], [δ = 1]⇒ [y = f (x)]. Therefore,

by defining M and m as in (38), y = δ f (x) is equivalent to

y ≤ Mδ (44)

y ≥ mδ (45)

y ≤ f (x)−m(1−δ) (46)

y ≥ f (x)−M(1−δ) . (47)

2) MLD systems: The results of the previous section

will now be used now to express relations describing the

evolution of systems where physical laws, logic rules, and

operating constraints are interdependent. Before giving a

general definition, we first consider an example.

Example 5.2 Consider the following PWA system:

x(k+1) =

{

0.8x(k)+u(k) if x(k)≥ 0

−0.8x(k)+u(k) if x(k)< 0
(48)

where x(k) ∈ [−10,10], and u(k) ∈ [−1,1]. The condition

x(k)≥ 0 can be associated with a binary variable δ (k) such

that

[δ (k) = 1]⇔ [x(k)≥ 0] .

By using the transformation (43), this equation can be

expressed by the inequalities

−mδ (k)≤ x(k)−m

−(M+ ε)δ ≤−x− ε ,

where M =−m = 10, and ε is a small positive scalar. Then

(48) can be rewritten as

x(k+1) = 1.6δ (k)x(k)−0.8x(k)+u(k) .

By defining a new variable z(k) = δ (k)x(k) which, by (44)–

(47), can be expressed as

z(k)≤ Mδ (k) (49)

z(k)≥ mδ (k) (50)

z(k)≤ x(k)−m(1−δ (k)) (51)

z(k)≥ x(k)−M(1−δ (k)) , (52)

the evolution of system (48) is ruled by the linear equation

x(k+1) = 1.6z(k)−0.8x(k)+u(k)

subject to the linear constraints (49)–(52). ✷

This example can be generalized by describing systems

through the following linear relations:

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k) (53)

y(k) =Cx(k)+D1u(k)+D2δ (k)+D3z(k) (54)

E1x(k)+E2u(k)+E3δ (k)+E4z(k)6 g5, (55)

where x(k) = [xT
r (k) xT

b (k)]
T with xr(k) ∈ R

nr and xb(k) ∈
{0,1}nb (y(k) and u(k) have a similar structure), and where

z(k)∈R
rr and δ (k)∈{0,1}rb are auxiliary variables. Systems

of the form (53)–(55) are called Mixed Logical Dynamical

(MLD) systems.

The MLD formalism allows specifying the evolution of

continuous variables through linear dynamic equations, of

discrete variables through propositional logic statements and

automata, and the mutual interaction between the two. As

explained above the key idea of the approach consists of em-

bedding the logic part in the state equations by transforming

boolean variables into 0-1 integers, and by expressing the

relations as mixed-integer linear inequalities. MLD systems

are therefore capable of modeling a broad class of systems,

such as PWA systems, linear hybrid systems, finite state

machines, (bi)linear systems with discrete inputs, etc. [7].

Remark 5.3 It is assumed that for all x(k) with xb(k) ∈
{0,1}nb , all u(k) with ub(k)∈ {0,1}mb , all z(k)∈R

rr , and all

δ (k) ∈ {0,1}rb satisfying (55) it holds that x(k+1) and y(k)
determined from (53)–(54) are such that xb(k+1) ∈ {0,1}nb

and yb(k) ∈ {0,1}lb . This is without loss of generality, as we

can take binary components of states and outputs (if any) to

be auxiliary variables as well (see proof of [6, Prop. 1]). ✷

D. MMPS systems

In [31] a class of discrete-event systems and hybrid

systems has been introduced that can be modeled using the

operations maximization, minimization, addition and scalar

multiplication. Expressions that are built using these opera-

tions are called Max-Min-Plus-Scaling (MMPS) expressions.

Definition 5.4: An MMPS expression f of the variables

x1, . . . , xn is defined by the grammar7

f := xi|α|max(fk, fl)|min(fk, fl)| fk + fl |β fk (56)

with i ∈ {1,2, . . . ,n}, α , β ∈ R, and where fk, fl are again

MMPS expressions.

An MMPS example of an expression is, e.g., 3x1−8x2+9+
max(min(3x1,−9x2),−x2 −3x3).

Consider now systems that can be described by

x(k+1) = Mx(x(k),u(k),d(k)) (57)

y(k) = My(x(k),u(k),d(k)), (58)

where Mx, My are MMPS expressions in terms of the

components of x(k), u(k) and the auxiliary variables d(k),
which are all real-valued. Such systems will be called MMPS

systems. If in addition, we have a condition of the form

Mc(x(k),u(k),d(k))6 c(k) ,

with Mc an MMPS expression, we speak about constrained

MMPS systems. A typical example of an (unconstrained)

MMPS is a traffic-signal controlled intersection [26].

