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Abstract

This paper analyzes the structural properties of the shock and rarefaction wave solutions of a

macroscopic, second-order non-local continuum traffic flow model, namely Helbing’s model. We

will show that this model has two families of characteristics for the shock wave solutions: one

characteristic is slower, and the other one is faster than the average vehicle speed. Correspond-

ing to the slower characteristic we have 1-shocks and 1-rarefaction waves, the behavior of which

is similar to that of shocks and rarefaction waves in the first-order model of Lighthill-Whitham-

Richards. Corresponding to the faster characteristic there are 2-shocks and 2-rarefaction waves,

which behave differently from the previous one, in the sense that the information in principle

travels faster than average vehicle speed, but — as we shall see — in Helbing’s model this incon-

sistency is solved via the addition of a non-local term. We will show that for the Helbing model

the shocks do not produce negative states as other second-order models do. In this paper we also

derive the formulas for the solution of the Riemann problem associated with this model in the

equilibrium case.

1 Introduction

Many researchers consider that traffic behavior on a freeway at a given point in time-space is only

affected by the conditions of traffic in a neighborhood of that point, proposing different models based

on partial differential equations. In this context, one of the most well known traffic flow models is

the Lighthill-Whitham-Richards (LWR) model [12, 17, 19], which is a first-order model. Whitham

[19] and Payne [15] came up with a second-order traffic model. In this paper we discuss yet another

macroscopic second-order model, which is based on gas-kinetic equations with a non-local term as

proposed by Helbing [4, 6, 7] (see also [9]). In this model traffic is described macroscopically as if

it were a fluid with the cars as molecules, obtaining the traffic equations from a gas-kinetic level of

description. Helbing derived a model by applying statistical kinetic theory, where macroscopic laws

are obtained from integration of molecular properties such as positions, collisions, overtaking, and

velocities.

As an introduction to our discussion and to make the paper self-contained, a brief review of the

Helbing model is presented. The new contributions of this paper start with Section 2, where we

discuss the structural properties of the shock wave solution. In Section 3 we present the structural

properties of the rarefaction waves solution, and in Section 4 we discuss the solution of the Riemann

problem associated with the Helbing model. The detailed derivation of the formulas for the shock and

rarefaction waves is given in Section 5. Finally, in Section 6 we discuss some possible future research

directions.
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In general, continuum macroscopic traffic models contain two independent variables: location x,

and time t. There usually are three state variables: density ρ, average speed V , and flow Q with

Q = ρV . Because the number of vehicles is conserved, all macroscopic traffic flow models are based

on the continuity equation, which expresses the relation between the rates of change of the density

ρ(x, t) w.r.t. t and of the flow Q(x, t) w.r.t. x:

∂ρ

∂t
+

∂Q

∂x
= 0 .

To describe time-varying and spatially varying average velocities V (x, t) such as those that occur in

traffic jams or stop-and-go traffic we need a dynamic velocity equation. Gas-kinetic equations for

the average velocity have been proposed in a number of publications such as the papers by Prigogine

and Herman [16], Paveri-Fontana [14], and Hoogendoorn and Bovy [8]. Because we are interested in

macroscopic quantities we can integrate those equations to derive formulas for the first moment. For

all these models after integration, the equation for average velocity can be written as

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P

∂x
=

Veq − V

τ
,

where P is the traffic pressure, defined as P (x, t) = ρ(x, y)θ(x, t) with θ the velocity variance (see

also equation (2) below), and where Veq is the dynamical equilibrium velocity towards which the

average velocity of vehicles relaxes. Helbing derived macroscopic traffic equations using the gas-

kinetic traffic equations of Paveri-Fontana and a method analogous to the derivation of the Euler

equations for ordinary fluids (i.e., the Chapman-Enskog expansion). Compared to the other models,

in the Helbing model the dynamical equilibrium velocity Veq also depends on the density and average

velocity at an interaction point that is advanced by about the safe distance. More specifically, Helbing

proposes the following Euler-like equation with a non-local term for the average vehicle velocity:

∂V

∂t
+ V

∂V

∂x
︸ ︷︷ ︸

transport

+
1

ρ

∂P

∂x
︸ ︷︷ ︸

pressure

=
V0 − V

τ
︸ ︷︷ ︸

acceleration

− V0(θ + θa)

τA(ρmax)

(
ρaT

1− ρa/ρmax

)2

B(δv)

