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On Structural Properties of Helbing’s Gas-Kinetic

Traffic Flow Model

Ion Necoara, Bart De Schutter, Hans Hellendoorn

Abstract— There exist several types of models that describe
the evolution of traffic flow on freeways and urban roads.
In this paper we focus on some structural properties of one
particular traffic flow model: the macroscopic, second-order
gas-kinetic traffic flow model of Helbing. We will show that
the model has two families of characteristics for the shock
wave solutions: one characteristic is slower and the other one
is faster than the average vehicle speed. Corresponding to
the slower characteristic there are 1-shocks and 1-rarefaction
waves, corresponding to the faster characteristic there are 2-
shocks and 2-rarefaction waves. We also derive the formulas
for the solution of the Riemann problem associated with this
model in the equilibrium case, proving that the solution of
this problem with density and flow non-negative in the initial
condition on either side of the discontinuity cannot give rise
to negative flow or density later on.

I. INTRODUCTION

Traffic flow models play an important role in both today’s

traffic research and in many traffic applications such as

traffic flow prediction, incident detection, and traffic control.

Each traffic application requires specific features of the

traffic model. As one of the goals of our research is to apply

model-based traffic control, we are particularly interested

in macroscopic traffic flow models since these models are

best suited for implementation in traffic control systems.

Macroscopic models offer an excellent trade-off between

accuracy on the one hand and simulation speed on the other

hand.

One of the most well-known traffic flow models is the

Lighthill-Whitham-Richards (LWR) model [1], which is a

macroscopic first-order model. Payne [2] came up with a

second-order traffic model. Later on Papageorgiou et al.

introduced an improved version of this model [3]. In this

paper we discuss yet another macroscopic second-order

model, which is based on gas-kinetic equations with a non-

local term as proposed by Helbing [4].

We analyze the structural properties of the shock and

rarefaction wave solutions of Helbing’s model, because

understanding these properties, helps to improve this area

of research: more insight into the structural properties of

the Helbing’s model allows us to select appropriate and

efficient numerical methods for traffic simulation using this

model. Subsequently, this can then be used in model-based

predictive traffic control approaches.

This paper is organized as follows. To make the paper

self-contained, a brief review of the Helbing’s model is
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presented in Section II. The new contributions of this

paper start with Section III, where we discuss the structural

properties of the shock wave solution. In Section IV we

present the structural properties of the rarefaction waves

solution. We show that the Helbing’s model has two families

of characteristics for the shock wave solutions: one charac-

teristic is slower, and the other one is faster than the average

vehicle speed. Corresponding to the slower characteristic

there are 1-shocks and 1-rarefaction waves, the behavior of

which is similar to that of shocks and rarefaction waves in

the LWR model. Corresponding to the faster characteristic

there are 2-shocks and 2-rarefaction waves, which behave

differently from the previous one, in the sense that the

information, in principle, travels faster than average vehicle

speed. Finally, in Section V we discuss the solution of

the Riemann problem associated with the Helbing’s model,

proving that the solution of this problem with density and

flow non-negative in the initial condition on either side of

the discontinuity cannot give rise to negative flow or density

later on.

II. HELBING’S TRAFFIC FLOW MODEL

Because the number of vehicles is conserved, all macro-

scopic traffic flow models are based on the continuity

equation, which expresses the relation between the rates

of change of the density ρ(x, t) with respect to time t and

of the flow Q(x, t) with respect to space x:

∂

∂ t
ρ(x, t)+

∂

∂x
Q(x, t) = 0 .

To describe time-varying and spatially varying average

velocities V (x, t) such as those that occurs in traffic jams

or stop-and-go traffic we need a dynamic velocity equation.

Gas-kinetic equations for the average velocity have been

proposed in a number of previous publications such as [5],

[6], [7]. Because we are interested in macroscopic quantities

we can integrate those equations to derive formulas for the

first moment. For all these models the velocity equation can

be written as1

∂V

∂ t
+V

∂V

∂x
+

1

ρ

∂P

∂x
=

Veq −V

τ
,

where P is the traffic pressure, defined as P(x, t) =
ρ(x,y)θ(x, t), with θ the velocity variance (see also (2)

below), and where Veq is the dynamical equilibrium velocity

toward which the average velocity of vehicles relaxes.