Example 5.5 It is easy to verify that if we recast the PWA

model (28) of Example 5.1 into an MMPS model we obtain

x(k+1) = min(x(k)+u(k),1)

y(k) = x(k) . ✷

E. Equivalence between continuous PWA systems and

MMPS systems

In [43] it has been shown that PWA systems, MLD

systems and constrained MMPS systems are equivalent under

mild additional assumptions related to well-posedness and

boundedness of input, state, output or auxiliary variables.

Now we consider another equivalence between continuous

PWA systems and (unconstrained) MMPS systems in more

detail as it will be the basis for the MPC approach derived

in Section VII below.

A function f : Rn → R is said to be a continuous PWA

function if and only if the following conditions hold [21]:

1) The domain space R
n is divided into a finite number

of polyhedral regions R(1), . . . ,R(N).

2) For each i ∈ {1, . . . ,N}, f can be expressed as

f (x) = αT
(i)x+β(i) (59)

7The symbol | stands for OR and the definition is recursive.

for any x ∈ R(i) with α(i) ∈ R
n and β(i) ∈ R.

3) f is continuous on any boundary between two regions.

A continuous PWA system is a system of the form

x(k) = Px(x(k−1),u(k)) (60)

y(k) = Py(x(k),u(k)) , (61)

where Px and Py are vector-valued continuous PWA func-

tions. Note that the main difference with the PWA systems

introduced in Section V-B is that now we require the PWA

functions to be continuous on the boundary between the

regions that make up the partition of the domain.

Theorem 5.6 ([40], [60]): If f is a continuous PWA func-

tion of the form (59), then there exist index sets I1, . . . , Iℓ ⊆
{1, . . . ,N} such that

f = max
j=1,...,ℓ

min
i∈I j

(αT
(i)x+β(i)) .

From the definition of MMPS functions it follows that (see

also [40], [60]):

Lemma 5.7: Any MMPS function is also a continuous

PWA function.

From Theorem 5.6 and Lemma 5.7 it follows that con-

tinuous PWA systems and (unconstrained) MMPS systems

are equivalent, i.e., for a given continuous PWA model there

exists an MMPS model (and vice versa) such that the input-

output behavior of both models coincides.

Corollary 5.8: Continuous PWA models and (uncon-

strained) MMPS models are equivalent.

Note that this is an extension of the results of [43], which

prove an equivalence between (not necessarily continuous)

PWA models and MMPS models, but there some extra

auxiliary variables and some additional algebraic MMPS

constraints between the states, the inputs and the auxiliary

variables were required to transform the PWA model into an

MMPS model.

VI. MPC FOR MLD SYSTEMS
8

A. The MLD MPC problem

An important control problem for MLD systems is to

stabilize the system to an equilibrium state or to track a

desired reference trajectory. In general finding a control law

that attains these objectives for an MLD system is not an

easy task, as in general MLD systems are neither linear9

nor even smooth. MPC provides a successful tool to perform

these task, as will be shown next. For the sake of brevity we

will concentrate on the stabilization to an equilibrium state.

Consider the MLD system (53)–(55) and an equilibrium

state/input/output triple (xeq,ueq,yeq), and let (δeq,zeq) be the

corresponding pair of auxiliary variables. Now we consider

8This section is based on [7].
9Due to the integer constraints δi ∈{0,1}, the linear inequality (55) results

in a nonlinear relation between δ and x, u, and between z and x, u.

the MLD MPC problem with objective function

J(k) =
Np

∑
j=1

‖x̂(k+ j|k)− xeq‖
2
Qx

+‖u(k+ j−1)−ueq‖
2
Qu
+

‖ŷ(k+ j|k)− yeq‖
2
Qy

+‖δ̂ (k+ j−1|k)−δeq‖
2
Qδ

+

‖ẑ(k+ j−1|k)− zeq‖
2
Qz

where Qu, Qx are positive definite matrices, and Qy, Qδ , Qz

are nonnegative definite matrices. Furthermore, we have the

end-point condition

x̂(k+Np|k) = xeq

in addition to the MLD system equations, and possibly also

a control horizon constraint10 of the form (9). Now we have

Theorem 6.1 ([7]): Consider an MLD system (53)–(55)

and an equilibrium state/input/output triple (xeq,ueq,yeq), and

let (δeq,zeq) be the corresponding pair of auxiliary variables.

Assume that the initial state x(0) is such that a feasible

solution of the MLD MPC problem exists for sample step 0.

