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Modeling and control of railway networks

Ton van den Boom and Bart De Schutter

Abstract— In this paper we consider the modeling and
control of railway networks. The main aim of the control is to
recover from delays in an optimal way by breaking connections
and changing the departure of trains (at a cost). To model the
controlled railway system we will use a switching max-plus-
linear system description. We define the optimal control design
problem for the railway network, and we show that solving this
problem leads to an integer optimization problem. By solving
an easier low-dimensional real-valued optimization problem
we obtain good initial values for the integer optimization
problem.

I. INTRODUCTION

We discuss the modeling, analysis and control of railway

and subway networks. Typical examples of discrete event

systems are flexible manufacturing systems, telecommuni-

cation networks, parallel processing systems, traffic control

systems, and logistic systems. The class of discrete event

systems essentially consists of man-made systems that con-

tain a finite number of resources (such as machines, commu-

nications channels, or processors) that are shared by several

users (such as product types, information packets, or jobs)

all of which contribute to the achievement of some common

goal (the assembly of products, the end-to-end transmission

of a set of information packets, or a parallel computation)

[1]. In general, models that describe the behavior of a

discrete event system are nonlinear in conventional algebra.

However, there is a class of discrete event systems —

the max-plus-linear discrete event systems — that can be

described by a model that is “linear” in the max-plus algebra

[1], [2], which has maximization and addition as its basic

operations. The max-plus-linear discrete event systems can

be characterized as the class of discrete event systems in

which only synchronization and no concurrency or choice

occurs. A typical example is a railway network with rigid

connection constraints and a fixed routing schedule. Note

that in this railway context, synchronization means that

some trains should give pre-defined connections to other

trains, and a fixed routing means that the order of departure

is fixed. However, if one of the trains has a too large delay,

then it is sometimes better — from a global performance

viewpoint — to break a connection or to reschedule the

train order, and to let a train depart anyway. In this way

we prevent an accumulation of delays in the network. Of

course, missed connections should lead to a penalty due

to dissatisfied passengers. In [3], [4] we have considered

the control of railway networks using breaking connections
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only as control measure. In this paper we will extend

the control handles and reschedule the trains by breaking

connections as well as changing train order. We will model a

controlled railway system using a switching max-plus-linear

system description. In this description we use a number

of max-plus-linear system descriptions, each description

corresponds to a specific mode, describing the network by a

different set of connection and order constraints. We control

the system by switching between different modes, allowing

us to break train connections and to change the order of

trains. We will define a control algorithm to optimize the

performance of the network.

Other work in connection with the modeling and control of

railway networks (mainly in a discrete event context) can

be found in [5], [6], [7], [8], [9], [10].

We will first derive a model for a railway system using

a switching max-plus-linear systems description. Next, we

define a control design problem for such a system where we

can break connections if delays occur, and change the order

of trains if this leads to a better global performance. We will

optimize the systems behavior. In general this will lead to

an integer optimization problem, which we will solve using

genetic algorithms. Computational experiments show that

(for small sized problems or for a small control horizon)

the genetic algorithm approach yields good results.

II. MODEL

Consider a railway operations system, which follows a

schedule with period T . In nominal operation mode, we

assume that all the trains follow a pre-scheduled route, with

fixed train order and pre-defined connections. If for some

reason we have to break connections or change the train

order, we will operate in a perturbed mode. With every new

schedule we can associate a perturbed mode. First we will

discuss the nominal operation.

A. Nominal Operation

Consider a railway operations system which is operating

in nominal operation mode.

Each track of the railway network has a number and a

train allocated to it. For the sake of simplicity we will say

“(virtual) train j” to denote the (physical) train on track

j, and “station j” to denote the station at the beginning

of track j (cf. Fig. 1). Let n be the number of “virtual”

tracks in the network. We say virtual to denote that some

of the virtual tracks may actually be the same physical track

(corresponding to different trains using the same track). This

means that the number of tracks is usually smaller than n.