1For the sake of brevity and simplicity of notation we will from now
on omit the arguments x and t in the formulation of the partial differential
equations.



Helbing proposes the following Euler-like equation with

a non-local term for the average vehicle velocity:

∂V

∂ t
+ V

∂V

∂x
︸ ︷︷ ︸

transport

+
1

ρ

∂P

∂x
︸ ︷︷ ︸

pressure

= (1)

V0 −V

τ
︸ ︷︷ ︸

acceleration

−V0(θ +θa)

τA(ρmax)

(
ρaT

1−ρa/ρmax

)2

B(δv)

︸ ︷︷ ︸

braking

.

The braking term is a non-local term that models brak-

ing in response to the traffic situation downstream at the

interaction point xa = x+ γ(1/ρmax +TV ) with 1 < γ < 2

a model parameter, ρmax is the maximum density, and T is

the average time headway. In equation (1) we also have a

Boltzmann factor of the form

B(δv,S) = δv

e−z2/2

√
2π

+(1+δ 2
v )

∫ δv

−∞

e−z2/2

√
2π

dz ,

with δv =
V−Va√
θ−θa

, which takes into account the velocity and

variance at the actual position x and the interaction point

xa respectively. Based on empirical data, Helbing observed

that the velocity variance θ is a density-dependent fraction

A(ρ) of the squared velocity:

θ(x, t) = A(ρ(x, t))V 2(x, t) , (2)

where A(ρ) is the Fermi function

A(ρ) = A0 +∆A

(

1+ tanh
(ρ −ρc

∆ρ

))

, (3)

where A0 and A0 + 2∆A are about the variance factors for

free and congested traffic, ρc is of the order of the critical

density for the transition from free to congested traffic, and

∆ρ is the width of the transition.

To summarize, the equations of Helbing’s model are:

∂ρ

∂ t
+

∂Q

∂x
= 0 , (4)

∂V

∂ t
+V

∂V

∂x
+

1

ρ

∂P

∂x
=

Veq −V

τ
, (5)

where the equilibrium velocity is written as

Veq =V0

(

1− θ +θa

A(ρmax)

(
ρaT

1−ρa/ρmax

)2

B(δv)

)

. (6)

III. HUGONIOT LOCUS AND SHOCKS

A desirable property of the traffic model equations (4)–

(6) is that they can be formulated in terms of a system

of conservation equations (i.e., a time-dependent system

of nonlinear partial differential equations with a particular

simple structure) but with a source term:

∂u

∂ t
+

∂ f (u)

∂x
= S(u) , (7)

with state variables u = [ρ Q]T , and with flux function f

and source term S given by:

f (u) =

[
Q

Q2

ρ (1+A(ρ))

]

, S(u) =

[

0

ρVeq−Q

τ

]

,

where we used the relation Q= ρV between flow Q, density

ρ , and average velocity V .

The pressure has the form: P = ρA(ρ)V 2 = Q2

ρ A(ρ),
which implies that in matrix representation using the Ja-

cobian

J
def
=

∂ f

∂u
=





0 1

−Q2

ρ2 (1+A(ρ)−ρ
d

dρ
A(ρ)) 2 Q

ρ (1+A(ρ))





we have

∂

∂ t

[

ρ

Q

]

+ J(u) · ∂

∂x

[

ρ

Q

]

=

[

0

ρVeq−Q

τ

]

. (8)

When we compute the eigenvalues of the Jacobian, and

using again the relation V = Q
ρ , we get

λ1,2(u) =V

(

1+A(ρ)±
√

A2(ρ)+A(ρ)+ρ
d

dρ
A(ρ)

)

.

(9)

Note that in our case, the system (8) is strictly hyperbolic

(i.e., for any value of u the eigenvalues of the Jacobian J

are real and distinct).

Corresponding to the two distinct eigenvalues given by (9)

we have two linearly independent eigenvectors

r1,2(u) =

[
1

λ1,2(u)

]

.