The input signal resulting from applying the optimal MLD

MPC input signal in a receding horizon approach stabilizes

the MLD system in the sense that

lim
k→∞

x(k) = xeq , lim
k→∞

‖y(k)− yeq‖Qy = 0 ,

lim
k→∞

u(k) = ueq , lim
k→∞

‖δ (k)−δeq‖Qδ
= 0 ,

lim
k→∞

‖z(k)− zeq‖Qz = 0 .

B. Algorithms

Let us now show that the MLD MPC problem can be

recast as a mixed integer quadratic programming (MIQP)

problem. For the MLD case using successive substitution for

(53) results in the following prediction equation for the state:

x̂(k+ j|k) = A jx(k)+

j−1

∑
i=0

A j−i
(

B1u(k+ i)+B2δ (k+ i)+B3z(k+ i) .

For ŷ(k+ j|k) we have a similar expression. If we define δ̃ (k)
and z̃(k) in a similar way as ũ(k) (cf. (4)), and if we define

Ṽ (k) =
[

ũT(k) ỹT(k) δ̃ T(k) z̃T(k)
]T

,

we obtain the following equivalent formulation for the MLD

MPC problem:

min
Ṽ (k)

Ṽ T(k)S1Ṽ (k)+2(S2 + xT(k)S3)Ṽ (k) (62)

subject to F1Ṽ (k)6 F2 +F3x(k) , (63)

for appropriately defined matrices S1, S2, S3, F1, F2, F3.

Note that Ṽ (k) contains both real-valued and integer-valued

10While in other contexts introducing a control horizon constraint amounts
to hugely down-sizing the optimization problem at the price of a reduced
performance, for MLD systems the computational gain is only partial, since

all the (auxiliary) variables δ̂ (k+ ℓ|k) and ẑ(k+ ℓ|k) for ℓ = Nc, . . . ,Np −1
remain in the optimization.

components. As the objective function is quadratic, the

equivalent problem is an MIQP problem.

MIQP problems are classified as NP-hard [39], [66], which

— loosely speaking — means that, in the worst case, the

solution time grows exponentially with the problem size.

Several algorithmic approach have been applied successfully

to medium and large-size application problems [37], the

four major ones being cutting plane methods, decomposition

methods, logic-based methods, and branch-and-bound meth-

ods. In [7] the authors use a branch-and-bound method as

several authors seems to agree on the fact that branch-and-

bound methods are the most successful for mixed integer

programming problems [36].

As described by [7], [36], the branch-and-bound algo-

rithm for MIQP consists of solving and generating new

quadratic programming (QP) problems in accordance with

a tree search, where the nodes of the tree correspond to

QP subproblems. The QP subproblems involve real-valued

variables only, and are thus efficiently solvable using a

modified simplex method or an interior point method [59],

[61], [75].

For a worked example of the MLD MPC approach we

refer the interested reader to [7].

VII. MPC FOR CONTINUOUS PWA AND MMPS SYSTEMS

In the previous section we have already discussed how

the MPC problem for MLD systems (and thus also PWA

systems) can be recast as an MIQP problem. In this section

we will define the MMPS MPC problem and show that for

(unconstrained) MMPS systems, and thus also for continuous

PWA systems, the MPC problem can be transformed into

solving a sequence of real (so not integer!) LP problems. The

approach we propose is based on canonical forms for MMPS

functions, which are introduced below, and is similar to the

cutting-plane algorithm for convex optimization problems.

A. Canonical forms of MMPS functions

Theorem 7.1: Any MMPS function f : Rn → R can be

rewritten in the min-max canonical form

f = min
i=1,...,K

max
j=1,...,ni

(αT
(i, j)x+β(i, j)) (64)

or in the max-min canonical form

f = max
i=1,...,L

min
j=1,...,mi

(γT
(i, j)x+δ(i, j)) (65)

for some integers K, L, n1, . . . ,nK , m1, . . . ,mL, vectors

α(i, j),γ(i, j), and real numbers β(i, j),δ(i, j).
Proof: We will only sketch the proof of the theorem

(see [34] for the full proof). Moreover, we only consider the

min-max canonical form since the proof for the max-min

canonical form is similar.

It is easy to verify that if fk and fl are affine functions, then

the functions that results from applying the basic constructors

of an MMPS function (max, min, +, and scaling — cf. (56))

are in min-max canonical form11.

Now we can use a recursive argument that consists

in showing that if we apply the basic constructors of

an MMPS function to two (or more) MMPS func-

tions in min-max canonical form, then the result can

again be transformed into min-max canonical form. Con-

sider two MMPS functions f and g in min-max canon-

ical form12: f = min(max(f1, f2),max(f3, f4)) and g =
min(max(g1,g2),max(g3,g4)). Using the following proper-

ties (with α,β ,γ ,δ ∈ R):

• minimization is distributive w.r.t. maximization, i.e.,

min
(

α,max(β ,γ)
)

= max
(

min(α,β),min(α,γ)
)

. So

min
(

max(α,β),max(γ ,δ)
)

=

max
(

min(α,γ),min(α,δ),min(β ,γ),min(β ,δ)
)

.