︸ ︷︷ ︸

braking

. (1)

So, the change in time of the average velocity V is given by: a transport term originating from the

propagation of the velocity profile with the average velocity V , a pressure term that has a dispersion

effect due to a finite variance of the vehicle velocities, an acceleration term describing the acceleration

towards the average desired velocity V0 of the drivers with relaxation time τ , and finally a braking

term: this is a non-local term that models braking in response to traffic situation downstream at the

interaction point xa = x+γ(1/ρmax+TV ) with 1 < γ < 2 a model parameter, ρmax is the maximum

density, and T is the average time headway. In equation (1) we also have a Boltzmann factor of the

form

B(δv, S) = δv
e−z2/2

√
2π

+ (1 + δ2v)

∫ δv

−∞

e−z2/2

√
2π

dz ,

with

δv =
V − Va√
θ − θa

,

which takes into account the velocity and variance at the actual position x and the interaction point

xa respectively. This non-local term around location xa expresses that interactions between vehicles

are forwardly directed, since drivers mainly react to the traffic situation in front of them until a certain
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distance. In this way Helbing remedies an inconsistency of previous models that was criticized by

Daganzo [2], namely that although the fluid particles respond to stimuli from ahead and from behind,

a car is an anisotropic particle that responds to frontal stimuli (i.e., we require an anisotropic model).

The shift term d = γ(1/ρmax + TV ) is taken from a car-following model and expresses the velocity-

dependent safe distance. Based on empirical data Helbing observed that the velocity variance θ (which

appears in the definition of the traffic pressure P = ρθ) is a density-dependent fraction A(ρ) of the

squared velocity:

θ(x, t) = A(ρ(x, t))V 2(x, t) , (2)

where A(ρ) is the Fermi function:

A(ρ) = A0 +∆A

(

1 + tanh
(ρ− ρc

∆ρ

))

, (3)

where A0 and A0 + 2∆A are about the variance factors for free and congested traffic, ρc is of the

order of the critical density for the transition from free to congested traffic, and ∆ρ is the width of the

transition.

To summarize, the equations of Helbing’s model are:

∂ρ

∂t
+

∂Q

∂x
= 0 (4)

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P

∂x
=

Veq − V

τ
, (5)

with Q = ρV and where the equilibrium velocity is written as

Veq = V0

(

1− θ + θa
A(ρmax)

(
ρaT

1− ρa/ρmax

)2

B(δv)

)

. (6)

Readers interested in an empirical validation of this model are referred to [5].

2 Hugoniot locus and shocks

In this section we show that the Helbing model can be written in a conservative form, and then we

study the shocks arising from this model and we derive conditions under which a pair of states can

be connected by a shock (i.e., we determine the Hugoniot locus). We will show that the shocks do

not produce negative states as other second-order models do (see [2]). Therefore, for this model the

Riemann problem is physically well-posed (see also Section 4).

Using Q = ρV and P = ρθ = ρA(ρ)V 2, we can write

ρV 2 + P =
Q2

ρ
(1 +A(ρ)) .

Then using previous formulas we see that a desirable property of the Helbing model equations (4)–(6)

is that they can be formulated in terms of a system of conservation equations (i.e., a time-dependent

system of nonlinear partial differential equations with a particular simple structure) but with a source

term:

∂u

∂t
+

∂f(u)

∂x
= S(u) (7)
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with state variables

u =

[

ρ

Q

]

,

flux function

f(u) =






Q

Q2

ρ
(1 +A(ρ))




 ,

and source term

S(u) =





0

ρVeq −Q

τ



 .

In matrix representation using the Jacobian J(u)
def
= ∂f(u)

∂u we have

∂

∂t

[

ρ

Q

]

+

[
0 1

−Q2

ρ2
+ ∂P

∂ρ 2Q
ρ + ∂P

∂Q

]

︸ ︷︷ ︸

J(u)

· ∂

∂x

[

ρ

Q

]

=

[

0
ρVeq−Q

τ

]

.

In our case pressure has the form P = ρA(ρ)V 2 = Q2

ρ A(ρ), which implies that

J(u) =






0 1

−Q2

ρ2

(

1 +A(ρ)− ρ
d

dρ
A(ρ)

)

2Q
ρ (1 +A(ρ))




 .

