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Integration of Dynamic Route Guidance and

Freeway Ramp Metering Using Model Predictive

Control

Abdes Karimi, Andreas Hegyi, Bart De Schutter, Hans Hellendoorn, and Frans Middelham

Abstract— We propose a traffic control approach that inte-
grates ramp metering and of dynamic route guidance using
a model predictive control framework. The main objective
of the control is to minimize the Total Time Spent (TTS) in
the network by providing accurate travel times shown the
Dynamic Route Guidance Panels (DRIPs) as controller input
to the traffic network while taking into account the effect
of other traffic control measures, such as ramp metering.
By aiming at minimizing the TTS as well as the difference
between travel times shown on the DRIPs and the travel
times actually realized by the drivers, the interests of both
the individual drivers as well as the road administration are
pursued. Simulation results for a case study show that the
proposed integrated MPC traffic control results in a lower
TTS while the drivers get accurate travel time information.

I. INTRODUCTION

One solution to the ever growing traffic congestion prob-

lem is to extend the road network. Adding lanes and creating

alternative new freeway connections is possible but rather

expensive. Dynamic traffic management is an alternative

that aims to increase the safety and efficiency of the existing

traffic networks. Several dynamic traffic management mea-

sures have been developed and implemented, such as ramp

metering systems, Dynamic Route Guidance Information

Systems (DRGIS), variable speed limits, etc. In this paper

we focus on ramp metering and DRGIS.

Ramp metering systems consist of traffic signals that are

positioned at on-ramps of freeways and that can be used to

regulate the flow of traffic entering the freeway from the

on-ramp. DRGIS are used to inform drivers about current

or expected travel times and queue lengths so that they may

reconsider their choice for a certain route.

In the field of traffic control one usually considers pre-

dicted or instantaneous travel times as the system input,

but this paper considers optimized travel times as the

system input (control signal). Instantaneous travel times

are travel times based on the current traffic state. In case

there are no major changes in the traffic state during

the trip from the DRGIS to the destination, these travel
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times are a good approximation of the travel times actually

realized by drivers from the DRGIS to the destination.

However, in case the traffic state changes due to the traffic

dynamics, the instantaneous travel times are not reliable

anymore. By using predicted travel times the future state

of the traffic network is also taken into account. However,

showing predicted travel times on DRGIS panels and the

resulting rerouting by the drivers may result in a traffic

distribution that is not always optimal with respect to the

total network performance. Another drawback is that other

traffic control measures on the traffic network are not taken

into account. Therefore, in this paper optimized travel times

are introduced, which are optimized in combination with

and at the same time as the other control signals.

Combination of on-ramp metering and dynamic route

guidance with the use of an optimal control strategy has

been studied in [1], [2]. There, optimal split rates at

points where drivers can choose between alternatives are

calculated using METANET-DTA, and the ramp metering

rates are calculated with the ALINEA feedback algorithm

or also taken into account within the optimization routine.

However, after calculating optimal split rates as done in

[1], [2], it is rather hard to find those control measures that

realize the optimal splitting rates.

We propose a network-wide control strategy based on

the integration of DRGIS and ramp metering using Model

Predictive Control (MPC) [3]. We will consider networks

consisting of both freeways and secondary roads, and the

control will also take the effects of ramp metering and

DRGIS on the traffic situation on the secondary roads into

account. The control signals we consider are ramp metering

rates and travel times shown on the DRGIS. Usually these

signals are determined separately using different objec-

tive functions, decomposition, or hierarchical optimization.

However, we will optimize both types of signals at the

same time using one objective function, which will result

in a better overall performance. The travel times shown on

the DRGIS and the ramp metering rates are optimized to

minimize the objective function, which consists in mini-

mizing the Total Time Spent (TTS) on the one hand, and

in reducing the difference between the travel times shown

on the DRGIS and the actually realized travel times. As a

consequence, the drivers will be guaranteed a minimal but

accurate travel time.