• the max operation is distributive w.r.t. min. Hence,

max
(

min(α,β),min(γ ,δ)
)

=

min
(

max(α,γ),max(α,δ),max(β ,γ),max(β ,δ)
)

.

• min(α,β)+min(γ ,δ)=min(α + γ ,α +δ ,β + γ ,β +δ)

max(α,β)+max(γ ,δ)=max(α+γ ,α+δ ,β +γ ,β +δ)

max(α,β) =−min(−α,−β)
• if ρ ∈ R is positive, then ρ max(α,β) = max(ρα,ρβ)

and ρ min(α,β) = min(ρα,ρβ) ;

it can be shown that max(f ,g), min(f ,g), f +g and β f can

again be written in min-max canonical form.

B. The MMPS MPC problem

We can use the deterministic model (57)–(58) either as

a model of an MMPS system, as the equivalent model of a

continuous PWA system, or as an approximation of a general

smooth nonlinear system. Note that we do not include model-

ing errors or uncertainty in the model. However, since MPC

uses a receding finite horizon approach, we can regularly

update the model and the state estimate as new information

and measurements become available.

We can make an estimate ŷ(k+ j|k) of the output of the

system (57)–(58) at sample step k + j based on the state

x(k) and the future input sequence u(k), . . . ,u(k + j − 1).
Using successive substitution, we obtain an expression of

the following form:

ŷ(k+ j|k) = Fj(x(k),u(k), . . . ,u(k+ j−1))

for j = 1, . . . ,Np. Clearly, ŷ(k+ j|k) is an MMPS function of

x(k),u(k), . . . ,u(k+ j−1).

11We allow “void” min or max statements of the form min(s) or max(s),
which by definition are equal to s for any expression s. Alternatively, we
can write min(s,s) or max(s,s).

12For the sake of simplicity we only consider two min-terms in f and g,
each of which consists of the maximum of two affine functions. However,
the proof also holds if more terms are considered.

In this section we consider the following output and input

cost functions (see also Section IV-B):

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1 , Jin,1(k) = ‖ũ(k)‖1 , (66)

Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞ , Jin,∞(k) = ‖ũ(k)‖∞ . (67)

Since we have |x| = max(x,−x) for all x ∈ R, it is easy to

verify that these cost functions are also MMPS functions.

Just as in conventional MPC and MPL MPC we can

define (non)linear constraints (7) or (8), and a control horizon

constraint (9) or (16). This then results in the MMPS MPC

problem.

C. Algorithms for the MMPS MPC optimization problem

1) Nonlinear or ELCP optimization: In general the

MMPS MPC optimization problem is a nonlinear, nonconvex

optimization problem. Some of the methods discussed in

Section IV-E can also be used to solve the MMPS MPC

optimization problem: we can use multi-start nonlinear opti-

mization based on sequential quadratic programming (SQP),

or we can use a method based on the extended linear

complementarity problem (ELCP). However, both methods

have their disadvantages.

If we use the SQP approach, then we usually have to

consider a large number of initial starting points and perform

several optimization runs to obtain (a good approximation

of) the global minimum. In addition, the objective functions

that appear in the MMPS MPC optimization problem are

nondifferentiable and PWA (if we use the cost criteria given

in (66)–(67)), which makes the SQP algorithm less suitable

for them.

The main disadvantage of the ELCP approach is that the

execution time of this algorithm increases exponentially as

the size of the problem increases. This implies that this

approach is not feasible if Nc or the number of inputs and

outputs of the system are large.

An alternative option consists in transforming the MMPS

system into an MLD system since (constrained) MMPS

systems are equivalent to MLD systems [43]. The main

difference between MLD MPC and MMPS MPC is that MLD

MPC requires the solution of mixed integer-real optimization

problems. In general, these are also computationally hard

optimization problems.

Now we will present another method to solve the MMPS

MPC optimization problem that is similar to the cutting-plane

method used in convex optimization.