When we compute the eigenvalues of the Jacobian, and using again the relation V = Q
ρ , we get

λ1,2(u) = V

(

1 +A(ρ)±
√

A2(ρ) +A(ρ) + ρ
d

dρ
A(ρ)

)

. (8)

Using the fact that A(·) is a Fermi function, it can be proved that for physical values of ρ the

radical in equation (8) is well-defined, and that the eigenvalues are real and distinct. We see that λ1 is

smaller than the average vehicle velocity V , but λ2 is larger than V . This is a drawback of this kind

of models because this means that information travels faster than average vehicles speed, which was

criticized by del Castillo [3] and Daganzo [2]. However, note that V is an average vehicle speed, so

there may exist vehicles that travel faster or slower than V .

Corresponding to the two distinct eigenvalues given by equation (8) we have two linearly inde-

pendent eigenvectors

r1,2(u) =

[
1

λ1,2(u)

]

.

Assumption A1: As Helbing recommends in [6] for qualitative considerations, A(ρ) can be chosen to

be constant. We adopt this assumption henceforth because it simplifies our computations. We choose

for A(ρ) the value c
def
= A0 +∆A ≈ 0.028 (which is the value around critical density where we have

large oscillations of the speed).
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With Assumption A1 the formulas for pressure P , flux f , and the eigenvalues λp (p = 1, 2) are

P = cρV 2 = c
Q2

ρ

f(u) =

[
Q

Q2

ρ (1 + c)

]

λ1,2(u) = V
(

1 + c±
√

c2 + c
)

= c1,2V ,

where we denote c1
def
= 1+ c−

√
c2 + c ∈ (0, 1) and c2

def
= 1+ c+

√
c2 + c > 1. Note that λ1 < λ2.

Using the weak formulation [11] we can expand the class of solutions of the hyperbolic system (7)

so as to include discontinuous solutions called shocks. Now let us study different kinds of shocks

arising from the system and determine and characterize the conditions under which a pair of states

û = [ρ̂ Q̂]T, ũ = [ρ̃ Q̃]T can be connected by a single shock.

First, note that in short time intervals the shocks arising from (7) are the same as those arising

from

∂

∂t

[

ρ

Q

]

+

[
0 1

−Q2

ρ2
(1 + c) 2Q

ρ (1 + c)

]

· ∂

∂x

[

ρ

Q

]

= 0 , (9)

i.e., the source term becomes zero (this can be done when traffic operations are in equilibrium but also

because the relaxation term
ρVeq−Q

τ is finite, so that its effect in short time intervals can be neglected

in comparison with the effect caused by the infinite space derivatives of ρ and Q at the shock).

Because we have two characteristics (eigenvalues), two kinds of shocks arise from equation (9):

we call them 1-shock and 2-shock respectively. Let us fix a state û = [ρ̂ Q̂]T, and determine the set

of states ũ that can be connected by a discontinuity (called Hugoniot locus) to the point û. For this,

the Rankine-Hugoniot jump condition [11] must hold:

f(ũ)− f(û) = s · (ũ− û) , (10)

where s is the propagation speed of the discontinuity along the road (known in traffic flow engineering

as congestion velocity). The condition (10) expresses the fact that the propagation of a shock depends

on both flow and density in the neighboring (upstream and downstream) region of a shock.

Furthermore, we should also take into account whether a given discontinuity is physically relevant.

To this extent Lax [10] proposed an entropy condition: the jump in the pth field (from state û to ũ) is

admissible only if

λp(û) > s > λp(ũ) .

After some computations this results in the following conditions for a 1-shock (see Section 5.1 for

details):

S1 : Q̃ = Q̂
1− (ρ̃− ρ̂)

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃ (1 + c)

, ρ̃ > ρ̂, Q̃ > Q̂ (11)

with the corresponding speed of propagation

s1 = Q̂

1+c
ρ̃ −

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃ (1 + c)

. (12)
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Now let us see what the interpretation is of a 1-shock. Do the drivers on the average really behave

as described by S1 in equation (11)? If we consider the fundamental diagram that relates speed and

density then we see that the condition ρ̃ > ρ̂ implies that Ṽ < V̂ , i.e., the drivers that enter that shock

reduce their speed abruptly, which coincides with real-life behavior (see also [1]).

In a similar way as for the 1-shock we can show that for a 2-shock we have

S2 : Q̃ = Q̂
1 + (ρ̃− ρ̂)

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃ (1 + c)

, ρ̃ < ρ̂, Q̃ < Q̂

and the corresponding speed of propagation

s2 = Q̂

1+c
ρ̃ +

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃ (1 + c)

.