Let x j(k) be the time instant at which train j departs from
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Fig. 1. A part of a railway network.

station j for the kth time. Let d j(k) be the departure time

for this train according to the time schedule.

Let pi(k) be the predecessor track of train i, and let

C j(k) be the set of trains to which the kth train j gives

a connection. Let F j(k) be the set of trains that move over

the same track as train j, in the same direction as train

j, and are scheduled behind train j. Let W j(k) be the set

of trains that move over the same track as train j, in the

opposite direction of train j, and are scheduled behind train

j. Furthermore, let a j(k) be the traveling time on track j,

define a minimum connection time cmin
i j (k) for passengers to

get from train j to train i for each train j ∈Ci(k) and define

a minimum stopping time smin
j (k) of train j at station j to

allow passengers to get off or on the train. Finally, define

a minimum separation time f min
j (k) between two different

trains moving over the same track and in the same direction

as train j, and a minimum separation time wmin
j (k) between

two different trains moving over the same track and in the

opposite direction.

Now we have the following constraints for the kth depar-

ture time xi(k) of train i:

• Time schedule constraint:

xi(k)> di(k) .

• Continuity constraints: For train j = pi(k) we have

xi(k)> x j(k−δ ∗
i j)+a j(k)+ smin

j (k)

where the notation δ ∗
i j is used to denote 1 if the (k−

1)th train j continues as the kth train i, and 0 if the

kth train j continues as the kth train i (and if some

trips last longer than the twice the cycle time T of the

schedule, δ ∗
i j might be equal to 2, and so on — see also

the example in Section IV). However, for the sake of

simplicity, we will only consider δ ∗
i j’s of either 0 or 1

in this paper.

• Connection constraints:

For each train i ∈ C j(k) we have

xi(k)> x j(k−δ ∗
i j)+a j(k)+ cmin

i j (k)

where the notation δ ∗
i j is similar as for the continuity

constraint, so δ ∗
i j = 1 if the (k− 1)th train j gives a

connection to the kth train i, and δ ∗
i j = 0 if the kth

train j gives a connection to the kth train i.

• Follow constraints:

For each train i ∈ F j(k) we have

xi(k)> x j(k−δ ∗
i j)+ f min

j (k)

(δ ∗
i j is defined similarly as above).

• Wait constraints:

For each train i ∈ W j(k) we have

xi(k)> x j(k−δ ∗
i j)+a j(k)+wmin

j (k)

(δ ∗
i j is defined similarly as above).

Since we let a train depart as soon as all connection

conditions are satisfied, we have

xi(k) = max
(

di(k),

(xpi(k)(k−δ ∗
ipi(k)

)+api(k)(k)+ smin
pi(k)

(k)),

max
j∈Ci(k)

(x j(k−δ ∗
i j)+a j(k)+ cmin

i j (k)),

max
l∈Fi(k)

(xl(k−δ ∗
il )+ f min

l (k)),

max
m∈Wi(k)

(xm(k−δ ∗
im)+am(k)+wmin

m (k))
)

(1)

Note that in a undisturbed, well-defined time schedule the

term di(k) in (1) will be the largest. However, if due to

unforeseen circumstances (an incident, a late departure, etc.)

one of the trains (pi(k),l or m) has a delay the corresponding

term can become larger than the others, train i will depart

later than the scheduled departure time di(k) and will

therefore also be delayed. Using successive substitution we

can eliminate all right-hand terms with index k and by

defining the appropriate matrix A0, we can rewrite equation

(1) as:

xi(k) = max

(

di(k) , max
j

(

x j(k−1)+A0
i, j

)

)

(2)

where A0
i, j is the (i, j)th entry of the matrix A0.

Now we introduce some notation from max-plus algebra.