2) An LP-based algorithm: We assume that the cost crite-

ria given in (66)–(67) are used13. Recall that these objective

functions (and any linear combination of them) are MMPS

functions. The same holds for the estimate of future output

ỹ(k). So if we substitute ỹ(k) in the expression for J(k),
we finally obtain an MMPS function of ũ(k) as objective

13The result below also holds for any other cost criterion that is an
MMPS function of ỹ(k) and ũ(k). So it follows from Theorem 5.6 that
any continuous PWA norm function can also be used.

function. From Theorem 7.1 it follows that this objective

function can be written in min-max canonical form as follows

(where — for the sake of simplicity of notation — we drop

the index k):

J = min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j))

for appropriately defined integers ℓ, n1, . . . ,nℓ, vectors α(i, j)

and integers β(i, j). Note that in general the expression ob-

tained by straightforwardly applying the manipulations of the

proof of Theorem 7.1 will contain a large number of affine

arguments αT
(i, j)ũ+β(i, j). However, many of these terms are

redundant14, and can thus be removed. This reduces the num-

ber of affine arguments. Also note that the transformation into

canonical form only has to be performed once — provided

that we explicitly consider all arguments that depend on k as

additional variables when performing the transformation, —

and that it can be done off-line.

The derivation below is similar to the cutting-plane al-

gorithm for convex optimization (see, e.g., [13]). Hence, it

requires constraints that are linear (or convex) in ũ. Note

that the control horizon constraints (9) or (16) satisfy this

condition. However, even if the original MPC constraint (7)

is linear in ũ(k) and ỹ(k), then in general this constraint is

not linear any more after substitution of ỹ(k). Therefore, from

now on we assume that there are only linear15 constraints on

the input ũ(k):

Pũ+q > 0 . (68)

In practice, constraints of the form (68) occur if we have to

guarantee that the control signal ũ(k) or the control signal

rate ∆ũ(k) stay within certain bounds. Note that in general P

and q may depend on x(k) and k, but for the sake of simplicity

of notation we do not explicitly indicate this dependence.

To obtain the optimal MMPS MPC input signal at sample

step k, we have to solve an optimization problem of the

following form:

min
ũ

min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 .

or equivalently

min
i=1,...,ℓ

min
ũ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j)) (69)

subject to Pũ+q > 0 . (70)

Now let i ∈ {1, . . . , ℓ} and consider

min
ũ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j))

14E.g., since they appear twice, or since there are other arguments in
the max (min) expression that are always larger (smaller) than the given
argument.

15The optimization algorithm used below, which is based on the cutting
plane algorithm for convex optimization, can also deal with convex con-
straints. So we can also allow convex constraints instead of (68).

subject to Pũ+q > 0 .

It is easy to verify that this problem is equivalent to the

following LP problem:

min t (71)

subject to t > αT
(i, j)ũ+β(i, j) for j = 1, . . . ,ni (72)

Pũ+q > 0 . (73)

This LP problem can be solved efficiently using (variants of)

the simplex method or an interior-point algorithm (see, e.g.,

[59], [75]).

To obtain the solution of (69)–(70), we solve (71)–(73) for

i= 1, . . . , ℓ and afterward we select the solution ũ
opt

(i)
for which

max
j=1,...,ni

(αT
(i, j)ũ

opt

(i)
+β(i, j)) is the smallest16. This results in an

algorithm to solve the MMPS MPC problem that is more

efficient than the SQP or the ELCP approach.

For a worked example of the MMPS MPC approach we

refer the interested reader to [32].

VIII. RELATED WORK IN CONNECTION WITH MPC FOR

HYBRID SYSTEMS

A similar approach as the one derived in Section IV can

also be applied to MPC for first-order hybrid systems with

saturation [26], [27] (an example of these systems is a traffic-

signal controlled intersection).

Note that MPC is related to optimal control. In this context,

optimal control of a classes of manufacturing systems is

considered in [19]. Other methods for optimal control of

hybrid systems are presented [14]–[16], [41], [42], [52], [64].

IX. CONCLUSIONS

In this paper we have presented an overview of some

results in connection with MPC for some tractable classes

of discrete-event systems and hybrid systems. Computational

complexity and the search for good and efficient approxi-

mations and solution methods are among the major current

research topics in this field.

Acknowledgments
Many of the results described in this paper have been obtained by
or in cooperation with A. Bemporad and W.M.P.H. Heemels.
Research partially funded by the Dutch Technology Founda-
tion STW project “Model predictive control for hybrid systems”
(DMR.5675) and by the European IST project “Modelling, Simula-
tion and Control of Nonsmooth Dynamical Systems (SICONOS)”
(IST-2001-37172).

16If we use a primal-dual simplex method or an interior-point method
to solve the LP problems, we can improve the efficiency of the approach
even further by stopping the optimization if we obtain a lower bound for the
objective function of the current LP problem that is larger than the smallest
final objective function of the LP problems that have already been solved.

X. REFERENCES

[1] F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings, and S. Wright,
“Nonlinear predictive control and moving horizon estimation –
An introductory overview,” in Advances in Control: Highlights
of ECC ’99, P. Frank, Ed. London, UK: Springer, 1999, pp.
391–449.