Let us now study the sign for the propagation speeds s1 and s2 of the discontinuity. We distinguish

two cases:

1. If the denominator 1 − ρ̃−ρ̂
ρ̃ (1 + c) is larger than 0, then ρ̃ < ρ̂(1 + 1

c ), and we obtain that

0 < s1 < s2, i.e., the speed of propagation of the 1-shock is less than the speed of the 2-shock,

but both are positive, i.e., the discontinuity moves downstream.

2. If the denominator is less than 0, then ρ̃ > ρ̂(1 + 1
c ) and s2 < 0 < s1, i.e., the speed for the

1-shock is positive and it moves downstream, but the speed for the 2-shock is negative, and it

moves upstream.

Now we can sketch the Hugoniot locus in the phase plane, retaining only the points ũ that can be

connected to û by an entropy-satisfying shock, discarding the entropy-violating shocks (dotted lines

in Figure 1). Any right state ur = [ρr Qr]
T can be connected to a left state ul = [ρl Ql]

T by a

1-shock if the right state falls on the S1 curve that passes through [ρl Ql]
T and similarly by a 2-shock

if the right state falls on the S2 curve that passes through [ρl Ql]
T. We can see from Figure 1 that the

Hugoniot locus terminates at the origin and there are no states with ur < 0 that can be connected to ul
by a propagating discontinuity; therefore, the model does not produce negative density and flow at the

point of discontinuity (as others models that do so, see Daganzo [2] for details), so it makes physical

sense to discuss the Riemann problem associated with this model (as we will do in Section 4).

3 Rarefaction waves

For the LWR model it is known that when the left characteristic is slower than the right characteristic

a fan of rarefaction waves results. In this section we show that Helbing’s model also has this property,

deriving the rarefaction curves corresponding to this model. We will see again that we cannot connect

negative states through this kind of rarefaction waves. We will use this result when we discuss the

Riemann problem.

If the two characteristic fields satisfy

λp(ul) < λp(ur) for p = 1, 2 , (13)
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u
l

S1

S2

1−shock

2−shock

ρ

Q

Feasible 
 region  

Figure 1: Representation of the states ur that can be connected to ul by an entropy-satisfying shock.

State ur can be connected to ul by a 1-shock if ur lies on curve S1 passing through ul, and by a 2-shock

if ur lies on curve S2 passing through ul. The dotted and dashed curves represent entropy-violating

points.

two families of smooth solutions, called 1-rarefaction waves and 2-rarefaction waves exist. Similar

to the analysis of shock curves we shall derive the phase curves for both families of rarefaction waves.

One can write equation (9) as:

∂u

∂t
+ J(u)

∂u

∂x
= 0 with u = [ρ Q]T, f =

[

Q
Q2

ρ
(1 + c)

]T
, J(u) =

∂f

∂u
. (14)

If u(x, t) is a solution of the system (14), then we can show that u(ax, at) is also a solution, where

a is a scalar, i.e., the solutions are scaling-invariant. Therefore, the solution depends on (x, t) in the

form ξ = x/t. A rarefaction wave solution to the system of equations takes the form:

u(x, t) =







ul if x ≤ ξ1t

w(x/t) if ξ1t < x < ξ2t

ur if x ≥ ξ2t ,

(15)

with w(·) smooth and w(ξ1) = ul and w(ξ2) = ur. We will now prove that starting at each point ul
there are two curves consisting of points ur that can be connected to ul by a rarefaction wave, namely

a subset of the integral curve of rp(ul). An integral curve for rp(u) is a curve that has the property

that the tangent to the curve at any point u lies in the direction rp(u). In order to determine explicitly
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the function w(x/t) we differentiate u(x, t) = w(x/t):

∂u

∂t
(x, t) = − x

t2
w′(x/t)

∂u

∂x
(x, t) =

1

t
w′(x/t) ,

where w′(·) represents the derivative of w(·). Replacing these expressions in (14) with ξ = x/t we

get

J(w(ξ)) · w′(ξ) = ξw′(ξ) , (16)

which means that w′(ξ) is proportional to some eigenvector rp(w(ξ)) of the Jacobian J(w(ξ)):

w′(ξ) = α(ξ) · rp(w(ξ)) ,

i.e., w(ξ) lies along some integral curve of rp and ξ is an eigenvalue of the Jacobian.