Define ε =−∞ and Rε = R∪{ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as follows

[1], [2]:

x⊕ y = max(x,y) x⊗ y = x+ y

for x,y ∈ Rε and

[A⊕B]i j = ai j ⊕bi j = max(ai j,bi j)

[A⊗C]i j =
n

⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j)

for A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε is the max-

plus-algebraic zero matrix: [ε ]i j = ε for all i, j.

In max-plus notation, equation (2) becomes

xi(k) = di(k)⊕
n

⊕

j=1

x j(k−1)⊗A0
i, j

and in matrix-notation we obtain

x(k) = A0 ⊗ x(k−1)⊕d(k) (3)



B. Perturbed Operation

In the nominal operation we have assumed that some

trains should give pre-defined connections to other trains,

and the order of trains on the same track is fixed. However,

if one of the preceding trains has a too large delay, then it is

sometimes better — from a global performance viewpoint

— to let a connecting train depart anyway or to change

the departure order on a specific track. This is done in

order to prevent an accumulation of delays in the network.

In this paper we will consider the switching between

different operation modes, where each mode corresponds

to a different set of pre-defined or broken connection and

a specific order of train departures. We allow the system to

switch between different modes, allowing us to break train

connections and to change the order of trains. Note that any

broken connection or change of train order leads to a new

model, similar to the nominal equation (3), but now with

adapted system matrices (Aℓ) for the ℓ-th model. We have

the following system equation for the perturbed operation:

x(k) = Aℓ(k)⊗ x(k−1)⊕d(k) (4)

where the argument k of Aℓ indicates that the system

matrices change in time.

III. THE RAILWAY CONTROL PROBLEM

Switching max-plus-linear systems are different from

conventional time-driven systems in the sense that the event

counter k is not directly related to a specific time. A time

instant t in cycle k (so (k − 1)T 6 t < kT ), some of the

components of x(k) may already be known while other

components of x(k) may still lie in the future (Recall

that x(k) contains the time instants at which the internal

activities or processes of the system start for the kth time).

Therefore, we will now present a method to address the

timing issues in control of switching MPL systems.

We consider the case of full state information1, since the

components of x(k) correspond to departure times, which

are in general easy to measure.

Consider time instant t in cycle k, so (k − 1)T 6 t <

kT . We have measurements of departure times xpast(k)
and traveling times apast(k) of trains that have arrived at

their destination. Sometimes there is information available

about the estimated traveling time for trains that have

not yet arrived at their destination at time t. With this

information we can make an estimation âest(k|t) (with the

same dimension as a(k)) of the future traveling times. If no

further information is available on a specific traveling time

we take the nominal traveling time [âest(k|t)]i = ai,nom.

Next we have to define the set U (k|t) of possible future

control actions (i.e. breaking connections or changing train

order). Certain control actions are not feasible any more

(e.g. If a connection has been broken in the past and the

1Note that measurements of occurrence times of events are in general
not as susceptible to noise and measurement errors as measurements of
continuous-time signals involving variables such as temperature, speed,
pressure, etc.

connecting train has already departed, it is impossible to ‘re-

pair’ this connection.). We define the vector u(k|t)∈U (k|t),
where each element corresponds to a specific control action,

so a specific (scheduled) connection or specific (scheduled)

train order. We assume u(k|t) to be binary, where ui(k|t) = 0

corresponds to the nominal case, and ui(k|t) = 1 to the

perturbed case (the connection is broken or the order of

two trains is switched).

To select the optimal set of possible future control

actions, we define the following optimal control problem

at time instant t ((k−1)T 6 t < kT ):

min
{u(k|t),u(k+1|t),u(k+2|t),...}

J(k|t) (5)

where the performance index J(k|t) is given by

J(k, t) =
∞

∑
j=0

‖Qê(k+ j|t)‖2
2 +‖Ru(k+ j|t)‖2

2 (6)

in which ê(k+ j|t) is the vector with the expected delays

(êi(k+ j|t) = x̂i(k+ j|t)−di(k+ j)), Q and R are weighting

matrices, and ‖ · ‖ is the vector 2-norm. The first term of

(6) is related to the sum of all predicted delays, and the

second term denotes the penalty for all broken connections

and switched train orders during cycle (k+ j).
To compute the predictions of x̂(k+ j|t) we make use of

the fact that at time t we have apast(k|t) and âest(k+ j|t)
available and using that we can determine the estimates