Assumption A1: As Helbing recommends in [4] for quali-

tative considerations, A(ρ) can be chosen to be constant. We

adopt this assumption henceforth because it simplifies our

computations. We choose for A(ρ) the value c
def
= A0+∆A≈

0.028 (which is the value around critical density where we

have large oscillations of the speed).

With Assumption A1 the formulas for pressure P, flux f ,

and eigenvalues λp (p = 1,2) are

P = cρV 2 = c
Q2

ρ
, f (u) =

[

Q
Q2

ρ (1+ c)

]

,

λ1,2(u) =V
(

1+ c±
√

c2 + c
)

= c1,2V ,

where we denote c1
def
= 1+ c−

√
c2 + c ∈ (0, 1) and c2

def
=

1+ c+
√

c2 + c > 1. Note that λ1 < λ2. Now let us study

different kinds of shocks arising from the system and

determine and characterize the conditions under which a

pair of states uleft = [ρleft Qleft]
T , uright = [ρright Qright]

T

can be connected by a shock2.

2The reason for selecting the subscripts “left” and “right” will become
clear in Section V.



First, note that in short time intervals the shocks arising
from (7) are the same as those arising from

∂

∂ t

[
ρ
Q

]

+

[

0 1

−Q2

ρ2 (1+ c) 2 Q
ρ +(1+ c)

]

· ∂

∂x

[
ρ
Q

]

= 0 ,

(10)

i.e., the source term becomes zero (this can be done when

traffic operations are in equilibrium but also because the

relaxation term
ρVeq−Q

τ is finite, so that its effect in short

time intervals can be neglected compared to the effect

caused by the infinite space derivatives of ρ and Q at the

shock). Because we have two characteristics (eigenvalues),

two kinds of shocks arise from (10): we call them 1-shock

and 2-shock respectively.

Let us fix a state uleft, and determine the set of states uright

that can be connected by a discontinuity (called Hugoniot

locus) to the point uleft. For this, the Rankine-Hugoniot

jump condition [8] must hold:

f (uright)− f (uleft) = s · (uright −uleft) ,

where s is the propagation speed of the discontinuity along

the road. This speed is known in traffic flow engineering as

congestion velocity and expresses the fact that the propa-

gation of a shock depends on both flow and density in the

neighboring region of a shock. Filling out the expression

for f , yields the following solutions in terms of ρ̃

Qright1,2 = Qleft

1± (ρright −ρleft)
√

c2+c
ρrightρleft

1− ρright−ρleft

ρright
(1+ c)

, (11)

and the corresponding shock speed

sright1,2 = Qleft

1+c
ρright

±
√

c2+c
ρrightρleft

1− ρright−ρleft

ρright
(1+ c)

, (12)

where the ± signs give two solutions, one for each family

of characteristic fields.

Now, we have to choose in formula (11) the sign for

the 1-shock and for the 2-shock respectively. After some

computations (see [9] for more details), we find that for the

1-shock we must choose the minus sign and for the 2-shock

the plus sign.

Remark: We can see that each of the characteristic fields

is genuinely nonlinear, which means that

∇λp(u) ·rp(u) = cp(cp−1)
Q

ρ2
6= 0 for all u=

[
ρ
Q

]

6= 0 ,

where ∇λp =

[
∂λp

∂ρ

∂λp

∂Q

]

. ♦

In defining the Hugoniot locus above, we have ignored

the question of whether a given discontinuity is physically

relevant. Lax [10] proposed an entropy condition to systems

of equations that are genuinely nonlinear: the jump in the

pth field (from state uleft to uright) is admissible only if

λp(uleft)> s > λp(uright) ,

where s is the shock speed. Now suppose we connect uleft

to uright by a 1-shock, then we get the following relations:

c1
Qleft

ρleft

> s > c1

Qright

ρright

.

We obtain after few steps (see [9] for details)

Qleft < Qright .

So for the 1-shock we have obtained the following: Qleft <
Qright and we should take the minus sign in formulas (11)

and (12). Combining these two conditions we can show that

we must have ρright > ρleft (see also [9]).