Computing w(·) results in the following expression for the 1-rarefaction curve (see Section 5.2

for details):

R1 : Qr = Ql

(
ρr
ρl

)c1

, ρr < ρl . (17)

The 2-rarefaction curve is given by

R2 : Qr = Ql

(
ρr
ρl

)c2

, ρr > ρl . (18)

Figure 2 shows the states ur that can be connected to ul by a 1-rarefaction wave, namely the states

lying on the curve R1 passing through ul. Furthermore, the states ur lying on the curve R2 passing

through ul can be connected to ul by a 2-rarefaction wave. We can observe that the integral curves R1

and R2 are very similar to the Hugoniot locus. Moreover, locally near the point ul they must in fact

be very close to each other, because each of these curves is tangent to rp(ul) at ul. Therefore, locally

around ul the rarefaction waves are similar with the shock waves (we can see that a 1-rarefaction wave

is similar to a 2-shock wave, and that a 2-rarefaction is similar to a 1-shock wave). Note that this does

not imply non-existence of rarefaction wave solutions for the Helbing model, because this similarity

is valid only locally and when we solve the Riemann problem the intermediate states um can be given

by the intersection of a shock curve with a rarefaction curve (see also Section 4). Again we see that

we do not connect negative states to ul, which is a very important feature of the Helbing model, and

we will use this result when we discuss the Riemann problem. An interpretation in terms of driver

behavior of the rarefaction waves is similar with that of an entropy-satisfying shock.

4 General solution of the Riemann problem

In this section we discuss the Riemann problem associated with the Helbing model, and based on the

results of the two previous sections we will show that solutions of the Riemann problem with density

and flow non-negative in the initial condition on either side of the discontinuity cannot give rise to

negative flows or densities later on. Also we will see that for the Riemann problem we can find more

than one solution, and the condition for uniqueness is to select the entropy-satisfying weak solution,
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ρ

Q

u
l

R2

R1

2−rarefaction

1−rarefaction

Figure 2: Representation of the states ur that can be connected to ul by a rarefaction wave. State

ur can be connected to ul by a 1-rarefaction if ur lies on curve R1 passing through ul, and by a 2-

rarefaction wave if ur lies on curve R2 passing through ul. The dotted and dashed curves represent

points that do not satisfy the rarefaction condition (13).

which results in a unique, physically valid solution. A similar derivation as the one of this paper but

for another model can be found in [20].

A conservation law together with piecewise constant initial data having a single discontinuity

results in a so-called Riemann problem (see [11, 13, 18] for more details). E.g., the system (14) with

initial condition

u(x, 0) =

{

ul if x < 0

ur if x > 0 ,

where ul and ur are given constants, is a Riemann problem.

If we combine Figures 1 and 2 we obtain a plot that shows us all points ur that can be connected to

a given point ul by an entropy-satisfying wave (see Figure 3 – top), either a shock wave or a rarefaction

wave (ur lies on one of the curves S1, S2, R1 or R2), and the states ul that can be connected to a given

ur (see Figure 3 – bottom). Therefore, when initial data ul and ur both lay on these curves then this

discontinuity simply propagates with speed s = Qr−Ql
ρr−ρl

along the road.

But what happens if ur does not reside on one of those curves passing through ul? To solve

this question, just as in the linear case, we can attempt to find a way to split this jump as a sum

of two jumps, across each of which the Rankine-Hugoniot condition holds, i.e., we must find an

intermediate state um such that ul and um are connected by a discontinuity satisfying the Rankine-

Hugoniot condition and so are um and ur, which intuitively means to superimpose the appropriate
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Figure 3: Representation of the states ur that can be connected to ul by a shock or a rarefaction wave

(top), and of the states ul that can be connected to ur by a shock or a rarefaction wave (bottom).
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plots and look for the intersections. When we want to determine analytically the intermediate state

um, we must first determine whether each wave is a shock or a rarefaction, and then use the expressions

relating ρ and Q determined in Sections 2 and 3 along each curve to solve for the intersection. When

we solve the equation given by the intersection, we can get more than one solution for um, but only

one gives a physically valid solution to the Riemann problem since the jump from ul to um must travel

more slowly than the jump from um to ur (due to λ1 < λ2). Therefore the condition for uniqueness

is to pick up the weak solution that satisfies the above condition. Using the same parametrization

ρl = ρm(1 + ξ1) and ρr = ρm(1 + ξ2) as in Section 5 below, and replacing in equation (22) (see

Section 5) we get that the speeds of shock from ul to um and from um to ur are given by:

sl,m =
Qm

ρm

1+c
1+ξ1

±
√

c2+c
1+ξ1

1− ξ1(1+c)
1+ξ1

, sm,r =
Qm

ρm

1+c
1+ξ2

±
√

c2+c
1+ξ2

1− ξ2(1+c)
1+ξ2

.