Âℓ(k+ j|t) of all future Aℓ(k+ j). Now x̂(k+ j|t) can be

found by successive substitution

x̂(k+ j|t)= Âℓ(k+ j−1|t)⊗ x̂(k+ j−1|t)⊕d(k+ j) ,∀ j>1

In principle we have all elements to solve the optimal

control problem (5). Note that if the railway network is well-

defined and there is some margin in the schedule2, there

will always be an integer N such that in the nominal case

(u(k+ j|t) = 0 for all j > 0) the delays will have vanished

(ê(k+ j|t) = 0 for all j > 0). In the performance index (6)

we may then replace the infinite sum by a finite one (with an

optional constraint ê(k+N|t) = 0). We now have an integer

optimal control problem with nN binary parameters. We can

solve this problem efficiently with genetic algorithms [11]

or with tabu search [12], [13], [14].

To find a good initial guess for the integer optimization

we first solve an easier problem, in which we structure the

input signal. This is done by defining a decision mechanism,

where we use thresholds on (expected) delays to decide

whether a connection should be broken or train orders

should be switched. First consider the case where variable

ul(k) is related to the connection of train j to train i, with

nominal connection constraint

xi(k)> x j(k−δ ∗
i j)+a j(k)+ cmin

i j (k)

2If the max-plus eigenvalue of the matrix A0 is strictly smaller than 0
there is some margin in the schedule.



and let di(k) > t. Define ẑ j(k − δ ∗
i j|t) = x̂ j(k − δ ∗

i j|t) +
[âest] j(k|t) as the expected arrival-time of train j. Now we

choose
{

ul(k) = 0 if ẑ j(k−δ ∗
i j|t)+ cmin

i j (k)−di(k)6 τ

ul(k) = 1 otherwise,

where τ is a non-negative threshold. Next consider the case

where variable ul(k) is related to the order of two trains

j and i moving over the same track in the same direction,

with nominal following constraint

xi(k)> x j(k−δ ∗
i j)+ f min

j (k)

and let xi(k) > t (that means that at time t train xi(k) has

not departed yet). Now we choose
{

ul(k) = 0 if x̂ j(k−δ ∗
i j|t)+ f min

j (k)−di(k)6 φ

ul(k) = 1 otherwise,

where φ is a non-negative threshold. Finally consider the

case where variable ul(k) is related to the order of two

trains j and i moving over the same track in the opposite

direction, with nominal waiting constraint

xi(k)> x j(k−δ ∗
i j)+a j(k)+wmin

j (k)

and let di(k)> t. Now we choose
{

ul(k) = 0 if ẑ j(k−δ ∗
i j|t)+wmin

j (k)−di(k)6 ω

ul(k) = 1 otherwise,

where ẑ j(k − δ ∗
i j|t) is the expected arrival-time and ω is

a non-negative threshold. In this structured-input case we

end up with three parameters and a non-linear optimization

problem over the variables (τ ,φ ,ω). In the worked example

in the next section we first optimize over the structured

inputs, and use the resulting sequence u(k+ j|t) as an initial

value for the general case, solved with a genetic algorithm.

IV. WORKED EXAMPLE

Consider the railroad network of Fig. 2. There are 4

stations in this railroad network (A, B, C and D) that

are connected by 6 single tracks. There are three trains

available. The first train follows the route D → A → B → D,

the second train follows the route A → B →C → A, and the

third train follows the route D → A →C → D. We assume

that there exists a periodic time table that schedules the

earliest departure times of the trains. The period of the

time table is T = 60 minutes. So if a departure of a train

from station B is scheduled at 5.30 a.m., then there is also

scheduled a departure of a train from station B at 6.30 a.m.,

7.30 a.m., and so on.