II. TRAFFIC PREDICTION MODELS

The MPC approach we propose requires a model of the

system in order to be able to predict how the traffic will

evolve for given demands and control signals. The predic-

tion model consists of three parts, describing respectively

the evolution of the traffic flows (for which we use the

METANET model), the reaction of the drivers to the route

guidance, and the calculation of the travel times.

A. METANET model

METANET [4], [5] is a macroscopic traffic modeling

and simulation tool. There are two possible ways to use

METANET: in destination-oriented mode, and in non-

destination-oriented mode. As we consider (re)routing of

traffic, we will use the destination-oriented mode. For

the sake of completeness, we will briefly present the

destination-oriented METANET model below, with a focus

on the parts of the model that are required for the case study

of Section IV. For a more detailed explanation we refer to

[4], [5], and to [6], [7], where some modifications to the

METANET model are proposed.

In METANET the traffic network is defined as a directed

graph with links and nodes, whereby the links represent

the freeway segments. Each freeway segment has uniform

characteristics. Nodes in the graph are placed at each loca-

tion where changes take place. A freeway link m consists

of Nm segments of equal length Lm (typically 300–1000 m).

The number of lanes of link m is denoted by λm. Let T

be the simulation time step, which must be chosen such

that a vehicle cannot pass a link within one time step (so it

typically has a value of about 10 s). For each segment i of

each link m we define the following macroscopic variables

for simulation step k, which are used to describe the state

of the traffic network:

• the traffic density ρm,i(k) (veh/km/lane) in segment i

of link m at time t = kT ,

• the mean speed vm,i(k) (km/h) of the vehicles in

segment i of link m at time t = kT ,

• the traffic flow qm,i(k) (veh/h) leaving segment i of link

m in the time interval [kT,(k+1)T ].

In METANET the partial density ρm,i, j(k) of vehicles in

segment i of link m destined to j is updated as follows:

ρm,i, j(k+1) = ρm,i, j(k)+ (1)

T

Lmλm

[

γm,i−1, j(k)qm,i−1(k)− γm,i, j(k)qm,i(k)
]

,

where γm,i, j(k) =
ρm,i, j(k)

ρm,i(k)
is the fraction of the traffic in

segment i of link m going to destination j and ρm,i(k) the

total traffic density in segment i of link m. Moreover,

qm,i(k) = ρm,i(k)vm,i(k)λm (2)

vm,i(k+1) = vm,i(k)+
T

τ
[V (ρm,i(k)− vm,i(k)]+ (3)

T

Lm

vm,i(k)[vm,i−1(k)− vm,i(k)]−
υT

τLm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
,

where κ , υ and τ are freeway parameters and V (ρm,i(k)) is

the desired speed:

V [ρm,i(k)] = vf,m exp [−
1

am

(
ρm,i(k)

ρcr,m
)am ] ,

where am is a model parameter, vf,m is the free flow speed

for link m, and ρcr,m is the critical density for link m.

In case a link is an on-ramp the modeling is done

differently to allow the modeling of the queue. Let the

portion do, j(k) of the traffic demand do(k) at on-ramp o

that is destined to destination j be defined by θo, j(k):

do, j(k) = θo, j(k)do(k) .

The allowed flow q̂o(k) is calculated as

q̂o(k) = min

[

∑
j∈Jo

(

do, j(k)+
wo, j(k)

T

)

,

Qo min
(

1,
ρmax −ρµ ,1(k)

ρmax −ρµ ,cr

)

]

,

where Jo is the set of destinations reachable from on-ramp

o, wo, j(k) is the length of the (sub)queue at on-ramp o

of vehicles going to destination j, Qo stands for the on-

ramp’s capacity under the condition that the freeway is

free flow, and ρmax is the maximum density. If there is

no ramp metering at origin o, then the actual flow qo(k)
leaving the on-ramp equals the allowed flow q̂o(k). When

ramp metering is present, the metering rate ro(k) defines

which fraction of the allowed flow is actually admitted to

the freeway: qo(k) = ro(k)q̂o(k) . Note that no metering

corresponds to ro(k) = 1 for all k. The subqueue length

wo, j(k) is updated as follows:

wo, j(k+1) = wo, j(k)+T
[

θo, j(k)do(k)− γo, j(k)qo(k)
]

.