In summary, a 1-shock satisfies:

S1 :







Qright = Qleft

1− (ρright −ρleft)
√

c2+c
ρrightρleft

1− ρright−ρleft

ρright
(1+ c)

,

ρright > ρleft .

Now let us see what is the interpretation of a 1-shock.

Do the drivers on the overage really behave as described

by S1? If we consider the fundamental diagram that relates

speed and density (see [11]), then we see that the condition

ρright > ρleft implies Vright <Vleft i.e., the drivers that enters

that shock reduce their speed abruptly which coincides with

real traffic behavior.

Similarly, one can show that for a 2-shock the following

inequality holds: Qleft > Qright, and we should take the plus

sign in (11) and (12) as we saw before, which implies that

ρright < ρleft So for a 2-shock we have

S2 :







Qright = Qleft

1+(ρright −ρleft)
√

c2+c
ρrightρleft

1− ρright−ρleft

ρright
(1+ c)

,

ρright < ρleft .

Now we can sketch the Hugoniot locus in the phase plane,

retaining only the points ũ that can be connected to û by an

entropy-satisfying shock, discarding the entropy-violating

shocks (see Figure 1). Any right state uright = [ρright Qright]
T

can be connected to a left state uleft = [ρleft Qleft]
T by a 1-

shock if the right state falls on the S1 curve that passes

through [ρleft Qleft]
T and similarly by a 2-shock if the right

state falls on the S2 curve that passes through [ρleft Qleft]
T .

We can see from Figure 1 that the Hugoniot locus terminates

at the origin and there are no states with uright < 0 that

can be connected to uleft by a propagating discontinuity;

therefore, the model does not produce negative density and

flow at the point of discontinuity (as others traffic flow

models that do so, see [12]).

IV. RAREFACTION WAVES

For the LWR model it is known that when the left

characteristic is slower than the right characteristic a fan

of rarefaction waves results. This property is also valid in

the Helbing’s model. If the two characteristic fields satisfy

λp(uleft)< λp(uright) for p = 1,2 , (13)



ρ

Q

uleft

S1

S2

1-shock

2-shock

feasible
region

Fig. 1. Representation of the states uright that can be connected to uleft

by an entropy-satisfying shock. The dotted and dashed curves represent
entropy-violating points.

two families of smooth solutions, called 1-rarefaction wa-

ves and 2-rarefaction waves exist. Similar to the analysis

of shock curves we shall derive the phase curves for both

families of rarefaction waves.

If u(x, t) is a solution of the system (10), then we can

show that u(ax,at) is also a solution, where a is a scalar, i.e.,

the solutions are scaling-invariant. Therefore, the solution

depends on (x, t) in the form ξ = x/t. A rarefaction wave

solution to the system of equations (7) takes the form:

u(x, t) =







uleft if x ≤ ξ1t

w(x/t) if ξ1t < x < ξ2t

uright if x ≥ ξ2t ,

(14)

with w(·) smooth and w(ξ1) = uleft and w(ξ2) = uright. We

will now prove that starting at each point uleft there are two

curves consisting of points uright that can be connected to

uleft by a rarefaction wave, namely a subset of the integral

curve3 of rp(uleft). We can determine explicitly the function

w(x/t) using the fact that our model is genuinely nonlinear.

After some steps (see also [9]) we get the following

differential equation:

w′(ξ ) =
rp(w(ξ ))

∇λp(w(ξ )) · rp(w(ξ )
for ξ1 ≤ ξ ≤ ξ2 ,

with initial conditions

w(ξ1) = uleft, ξ1 = λp(uleft)< ξ2 = λp(uright) .

For a 1-rarefaction wave we have:

d

dξ
ρ(ξ ) =

ρ2(ξ )

Q(ξ )
· 1

c2
1 − c1

,
d

dξ
Q(ξ ) = ρ(ξ )

1

c1 −1
,

3The integral curve for rp(u) is a curve that has the property that the
tangent to the curve at any point u lies in the direction rp(u).

with Q(ξ1) = Qleft, ρ(ξ1) = ρleft, ξ1 = λ1(uleft) = c1
Qleft
ρleft

,

which is a system of two ordinary nonlinear differential

equations, with the following solution:

ρ(ξ ) =

(
ρc1

left

c1Qleft

·ξ
) 1

c1−1

, Q(ξ ) =
ξ

c1

(
ρc1

left

c1Qleft

·ξ
) 1

c1−1

.