Now depending on what values we choose for ul and ur we can determine the sign in the previous

formulas such that sl,m < sm,r and thus we know what waves (1-wave or 2-wave) give the intersection.

We can distinguish the following cases:

Case 1: Both curves are shocks.

Graphically this means to draw the Hugoniot locus for each of the states ul and ur and to look

for the intersection. To obtain the correct value for um = [ρm Qm]
T we have to impose

sl,m < sm,r. Let us consider an example; e.g., assume that um is connected to ul by a 1-shock

and to ur by a 2-shock:

Qm = Ql

1− (ρm − ρl)
√

c2+c
ρmρl

1− ρm−ρl
ρm

(1 + c)
, Qm = Qr

1 + (ρm − ρr)
√

c2+c
ρmρr

1− ρm−ρr
ρm

(1 + c)
. (19)

Equating the two right-hand sides gives a single equation for ρm. If we set y =
√
ρm, we get

a 4th degree polynomial equation in y, which can either be solved analytically (using Ferrari’s

method) or numerically (using, e.g., Newton’s method or Laguerre’s algorithm). After we ob-

tain ρm we replace it in one of the previous equalities (19) to obtain Qm. Using a reasoning that

is similar to the one of [10], it can be shown that the equation in ρm always has a solution when

ul and ur are sufficiently close.

Case 2: Both curves are rarefactions.

If we assume that the intermediate state is connected to ul by a 1-rarefaction and to ur by a

2-rarefaction, then um must satisfy

Qm = Ql

(
ρm
ρl

)c1

, Qm = Qr

(
ρm
ρr

)c2

. (20)

Equating again we get an equation in ρm with solution

ρm =

(
Ql

Qr

ρc2r
ρc1l

) 1
c2−c1

,

and then we obtain Qm from (20). We proceed similarly when we consider the opposite case:

um is connected to ul by a 2-rarefaction and to ur by a 1-rarefaction.

11
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Figure 4: Construction of the solution for the Riemann problem. We obtain two intermediate states

um and u∗m, but only u∗m is a physically valid solution.

Case 3: The solution consists of one shock and one rarefaction wave.

Again if we consider the case when the intermediate state um is connected to ul by a 1-

rarefaction and to ur by a 2-shock, then we must solve for ρm and Qm from the equations:

Qm = Ql

1 + (ρm − ρl)
√

c2+c
ρmρl

1− ρm−ρl
ρm

(1 + c)
, Qm = Qr

(
ρm
ρr

)c1

.

We would like to point out that in general not for all ul and ur the weak solution previously constructed

is a physically correct solution as it may be possible that one of the resulting shocks violates the

entropy condition. In particular, for any ul the feasible (i.e., entropy-satisfying) ur lie in a bounded

region formed by horizontal axis (ρ) and the curves S1 and S2 (indicated by the hashed region in

Figure 1).

Figure 4 shows a plot for the Riemann problem with initial conditions ul = [140 400]T and

ur = [5 50]T, which corresponds, e.g., to a scenario such as the situation of traffic in front of a

semaphore when it was red and then becomes green. The full curves represent the states that can be

connected to ul, and the dotted curves represent the states that can be connected to ur. The intersection

gives two points: the intermediate state um is obtained by intersection of R1 with S2, and u∗m by

intersection of R2 with S1. So, the Riemann problem has more than one solution in this case (this

happens also for other traffic flow models), but only one is a physically valid solution because we

should have sl,m < sm,r (due to λ1 < λ2). If we do the computations, we get that in this case u∗m is

the solution that satisfies the entropy condition, i.e., u∗m is the physically valid solution.

12



5 Derivation of the wave formulas

For the sake of completeness we now provide the details of the derivation of the formulas for the

shock and rarefaction waves.

5.1 Derivation of the formulas for the shock waves

Consider the Rankine-Hugoniot jump condition (10). Filling out the expression for f results in the

following system of equations:

Q̃− Q̂ = s · (ρ̃− ρ̂)

Q̃2

ρ̃
(1 + c)− Q̂2

ρ̂
(1 + c) = s · (Q̃− Q̂) .