The total traffic flow entering a given node n and destined

to destination j ∈ Jn, where Jn is the set of destinations

reachable from node n, is calculated as

Qn, j(k) = ∑
µ∈In

γµ ,Nµ , j(k)qµ ,Nµ (k) ,

where In is the set of incoming links for node n, and where

Nµ refers to the last segment of incoming link µ . For the

outgoing traffic, the part of the flow choosing link m to

get to its destination j is calculated as the flow leaving the

(virtual) 0th segment:

qm,0(k) = ∑
j∈Jm

β m
n, j(k)Qn, j(k) ,

where On is the set of outgoing links for node n, and β m
n, j(k)

is the portion of the traffic flow from node n to destination

j traveling via link m. Furthermore, we set

γm,0, j(k) =
β m

n, j(k)Qn, j(k)

qm,0(k)
.



In case a node n connected to a link m has two or more

leaving links, the upstream influence of the density is taken

into account by setting

ρm,Nm+1
(k) =

∑µ∈On
ρ2

µ ,1(k)

∑µ∈On
ρµ ,1(k)

, (4)

where ρm,Nm+1
is the (virtual) density used in (3) for the last

segment of link m. Expression (4) accounts for the effect

of queue spill-back from a congested link into the entering

link even if the other links are in free-flow state. In case of

more than one incoming link to a node n, the downstream

influence of the speed should be taken into account as:

vm,0(k) =
∑µ∈In vµ ,Nµ (k)qµ ,Nµ (k)

∑µ∈In qµ ,Nµ (k)
,

where the virtual speed vm,0 is required in (3) for the first

segment of link m.

B. Driver route choice modeling

The METANET model presented in Section II-A above

describes the evolution of the traffic flows in a traffic

network. One of the variables in this model is the routing

choice parameter β , which is the result of the drivers’

behavior, and which in our case will be influenced by the

travel times shown on the DRGIS panels. Hence, we also

require a model that describes how drivers react to travel

time information and how they adapt their route choice.

A well-known behavior model is the logit model [8]–

[10], which is used to model all kinds of consumer behavior

based on the cost of several alternatives. The lower the

cost of an alternative, the more consumers will choose that

alternative. In the traffic context, the consumers are the

drivers, and the cost is the comfort, safety, or travel time of

the possible alternative routes to the desired destination. The

logit model calculates the probability that a driver chooses

one of more alternatives based on the difference in travel

time between the alternatives.

Assume that we have two possible choices m1 and m2

at node n to get to destination j (the extension to three

or more alternative choices is possible, but not necessary

for the case study of Section IV). For the calculation of

the split rates out of the travel time difference between two

alternatives the logit model results in

β m
n, j(k) =

exp(σ(ϑ m
n, j(k)))

exp(σ(ϑ m1
n, j (k)))+ exp(σ(ϑ m2

n, j (k)))

for m = m1 or m = m2, where ϑ m
n, j(k) is the travel time

shown on the DRGIS at node n to travel to destination j

via link m. The parameter σ describes how drivers react on

a travel time difference between two alternatives. The higher

σ , the less travel time difference is needed to convince

drivers to choose the fastest alternative route.

C. Calculation of individual travel times

The calculation of the individual travel times is necessary

to determine the difference between the realized travel times

and the travel times shown on the DRGIS. This calculation

is inspired by [11], and is done by tracking vehicles at every

simulation step. When a vehicle passes a bifurcation node

with a DRGIS panel, that information is stored such that

when the vehicle leaves the network its realized travel time

can be computed, and the difference between the realized

travel time and the travel time shown on the DRGIS can

be included in the prediction error term of the performance

function (see (5)).

Let us now discuss how the travel times are determined.

Every, say, N simulation steps some virtual vehicles are

inserted into the network and their progress through the

network is tracked at every simulation step. More specifi-

cally, for each virtual vehicle ζ the following information

is tracked during the simulation:

1) The route the vehicle is going to travel.