If we want to obtain an explicit expression for the integral

curves in the phase plane, we eliminate ξ , obtaining:

Q(ρ) = Qleft

(
ρ

ρleft

)c1

We can construct the 2-rarefaction wave in exactly the same

manner obtaining:

Q(ρ) = Qleft

(
ρ

ρleft

)c2

.

Now two states uleft and uright can be connected by a

rarefaction wave provided that they lie on the same integral

curve and λp(uleft) < λp(uright), which for 1-rarefaction

results in

c1 ·
Qleft

ρleft

< c1 ·
Qright

ρright

, c1 ∈ (0, 1) ,

with Qright = Qleft

(
ρright

ρleft

)c1

and thus ρc1−1
left < ρc1−1

right or

ρright < ρleft since c1 ∈ (0,1).
Therefore, the 1-rarefaction curve is given by

R1 : Qright = Qleft

(
ρright

ρleft

)c1

, ρright < ρleft .

Similarly, the 2-rarefaction curve is given by

R2 : Qright = Qleft

(
ρright

ρleft

)c2

, ρright > ρleft .

Figure 2 shows the states uright that can be connected to uleft

by a 1-rarefaction wave, namely the states lying on the curve

R1 passing through uleft. Furthermore, the states uright lying

on the curve R2 passing through uleft can be connected to

uleft by a 2-rarefaction wave. Again we see that we do not

connect negative states to uleft and we will use this result

in the next section when we discuss the Riemann problem.

V. GENERAL SOLUTION OF THE RIEMANN

PROBLEM

In this section we discuss the Riemann problem associ-

ated to the Helbing’s model and based on the results of the

two previous sections we will show that the solutions of the

Riemann problem with density and flow non-negative in the

initial conditions on either side of the discontinuity cannot

give rise to negative flows or density in the general solution.

If we combine Figures 1 and 2 we obtain a plot that shows

us all points uright that can be connected to a given point

uleft by an entropy-satisfying wave, either a shock wave

or a rarefaction wave. Therefore, when initial data uleft and

uright both lay on these curves, then this discontinuity simply

propagates with speed s =
Qright−Qleft

ρright−ρleft
along the road.



ρ

Q

uleft

R1

R2

1-rarefaction

2-rarefaction

Fig. 2. Representation of the states uright that can be connected to uleft

by a rarefaction wave. The dotted and dashed curves represent points that
do not satisfy the rarefaction condition (13).

But what happens if uright does not reside on one of

those curves passing through uleft? To solve this question,

we can attempt to find a way to split this jump as a sum

of two jumps, across each of which the Rankine-Hugoniot

condition holds, i.e., we must find an intermediate state

umiddle such that uleft and umiddle are connected by a disconti-

nuity satisfying the Rankine-Hugoniot condition and so are

umiddle and uright, which intuitively means to superimpose

the appropriate plots and look for the intersections. When

we want to determine analytically the intermediate state

umiddle, we must first determine whether each wave is a

shock or a rarefaction, and then use the expressions relating

ρ and Q determined in Sections III and IV along each

curve to solve for the intersection. When we solve the

equation given by the intersection, we can get more than

one solution for umiddle but only one gives a physically valid

solution to the Riemann problem since the jump from uleft to

umiddle must travel more slowly than the jump from umiddle

to uright (due to the condition λ1 < λ2). Using the same

parametrization as in Section III: ρleft = ρmiddle(1+ξ1) and

ρright = ρmiddle(1+ ξ2), and replacing in (12) we get that

the speeds of shock from uleft to umiddle and from umiddle to

uright are given by:

sleft,middle =
Qmiddle

ρmiddle

1+c
1+ξ1

±
√

c2+c
1+ξ1

1− ξ1(1+c)
1+ξ1

,

smiddle,right =
Qmiddle

ρmiddle

1+c
1+ξ2

±
√

c2+c
1+ξ2

1− ξ2(1+c)
1+ξ2

.