Writing down the solutions in terms of ρ̃ yields

Q̃1,2 = Q̂
1± (ρ̃− ρ̂)

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃ (1 + c)

, (21)

and the corresponding shock speed

s1,2 = Q̂

1+c
ρ̃ ±

√
c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃ (1 + c)

, (22)

where the ± signs give two solutions, one for each family of characteristic fields.

Now let us see what sign we should choose in formula (21) for the 1-shock and for the 2-shock

respectively. Since Q̃ can be expressed in terms of ρ̃, we can parametrize these curves by taking, e.g.,

ρ̃p(ξ; û) = ρ̂ · (ξ + 1) for p = 1, 2 with ξ > −1. Then from equations (21) and (22) we obtain:

ũp(ξ; û) =







ρ̂(1 + ξ)

Q̂
1±ξ

√

c2+c
ξ+1

1−
ξ(c+1)
ξ+1






, sp(ξ; û) =

Q̂

ρ̂

1+c
1+ξ ±

√
c2+c
1+ξ

1− ξ(1+c)
1+ξ

.

The choice of sign for each family is determined by the behavior as ξ → 0 where the following

relations must hold (see [11] for details):

1.
∂

∂ξ
ũp(0; û) is a scalar multiple of the eigenvector rp(û): so ∂

∂ξ ũp(0; û) = ρ̂ · rp(û) in our case;

2. sp(0; û) = λp(û) for p = 1, 2.

Using these relations we find that for the 1-shock we must choose the minus sign and for the 2-shock

the plus sign.

Remark: We can see that each of the characteristic fields is genuinely nonlinear, which means that

∇Tλp(u) · rp(u) = cp(cp − 1)
Q

ρ2
6= 0 for all u = [ρ Q]T 6= 0 ,

13



where

∇λp =








∂λp

∂ρ

∂λp

∂Q








is the gradient of λp (p = 1, 2). ♦

Up to now, we have ignored the question of whether a given discontinuity is physically relevant.

Lax [10] proposed an entropy condition to systems of equations that are genuinely nonlinear: the

jump in the pth field (from state û to ũ) is admissible only if

λp(û) > s > λp(ũ) ,

where s is the shock speed. Now suppose we connect û to ũ by a 1-shock, then we get

c1
Q̂

ρ̂
> s > c1

Q̃

ρ̃
.

Replacing s = Q̃−Q̂
ρ̃−ρ̂ in the above inequality and using c1 = 1 + c−

√
c2 + c, we obtain

Q̂

ρ̂
− s+ (c−

√

c2 + c)
Q̂

ρ̂
> 0 >

Q̃

ρ̃
− s+ (c−

√

c2 + c)
Q̃

ρ̃
,

which after few steps leads to

Q̂ρ̃− Q̃ρ̂

ρ̃− ρ̂
< −Q̃(c−

√

c2 + c)

Q̂ρ̃− Q̃ρ̂

ρ̃− ρ̂
> −Q̂(c−

√

c2 + c) .

Combining the last two inequalities we obtain

−Q̂(c−
√

c2 + c) < −Q̃(c−
√

c2 + c) and thus Q̂ < Q̃ .

So for the 1-shock we have obtained the following: Q̂ < Q̃, and we should take the minus sign in

formulas (21) and (22). Combining these two conditions we can show that we must have ρ̃ > ρ̂.

Indeed, we distinguish two cases:

1. The denominator in (21) is positive: 1 − ρ̃−ρ̂
ρ̃ (1 + c) > 0. Hence, ρ̃ < ρ̂(1 + 1

c ) and thus

Q̃ = Q̂
1−(ρ̃−ρ̂)

√

c2+c
ρ̃ρ̂

1− ρ̃−ρ̂
ρ̃

(1+c)
> Q̂ if and only if (ρ̃ − ρ̂)

√
c2+c
ρ̃ρ̂ < ρ̃−ρ̂

ρ̃ (1 + c) or ρ̃ > ρ̂, since for the

inverse inequality we get a contradiction;

2. The denominator is negative: 1 − ρ̃−ρ̂
ρ̃ (1 + c) < 0, or ρ̃ > ρ̂(1 + 1

c ) > ρ̂, and thus ρ̃ > ρ̂, and

we here can check that also Q̃ > Q̂ is satisfied.