2) The link and the segment in which the vehicle cur-

rently is, and its position s in this segment.

3) The travel time that the vehicle has seen on the

DRGIS panels it has already passed.

4) The realized travel time τ of the vehicle from the

DRGIS panels it has already passed to the current

position.

5) Whether or not the vehicle has left the network, and,

if applicable, the time the vehicle left the network.

In order to track the position of the vehicles and to record

the travel times, the METANET model has to be expanded

as follows. Based on the METANET model equations given

in Section II-A we can determine the time-dependent speed

profile for all routes of a given network. Then the current

position sζ ,m,i(k) of vehicle ζ in segment i of link m is

updated as follows:

sζ ,m,i(k+1) = sζ ,m,i(k)+ vm,i(k)T,

where vm,i(k) is the mean speed on segment i of link m

at simulation step k. If the updated position sζ ,m,i(k + 1)
is larger than the length Lm of segment i of link m, we

put the vehicle ζ in the next segment of its route (say,

segment i′ of link m′), and we adapt the (new) position

sζ ,m′,i′(k+1) accordingly. The travel time τζ ,η(k) of vehicle

ζ from DRGIS panel η to its current position is updated

as follows:

τζ ,η(k+1) = τζ ,η(k)+T .

III. MODEL PREDICTIVE CONTROL

Remark: As the simulation time step T (typically 10 s) is

usually different from the controller sample step Tctrl (typi-

cally 1–5 min), we use different counters for the simulation

(counter k) and for the control (counter z). If we assume

for the sake of simplicity that Tctrl is an integer multiple of

T , the relation between the counters k and z at time instant

t = kT = zTctrl is k = Tctrl
T

z .



A. Approach

MPC [3] is an on-line model-based predictive control

design strategy that has its roots in the process industry.

A main advantage of MPC is that process and control

constraints can be included in the control design. Thinking

in terms of traffic control, constraints can be the minimal

or maximal allowed on-ramp flow, maximal traffic signal

cycle times, maximum queue lengths, etc.

In MPC at a given time t = zTctrl the future process re-

sponses (outputs) are predicted by a model-based estimator

over a prediction period [t, t + NpTctrl), where Np is the

prediction horizon. MPC uses (numerical) optimization to

determine the control sequence u(z), . . . ,u(z+Np − 1) that

optimizes the predicted outputs in the sense of meeting a

future target and/or satisfying constraints on the controlled

and manipulated variables. In conventional MPC the aim is

to reduce the tracking error, i.e., to reduce the difference

between the actual system output and a predefined output

trajectory. However, in the traffic control context the ref-

erence trajectory is not present, and for the performance

indicator that has to be minimized we choose a weighted

combination of the TTS, the prediction error, and the control

variance (cf. (5) below).

In order to reduce the number of variables to be optimized

and to obtain smoother signals, a control horizon Nc (≤ Np)

is defined in MPC, and the control signal is taken to be

constant once the control horizon has passed u(z+ l)= u(z+
Nc −1) for l = Nc, . . . ,Np −1.

In order to be able to deal with disturbances, model

errors, and changes in the system parameters, MPC uses

a receding horizon approach, which operates as follows:

1) At the current time t = zTctrl we measure or estimate

(using, e.g., an extended Kalman filter) the current

traffic state1 of the network.

2) We solve the MPC control problem to obtain the

estimated optimal control2 sequence u(z), . . . ,u(z +
Nc −1).

3) We apply the first sample element u(z) of the control

sequence to the system.

4) At the next controller sampling time step we set z :=
z+1, and we repeat the process starting from Step 1.

For the tuning parameters Np and Nc we can use the

following rules of thumb. The prediction horizon Np must

be chosen such that a vehicle can travel through the whole

considered traffic network within the prediction period. This

means that the route with the largest travel time in the worst

case scenario (i.e., under congestion) must be considered

when choosing the prediction horizon. The control horizon

Nc must be tuned to realize an optimal performance at low

computational cost.