[2] R. Alur and D. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[3] P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry,
Eds., Hybrid Systems V, ser. Lecture Notes in Computer
Science, vol. 1567. Berlin, Germany: Springer-Verlag, 1999,
(Proceedings of the 5th International Hybrid Systems Work-
shop, Notre Dame, Indiana, Sept. 1997).

[4] P. Antsaklis and A. Nerode, eds., “Special issue on hybrid
systems,” IEEE Transactions on Automatic Control, vol. 43,
no. 4, Apr. 1998.

[5] F. Baccelli, G. Cohen, G. Olsder, and J. Quadrat, Synchroniza-
tion and Linearity. New York: John Wiley & Sons, 1992.

[6] A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Observabil-
ity and controllability of piecewise affine and hybrid systems,”
IEEE Transactions on Automatic Control, vol. 45, no. 10, pp.
1864–1876, 2000.

[7] A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, vol. 35, no. 3,
pp. 407–427, Mar. 1999.

[8] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The
explicit linear quadratic regulator for constrained systems,”
Automatica, vol. 38, no. 1, pp. 3–20, Jan. 2002.

[9] A. Bemporad, F. Torrisi, and M. Morari, “Optimization-based
verification and stability characterization of piecewise affine
and hybrid systems,” in Hybrid Systems: Computation and
Control, ser. Lecture Notes in Computer Science, B. Krogh
and N. Lynch, Eds., vol. 1790. Springer Verlag, 2000, pp.
45–58.

[10] L. Biegler, “Efficient solution of dynamic optimization and
NMPC problems,” in Nonlinear Model Predictive Control,
ser. Progress in Systems and Control Theory, F. Allgöwer
and A. Zheng, Eds., vol. 26. Basel, Switzerland: Birkhäuser
Verlag, 2000.

[11] V. Blondel and J. Tsitsiklis, “Complexity of stability and
controllability of elementary hybrid systems,” Automatica,
vol. 35, no. 3, pp. 479–489, Mar. 1999.

[12] J. Boimond and J. Ferrier, “Internal model control and max-
algebra: Controller design,” IEEE Transactions on Automatic
Control, vol. 41, no. 3, pp. 457–461, Mar. 1996.

[13] S. Boyd and C. Barratt, Linear Controller Design: Limits of
Performance. Englewood Cliffs, New Jersey: Prentice Hall,
1991.

[14] M. Branicky, “Analyzing and synthesizing hybrid control sys-
tems,” in Lectures on Embedded Systems, ser. Lecture Notes
in Computer Science, G. Rozenberg and F. Vaandrager, Eds.
Berlin: Springer, 1998, vol. 1494, pp. 74–113.

[15] M. Branicky, V. Borkar, and S. Mitter, “A unified framework
for hybrid control: Model and optimal control theory,” IEEE
Transactions on Automatic Control, vol. 43, no. 1, pp. 31–45,
Jan. 1998.

[16] M. Branicky and G. Zhang, “Solving hybrid control problems:
Level sets and behavioral programming,” in Proceedings of the
2000 American Control Conference, Chicago, IL, June 2000,
pp. 1175–1180.

[17] E. Camacho and C. Bordons, Model Predictive Control in the
Process Industry. Berlin, Germany: Springer-Verlag, 1995.

[18] C. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Boston: Kluwer Academic Publishers, 1999.

[19] C. Cassandras, D. Pepyne, and Y. Wardi, “Optimal control of
a class of hybrid systems,” IEEE Transactions on Automatic
Control, vol. 46, no. 3, pp. 398–415, Mar. 2001.

[20] D. Christiansen, Electronics Engineers’ Handbook, 4th ed.
New York: IEEE Press/McGraw Hill, 1997.

[21] L. Chua and A. Deng, “Canonical piecewise-linear represen-
tation,” IEEE Transactions on Circuits and Systems, vol. 35,
no. 1, pp. 101–111, Jan. 1988.

[22] D. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive
control – Part I. The basic algorithm,” Automatica, vol. 23,
no. 2, pp. 137–148, Mar. 1987.

[23] G. Cohen, D. Dubois, J. Quadrat, and M. Viot, “A linear-
system-theoretic view of discrete-event processes and its use
for performance evaluation in manufacturing,” IEEE Transac-
tions on Automatic Control, vol. 30, no. 3, pp. 210–220, Mar.
1985.

[24] R. Cuninghame-Green, Minimax Algebra, ser. Lecture Notes
in Economics and Mathematical Systems. Berlin, Germany:
Springer-Verlag, 1979, vol. 166.

[25] C. Cutler and B. Ramaker, “Dynamic matrix control – a com-
puter control algorithm,” in Proceedings of the 86th AIChE
National Meeting, Houston, Texas, Apr. 1979.