In this way we obtain formulas (11)–(12) for a 1-shock wave.
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5.2 Derivation of the formulas for the rarefaction waves

Let us compute w(·), using the fact that our model is genuinely nonlinear, as was shown in Section 5.1.

Recall that equation (16) implies that ξ is an eigenvalue of J(w(ξ)). Differentiating ξ = λp(w(ξ))
w.r.t. ξ results in

1 = ∇Tλp(w(ξ)) · w′(ξ) = ∇Tλp(w(ξ)) · α(ξ) · rp(w(ξ)) .

Hence,

α(ξ) =
1

∇Tλp(w(ξ)) · rp(w(ξ))
,

which results in the differential equation

w′(ξ) =
rp(w(ξ))

∇Tλp(w(ξ)) · rp(w(ξ))
for ξ1 ≤ ξ ≤ ξ2

with initial condition

w(ξ1) = ul, ξ1 = λp(ul) < ξ2 = λp(ur) .

For 1-rarefaction we have:

λ1 = c1
Q

ρ
= c1V, r1 =





1

c1
Q

ρ



 , ∇Tλ1 · r1 = c1(c1 − 1)
Q

ρ2
6= 0 ,

and thus

d

dξ
ρ(ξ) =

ρ2(ξ)

Q(ξ)
· 1

c21 − c1
with ρ(ξ1) = ρl (23)

d

dξ
Q(ξ) = ρ(ξ)

1

c1 − 1
with Q(ξ1) = Ql, ξ1 = λ1(ul) = c1

Ql

ρl
, (24)

which is a system of two ordinary nonlinear differential equations. We see that (23) can be written as

d

dξ

(
1

ρ

)

= − 1

Q
· 1

c21 − c1
.

Denoting η = 1
ρ we get the system

Q
dη

dξ
= − 1

c21 − c1

η
dQ

dξ
=

1

c1 − 1
.

We add both equations obtaining a relation between states: Q(ξ) = 1
c1
ξρ(ξ), and finally after some

computations we obtain the following solution:

ρ(ξ) =

(
ρc1l
c1Ql

· ξ
) 1

c1−1

Q(ξ) =
ξ

c1

(
ρc1l
c1Ql

· ξ
) 1

c1−1

.
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If we want to obtain an explicit expression for the integral curves in the phase plane, we eliminate ξ:

ρc1−1 = ξ · ρc1l
c1Ql

⇒ ξ =
c1Ql

ρc1l
ρc1−1 ⇒ Q(ρ) = Ql

(
ρ

ρl

)c1

.

We can construct the 2-rarefaction wave in exactly the same manner obtaining

ρ(ξ) =

(
ρc2l
c2Ql

· ξ
) 1

c2−1

Q(ξ) =
ξ

c2

(
ρc2l
c2Ql

· ξ
) 1

c2−1

,

and in the phase plane 2-rarefaction is given by

Q(ρ) = Ql

(
ρ

ρl

)c2

.

Now two states ul and ur can be connected by a rarefaction wave provided that they lie on the same

integral curve and λp(ul) < λp(ur), which for 1-rarefaction results in

c1 ·
Ql

ρl
< c1 ·

Qr

ρr
, c1 ∈ (0, 1) ,

with

Qr = Ql

(
ρr
ρl

)c1

,

and thus
1

ρl
<

ρc1−1
r

ρc1l
.

Hence, ρc1−1
l < ρc1−1

r or ρr < ρl since c1 ∈ (0, 1). Therefore, a 1-rarefaction wave is indeed

described by (17). Similarly, we can show that a 2-rarefaction wave is described by (18).

6 Conclusions and future research

In this paper we have discussed some properties of Helbing’s traffic flow model. More specifically,

we have derived the formulas for shocks and rarefaction waves. By selecting the states that satisfy

the Lax entropy condition, we saw that we cannot connect to negative states. Finally, we have con-

sidered the Riemann problem associated with the Helbing model, based on the results in connection

with the shocks and rarefaction waves. In particular, we have proved that when we have a Riemann

problem with non-negative densities and flows on either side of discontinuity in the initial condition,

the Helbing model cannot give rise to negative flows and density later on.

Topics for further research include: investigation of appropriate efficient numerical schemes to

simulate this model (in particular, to further characterize and investigate the jump and wave phenom-

ena considered in this paper, and also for on-line simulation), and extension of the results to other

continuum models (such as Hoogendoorn’s model [8]).
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