Now depending on what values we choose for uleft and uright

we can determine the sign in the previous formulas such

that sleft,middle < smiddle,right and thus we know what waves

(1-wave or 2-wave) give the intersection. We can distinguish

the following cases:

Case 1: Both curves are shocks.

Graphically this means to draw the Hugoniot

locus for each of the states uleft and uright and

to look for the intersection. To obtain the correct

value for umiddle = [ρmiddle Qmiddle]
T we have to

impose sleft,middle < smiddle,right. Let us consider an

example; e.g., assume that umiddle is connected to

uleft by a 1-shock and to uright by a 2-shock:

Qmiddle = Qleft

1− (ρmiddle −ρleft)
√

c2+c
ρmiddleρleft

1− ρmiddle−ρleft
ρmiddle

(1+ c)
,

(15)

Qmiddle = Qright

1+(ρmiddle −ρright)
√

c2+c
ρmiddleρright

1− ρmiddle−ρright

ρmiddle
(1+ c)

.

(16)

Equating the two right-hand sides gives a single

equation for ρmiddle. After we obtain ρmiddle, we

replace it in (15) or (16) to obtain Qmiddle.

When umiddle is connected to uleft by a 2-shock

and to uright by a 1-shock we proceed similarly.

Case 2: Both curves are rarefactions.

If we assume that the intermediate state is con-

nected to uleft by a 1-rarefaction and to uright by a

2-rarefaction, then umiddle must satisfy

Qmiddle = Qleft

(
ρmiddle

ρleft

)c1

,

Qmiddle = Qright

(
ρmiddle

ρright

)c2

.

Equating again we get an equation in ρmiddle with

solution

ρmiddle =

(

Qleft

Qright

ρc2
right

ρc1
left

) 1
c2−c1

and then we obtain Qmiddle from the previous

equations.

Case 3: The solution consist of one shock and one

rarefaction wave.

Again if we consider the case when the interme-

diate state umiddle is connected to uleft by a 1-

rarefaction and to uright by a 2-shock, then we must

solve for ρmiddle and Qmiddle from the following

system of equations:

Qmiddle = Qleft

1+(ρmiddle −ρleft)
√

c2+c
ρmiddleρleft

1− ρmiddle−ρleft
ρmiddle

(1+ c)
,

Qmiddle = Qright

(
ρmiddle

ρright

)c1

.

Figure 3 shows a plot for the Riemann problem with

initial conditions uleft = [140 400]T and uright = [5 50]T ,



ρ

Q

uleft

uright

umiddle
u∗middle

S1

S2

R1

R2

Fig. 3. Construction of the solution for the Riemann problem. We obtain
two intermediate states umiddle and u∗middle, but only u∗middle is a physically
valid solution.

which corresponds, e.g., to a scenario such as the situation

of traffic in front of a semaphore when it was red and

then becomes green. Lines represent the states that can

be connected to uleft and dotted curves represent the states

that can be connected to uright. The intersection gives two

points but only one is a physically valid solution because

we should have sleft,middle < smiddle,right (due to λ1 < λ2). The

intermediate state umiddle is obtained by the intersection of

R1 with S2, and u∗middle by the intersection of S2 with R1.

In this case u∗middle is the physically valid solution.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have discussed some properties of

Helbing’s gas-kinetic traffic flow model. More specifically,

we have derived formulas for shocks and rarefaction waves

and we have characterized the states that satisfy the Lax

entropy condition. Understanding structural properties of

the model allow us to choose the appropriate numerical

scheme for simulations and further for applications such

as model-based traffic control. Finally, we have considered

the Riemann problem associated with the Helbing’s model

when the traffic conditions are in equilibrium, proving

that the solution of this problem with density and flow

non-negative in the initial condition on either side of the

discontinuity cannot give rise to negative flow or density

later on.

Topics for further research include: investigation of ap-

propriate efficient numerical schemes to simulate Helbing’s

model and development of model-based traffic control tech-

niques for traffic using Helbing’s model.
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