Table I summarizes the information in connection with

the nominal traveling times and the departure times. All

the times are measured in minutes. The indicated departure

times are the earliest departure times in the initial station

of the track expressed in minutes after the hour. The first

period starts at time t = 0. At the beginning of the first

period the first train is in station A and the second train is

in station B.
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Fig. 2. The railroad network of the example of Section IV.

TABLE I

THE NOMINAL TRAVELING TIMES AND THE DEPARTURE TIMES FOR

THE RAILROAD NETWORK OF THE EXAMPLE OF SECTION IV.

train from- travel dep-arr constraints

to time

1 D-A 12 00-12 same train as 3−,

gives connection to 9−

follow 7−,

2 A-B 12 15-27 same train as 1 ,

gives connection to 6−

follow 4−,

3 B-D 20 30-50 same train as 2

4 A-B 12 19-31 same train as 6−,

follow 2,

gives connection to 7−

5 B-C 10 34-44 same train as 4

6 C-A 25 47-12 same train as 5 ,

wait until 8 has arrived

7 D-A 12 04-16 same train as 9−,

follow 1

8 A-C 25 19-44 same train as 7 ,

wait until 6− has arrived

9 C-D 10 47-57 same train as 8 ,

gives connection to 5

Note: 3− denotes train 3 in the previous cycle

The continuity constraints are that the trains on tracks 1,

2 and 3 are physically the same train, and the same holds

for the trains on tracks 4, 5 and 6 and for the trains on

tracks 7, 8 and 9. Connection constraints are introduced to

allow the passengers to change trains:

- train 1 has to wait for train 9 with minimum connection

time cmin
19 (k) = 3,

- train 2 has to wait for train 6 with minimum connection

time cmin
26 (k) = 3,

- train 4 has to wait for train 7 with minimum connection

time cmin
47 (k) = 3,

- train 9 has to wait for train 5 with minimum connection

time cmin
95 (k) = 3.

Follow constraints are introduced to guarantee sufficient



separation time between two trains on the same track

(moving in the same direction):

- train 4 is scheduled behind train 2 with a minimum

separation time f min = 4,

- train 2 is scheduled behind train 4 in the previous cycle

with a minimum separation time f min = 4,

- train 7 is scheduled behind train 1 with a minimum

separation time f min = 4,

- train 1 is scheduled behind train 7 in the previous cycle

with a minimum separation time f min = 4,

Finally, a wait constraint is introduced to guarantee that two

trains (moving in opposite direction) are not on the same

track at the same time:

- train 6 is scheduled behind train 8 with a minimum

separation time wmin = 1.

- train 8 is scheduled behind train 6 in the previous cycle

with a minimum separation time wmin = 1.

The minimum stopping time of train j at station j to allow

passenger to get off or on the train is fixed at smin
i j (k) = 1.

Each train departs as soon as all the connections are

guaranteed (except for a connection when it is broken), the

passengers have gotten the opportunity to change over and

the earliest departure time indicated in the time table has

passed. We assume that in the first period all the trains

depart according to schedule. Recall that x j(k) is the time

instant at which the train on track j departs from the initial

station of the track for the kth time.

Now we write down the equations that describe the

evolution of the x j(k)’s.

First we consider the train on track 1 and we determine

x1(k), the time instant at which this train departs from

station A for the kth time. The train has to wait at least until

the train has arrived in station A for the (k−1)th time3 and

the passengers have got the time to get out of the train so

we have x1(k)> x3(k−1)+a3(k−1)+1. Furthermore, the

train on track 1 has to wait for the passengers of the train

on track 9 in the (k−1)th cycle, which arrives in station B

at time instant x9(k− 1)+ a9(k− 1). The passengers have

cmin
19 = 3 minutes to change trains. Further the train on track

1 has to follow the train on track 7 in the previous cycle

with a minimum separation time f min = 4. According to the

time table the train on track 1 can only depart after time

instant 00+ k 60. Hence, we have

x1(k) = max( x3(k−1)+a3(k−1)+ smin ,

x7(k−1)+ f min ,

x9(k−1)+a9(k−1)+ cmin
19 ,d1(k) )

= max( x3(k−1)+21 ,x7(k−1)+4 ,

x9(k−1)+13 ,k 60 ) (7)

for k = 1,2, . . . with x3(0) = x9(0) =−∞.