1I.e.,the partial densities for every segment and reachable destination
of a link, the mean speed of every segment of every link, and the partial
queues at every origin.

2The control vector consists of the independent travel times at bifur-
cation nodes where dynamic route guidance is provided, and the ramp
metering rates.
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Fig. 1. The traffic network of the case study.

B. Objective function

We have selected the following objective function over

the period [zTctrl,(z + Np)Tctrl) (note, however, that the

approach we propose works equally well for other perfor-

mance indicators):

J(z)=ξ1α1∑
k∈Ω(z)

[

T ∑
m∈L

∑
i∈Sm

ρm,i(k)Lmλm+ γT ∑
o∈O

wo(k)

]

(5)

+ξ2α2 ∑
ζ∈V (z)

∑
η∈D(ζ )

(ϑpred(ζ ,η))−ϑreal(ζ ,η))
2

+ξ3α3

z+Nc−1

∑
ℓ=z

‖u(ℓ)−u(ℓ−1)‖2 ,

where Ω(z) =
{

k0,k0 + 1, . . . ,k0 + Np
Tctrl
T

− 1
}

with k0 =

z
Tctrl

T
, L is the set of indices of all links in the network,

Sm is the set of indices of the segments of links m, O is the

set of all origins, V (z) is the set of indices of all vehicles

that left the network in the period [zTctrl,(z+Np)Tctrl), D(ζ )
is the set of indices of DRGIS panels that vehicle ζ has

encountered, variable ϑpred(ζ ,η) is the travel time shown

on the DRGIS η for vehicle ζ , and ϑreal(ζ ,η) is the actually

realized travel time for vehicle ζ from DRGIS η to its

destination.

The first term in J is the total time spent (both on the

freeways and the on-ramp queues, where the relative con-

tribution of the latter is determined by the weighting factor

γ), the second term is the prediction error, and the third the

control variance. The αi’s are normalization factors, and

the ξi’s are weighting factors for the different terms of the

objective function. The values for the ξi’s depend on the

traffic policy imposed by the road administrator.

IV. CASE STUDY

A. Set-up

The case study network is shown in Fig. 1, and consists

of two origins O1, O2 and two destinations D1, D2. Origin

O2 and destination D2 are on the freeway (which consists

of links L17, L4, L8, L9 and L14), whereas O1 and D1 are

on the secondary road network (the other links).



Only one direction is considered, viz. from O1, O2 to D1,

D2. For several origin-destination pairs, drivers can choose

whether they travel via the freeway or via the secondary

roads. There are three alternative routes from O1 to D1,

two alternatives from O1 to D2 and from O2 to D1, and one

way to travel from O2 to D2. At the bifurcation nodes N1,

N2, and node N3 DRGIS are installed that show the travel

times to the destinations D1 or D2 via the several possible

alternative routes.

The on/off-ramps are situated at points where the sec-

ondary road crosses the freeway. At each on-ramp a ramp

metering system is installed.

B. Scenario and parameters

We consider the following scenario. At the start of the

simulation we have a capacity reduction at destination

D2, which results in a shock wave originating at D2 and

going downstream until the downstream end of freeway

link L8 is congested. Calculations show that in this case the

alternative routes from origin O1 to destination D1 get faster,

resulting in more traffic choosing the alternative routes.

The simulation starts from a steady state situation with

the following flows or demands: 600 veh/h for the origin-

destination pair (O1,D1), 1400 veh/h for (O1,D2), 900 veh/h

for (O2,D1) , and 2100 veh/h for (O2,D2). However, 5 min

after the simulation has started, the total demand at O2

increases, resulting in a flow of 1200 veh/h for (O2,D1),
and 2800 veh/h for (O2,D2).

The METANET parameters used for the simulation of the

case study network are based on the METANET validation

as described in [12] with some adjustments. More specif-

ically, in our case study two values for ν are defined as

is also done in [6], [7]. In case the downstream density

is lower than the density on the present link, then we

select ν = νlow = 35 km2/h, and else ν = νhigh = 60 km2/h.