[26] B. De Schutter, “Optimal control of a class of linear hybrid
systems with saturation,” SIAM Journal on Control and Opti-
mization, vol. 39, no. 3, pp. 835–851, 2000.

[27] ——, “Optimizing acyclic traffic signal switching sequences
through an extended linear complementarity problem formu-
lation,” European Journal of Operational Research, vol. 139,
no. 2, pp. 400–415, June 2002.

[28] B. De Schutter and B. De Moor, “The extended linear com-
plementarity problem,” Mathematical Programming, vol. 71,
no. 3, pp. 289–325, Dec. 1995.

[29] B. De Schutter and T. van den Boom, “Model predictive
control for max-min-plus systems,” in Discrete Event Systems:
Analysis and Control, ser. The Kluwer International Series in
Engineering and Computer Science, R. Boel and G. Stremer-
sch, Eds. Boston: Kluwer Academic Publishers, 2000, vol.
569, pp. 201–208.

[30] ——, “Model predictive control for max-plus-linear discrete
event systems,” Automatica, vol. 37, no. 7, pp. 1049–1056,
July 2001.

[31] ——, “Model predictive control for max-min-plus-scaling
systems — Efficient implementation,” in Proceedings of
the 6th International Workshop on Discrete Event Systems
(WODES’02), M. Silva, A. Giua, and J. Colom, Eds.,
Zaragoza, Spain, Oct. 2002, pp. 343–348.

[32] ——, “MPC for continuous piecewise-affine systems,” Con-
trol Systems Engineering, Fac. of Information Technology
and Systems, Delft University of Technology, Delft, The
Netherlands, Tech. Rep. CSE02-004, Mar. 2002, provisionally
accepted for publication in Systems & Control Letters.

[33] ——, “MPC for discrete-event systems with soft and hard
synchronisation constraints,” International Journal of Control,
vol. 76, no. 1, pp. 82–94, 2003.

[34] B. De Schutter, T. van den Boom, and G. Benschop, “MPC
for continuous piecewise-affine systems,” in Proceedings of
the 15th IFAC World Congress, Barcelona, Spain, July 2002,
paper 229 / T-Fr-A16.

[35] G. Fishman, Discrete-Event Simulation — Modeling, Pro-
gramming, and Analysis. New York: Springer-Verlag, 2001.

[36] R. Fletcher and S. Leyffer, “Numerical experience with lower
bounds for MIQP branch-and-bound,” SIAM Journal on Op-
timization, vol. 8, no. 2, pp. 604–616, May 1998.

[37] C. Floudas, Nonlinear and mixed-integer optimization. Ox-
ford, UK: Oxford University Press, 1995.

[38] C. Garcı́a, D. Prett, and M. Morari, “Model predictive control:
Theory and practice — A survey,” Automatica, vol. 25, no. 3,
pp. 335–348, May 1989.

[39] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco:
W.H. Freeman and Company, 1979.

[40] V. Gorokhovik and O. Zorko, “Piecewise affine functions and
polyhedral sets,” Optimization, vol. 31, pp. 209–221, 1994.

[41] S. Hedlund and A. Rantzer, “Hybrid control laws from convex
dynamic programming,” in Proceedings of IEEE Conference
of Decision and Control, Dec. 2000.

[42] ——, “Convex dynamic programming for hybrid systems,”
IEEE Transactions on Automatic Control, vol. 47, no. 9, pp.
1536–1540, Sept. 2002.

[43] W. Heemels, B. De Schutter, and A. Bemporad, “Equivalence
of hybrid dynamical models,” Automatica, vol. 37, no. 7, pp.
1085–1091, July 2001.

[44] W. Heemels, J. Schumacher, and S. Weiland, “Linear comple-
mentarity systems,” SIAM Journal on Applied Mathematics,
vol. 60, no. 4, pp. 1234–1269, 2000.

[45] T. Henzinger and S. Sastry, Eds., Hybrid Systems: Computa-
tion and Control, ser. Lecture Notes in Computer Science, vol.
1386. Berlin, Germany: Springer-Verlag, 1998, (Proceedings
of the First International Workshop on Hybrid Systems: Com-
putation and Control (HSCC’98), Berkeley, California, Apr.
1998).

[46] Y. Ho, Ed., Discrete Event Dynamic Systems: Analyzing Com-
plexity and Performance in the Modern World. Piscataway,
New Jersey: IEEE Press, 1992.

[47] Y. Ho and X. Cao, Perturbation Analysis of Discrete Event
Dynamic Systems. Boston: Kluwer Academic Publishers,
1991.

[48] Y. Ho, ed., “Special issue on dynamics of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, Jan. 1989.