3Under nominal operations the kth train on track 1 (e.g., the one that
departs from station D at 10.00 a.m.) proceeds to the (k− 1)th train on
track 3 (which has departed from station B at 9.30 a.m.) and not to the
kth train on track 3 (which will depart from station B at 10.30 a.m.).

Using a similar reasoning, we find that the other departure

times are given by

x2(k) = max( x1(k)+13 ,x4(k−1)+4 ,

x6(k−1)+28 ,15+ k 60 )

x3(k) = max( x2(k)+13 ,30+ k 60 )

x4(k) = max( x2(k)+4 ,x6(k−1)+26 ,

x7(k−1)+14 ,19+ k 60 )

x5(k) = max( x4(k)+13 ,34+ k 60 )

x6(k) = max( x5(k)+11 ,x8(k)+26 ,47+ k 60 )

x7(k) = max( x9(k−1)+11 ,x1(k)+4 ,4+ k 60 )

x8(k) = max( x7(k)+13 ,x6(k−1)+26 ,19+ k 60 )

x9(k) = max( x8(k)+26 ,x5(k)+13 ,47+ k 60 )

for k = 1,2, . . . with x j(0) =−∞ for j = 1,2, . . . ,9.

We solve the optimal control problem (5) for the struc-

tured input case and the general case (without structuring).

In the last optimization we use the result of the structured

input as an initial value to start the optimization. We assume

the system is at nominal schedule for k< 0 and we introduce

a perturbation at time t = 0:

a3(−1|0) = 13 , a7(−1|0) = 23 and a9(−1|0) = 22 .

We first optimize the threshold values {τ ,φ ,ω}, and com-

pute the corresponding optimal structured input signal

ustructured(k+ j|t), j > 0. We find (τ ,φ ,ω)∗ = (8.6,3.4,25).
Note that ω∗ = 25 means that switching the departure order

on track 5 will not give any improvement of the cost

criterion J for the given initial perturbations. With a genetic

algorithm we now optimize the (unstructured) input signal,

using the sequence u(k+ j|t) for the optimal (τ ,φ ,ω)∗ as an

initial value. No improvement is found, and so we conclude

that the control signal based on (τ ,φ ,ω)∗ is already optimal.

In Fig. 3 the maximum delay emax(k)=max(e(k)) in each

cycle k is given for both the uncontrolled case (so u(k+
j|t) = 0 for all j > 0) and for the optimal controlled case

(with (τ ,φ ,ω)∗). We see that the delay in the controlled

case decays much faster than the uncontrolled case.

V. DISCUSSION

We have presented a control design method for a railway

network. The control action consists in breaking certain

connections or changing the order of departure to prevent

delays from accumulating. These control moves can only

be done at a certain cost. We have also shown that the

resulting optimization problem can be solved using integer

optimization methods, for example genetic algorithms or

tabu search.

Good initial values for the integer optimization are ob-

tained by first solving an easy real-valued optimization

problem using a structuring input sequence. This structured

input sequence is based on a decision mechanism, where

we use thresholds on (expected) delays to decide whether

a connection should be broken or train orders should be

switched.
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Fig. 3. Maximum delay for uncontrolled and optimal controlled railway system

Due to the use of a future horizon this method can be

used in on-line applications and it can deal with (predicted)

changes in the system parameters. So if we can predict

the delays that will occur due to an incident or to works,

then we can include this information when determining the

optimal control input for the next cycles of the operation of

the network.
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