The capacity of the freeway links is chosen as 2200 veh/h,

and the capacity of the secondary road links is chosen as

1500 veh/h. The free flow speed vf,m is 120 km/h for freeway

links, and 80 km/h for secondary road links. Furthermore,

we have τ = 20 s, ρmax = 180 veh/km/lane, κ = 40 veh/km,

and vmin = 7 km/h as the minimum speed (cf. [12]).

For the controller we have taken Tctrl = 5 min. The

prediction horizon Np = 12 corresponds to a prediction of

1 h ahead. For the control horizon we take Nc = 9, which

corresponds to a period of 45 min, which is shorter than

the prediction horizon, but long enough to get a good

performance. The weighting parameters were all set to 1.

C. Simulation results

We have simulated the network of the case study both

with and without MPC control. Below we discuss some of

the most relevant results of these simulations.

Fig. 2 shows the evolution of the speed on the freeway

link L8 when no control measures are active. This link is

the main part of the freeway, and it is also used by traffic

that is destined to secondary road destinations. Due to the

shock wave entering via destination D2 at the beginning

of the simulation period, the speeds on the freeway are

reduced drastically. Since drivers are not informed about

the alternative routes, which could reduce their travel times,

they still choose to travel via link L8 because they have

no information about the queue. The lack of information

drivers receive when there is no DRGIS active results in

the inefficient use of some secondary road links, such as

link L10. Although link L10 can be optimally used for the

rerouting of traffic flow, the link is almost unused in the

uncontrolled case.

When the DRGIS is activated and MPC is applied, we

get an improvement in the mean speed over the freeway

as is shown in Fig. 3. The freeway is relieved from con-

gestion because of the rerouting due to the DRGIS, which

results in more traffic choosing for alternative routes via

the secondary roads. This leads to less traffic on link L8

and increased speeds with respect to the no-control case.

Furthermore, the ramp metering reduces the inflow of traffic

destined to the freeway destination and thereby improves the

throughput on the freeway. As a consequence, the shock

wave is damped significantly.

The evolution of the flows in link L14 in the uncontrolled

and the controlled case is represented in Fig. 4 and 5. In the

uncontrolled case, the flow as well as the speeds on this link

are reduced drastically due to the shock wave the flow. The

outflow of the network is reduced due to the shock wave,

which results in congestion and lower speeds in the rest of

the network. When DRGIS and ramp metering are activated

the flow on link L14 improves significantly. As the effect

of the shock wave is reduced by the rerouting and ramp

metering, the outflow from the network also increases.

The TTS with MPC control active is 4530.6 veh.h com-

pared 6365.4 veh.h in the no control case, which corre-

sponds to an improvement of 28.8 %.

V. CONCLUSIONS AND FUTURE RESEARCH

We have considered the problem of integrated Model

Predictive Control (MPC) traffic control with ramp me-

tering and Dynamic Route Guidance Information Systems

(DRGIS) as the traffic control measures (but note that

additional control measures such as, e.g., variable speed

limits, can easily be included in the proposed approach). In

the integrated traffic control approach the DRGIS is used as

an information provider to the drivers, and ramp metering

as a control tool to redistribute the delays over the on-ramp

and the freeway. This results a control strategy that, on

the one hand, reduces the total time spent in the network

by optimally rerouting traffic over the available alternative

routes in the network, but, on the other hand, also keeps the

difference between the travel times shown on the DRIPs and

the travel times actually realized by the drivers as small as

possible. The simulations done for the case study show that

rerouting of traffic and on-ramp metering using MPC may

lead to a significant improvement in performance.
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Fig. 2. Evolution of the mean speed on the segments of link L8 in the
no-control case.
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Fig. 3. Evolution of the mean speed on the segments of link L8 when
integrated MPC control is applied.

Topics for future research are: investigation of other net-

works and scenarios; using other prediction and simulation

models; comparison of the performance of the integrated

MPC approach with that of other traffic control strategies;

and integration of additional traffic control measures.
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