[49] M. Johansson and A. Rantzer, “Computation of piecewise
quadratic Lyapunov functions for hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 4, pp. 555–
559, Apr. 1998.

[50] D. Leenaerts and W. van Bokhoven, Piecewise Linear Mod-
eling and Analysis. Boston: Kluwer Academic Publishers,
1998.

[51] L. Libeaut and J. Loiseau, “Admissible initial conditions and
control of timed event graphs,” in Proceedings of the 34th
IEEE Conference on Decision and Control, New Orleans,
Louisiana, Dec. 1995, pp. 2011–2016.

[52] B. Lincoln and A. Rantzer, “Optimizing linear system switch-
ing,” in Proceedings of the 40th Conference on Decision and
Control, 2001.

[53] J. Maciejowski, Predictive Control with Constraints. Harlow,
England: Prentice Hall, 2002.

[54] E. Menguy, J. Boimond, and L. Hardouin, “A feedback control
in max-algebra,” in Proceedings of the European Control
Conference (ECC’97), Brussels, Belgium, paper 487, July
1997.

[55] ——, “Adaptive control for linear systems in max-algebra,” in
Proceedings of the International Workshop on Discrete Event
Systems (WODES’98), Cagliari, Italy, Aug. 1998, pp. 481–488.

[56] ——, “Optimal control of discrete event systems in case
of updated reference input,” in Proceedings of the IFAC
Conference on System Structure and Control (SSC’98), Nantes,
France, July 1998, pp. 601–607.

[57] A. Morse, C. Pantelides, S. Sastry, and J. Schumacher, eds.,
“Special issue on hybrid systems,” Automatica, vol. 35, no. 3,
Mar. 1999.

[58] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr.
1989.

[59] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial
Algorithms in Convex Programming. Philadelphia, Pennsyl-
vania: SIAM, 1994.

[60] S. Ovchinnikov, “Max-min representation of piecewise linear
functions,” Beiträge zur Algebra und Geometrie/Contributions
to Algebra and Geometry, vol. 43, no. 1, pp. 297–302, 2002.

[61] P. Pardalos and M. Resende, Eds., Handbook of Applied
Optimization. Oxford, UK: Oxford University Press, 2002.

[62] K. Passino and K. Burgess, Stability Analysis of Discrete Event
Systems. New York: John Wiley & Sons, 1998.

[63] J. Peterson, Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

[64] A. Rantzer and M. Johansson, “Piecewise linear quadratic
optimal control,” IEEE Transactions on Automatic Control,
vol. 45, no. 4, pp. 629–637, Apr. 2000.

[65] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model pre-
dictive heuristic control: Applications to industrial processes,”
Automatica, vol. 14, no. 5, pp. 413–428, Sept. 1978.

[66] A. Schrijver, Theory of Linear and Integer Programming.
Chichester, UK: John Wiley & Sons, 1986.

[67] E. Sontag, “Nonlinear regulation: The piecewise linear ap-
proach,” IEEE Transactions on Automatic Control, vol. 26,
no. 2, pp. 346–358, Apr. 1981.

[68] F. Vaandrager and J. van Schuppen, Eds., Hybrid systems:
Computation and Control, ser. Lecture Notes in Computer
Science, vol. 1569. Berlin, Germany: Springer, 1999, (Pro-
ceedings of the Second International Workshop on Hybrid
Systems: Computation and Control (HSCC’99), Berg en Dal,
The Netherlands, Mar. 1999).

[69] T. van den Boom and B. De Schutter, “Properties of MPC
for max-plus-linear systems,” European Journal of Control,
vol. 8, no. 5, pp. 453–462, 2002.

[70] ——, “Model predictive control for perturbed max-plus-linear
systems: A stochastic approach,” in Proceedings of the 40th
IEEE Conference on Decision and Control, Orlando, Florida,
Dec. 2001, pp. 4535–4540.

[71] ——, “Model predictive control for perturbed max-plus-linear
systems,” Systems & Control Letters, vol. 45, no. 1, pp. 21–33,
Jan. 2002.

[72] A. van der Schaft and J. Schumacher, “Complementarity
modeling of hybrid systems,” IEEE Transactions on Automatic
Control, vol. 43, no. 4, pp. 483–490, Apr. 1998.

[73] ——, An Introduction to Hybrid Dynamical Systems, ser.
Lecture Notes in Control and Information Sciences. London:
Springer-Verlag, 2000, vol. 251.

[74] H. Williams, Model Building in Mathematical Programming,
3rd ed. New York: Wiley, 1993.

[75] S. Wright, Primal-Dual Interior Point Methods. Philadelphia,
Pennsylvania: SIAM, 1997.

[76] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete
Event Control of Manufacturing Systems. Boston: Kluwer
Academic Publishers, 1991.

