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MODELLING AND CONTROL OF DISCRETE EVENT SYSTEMS

USING SWITCHING MAX-PLUS-LINEAR SYSTEMS

T.J.J. van den Boom1 and B. De Schutter1,

Delft Center for Systems and Control, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands,

Abstract: In this paper we consider the modelling and control of discrete event systems

using switching max-plus-linear systems. In switching max-plus-linear systems we can

switch between different modes of operation. In each mode the discrete event system is

described by a max-plus-linear state equation with different system matrices for each mode.

The switching allows us to change the structure of the system, to break synchronization and

to change the order of events. We will give some examples of this type of system. We define

the model predictive control design problem for this type of discrete event system, and we

show that solving this problem in general leads to a mixed integer optimization problem.

1 INTRODUCTION

The class of discrete event systems essentially con-

sists of man-made systems that contain a finite num-

ber of resources (such as machines, communica-

tions channels, or processors) that are shared by sev-

eral users (such as product types, information pack-

ets, or jobs) all of which contribute to the achieve-

ment of some common goal (the assembly of prod-

ucts, the end-to-end transmission of a set of infor-

mation packets, or a parallel computation) [1]. In

general, models that describe the behavior of a dis-

crete event system are nonlinear in conventional al-

gebra. However, there is a class of discrete event

systems — the max-plus-linear discrete event sys-

tems — that can be described by a model that is

“linear” in the max-plus algebra [1, 4], which has

maximization and addition as its basic operations.

The max-plus-linear discrete event systems can be

characterized as the class of discrete event systems

in which only synchronization and no concurrency

or choice occurs.

In this paper we will consider discrete event sys-

tems that can switch between different modes of op-

eration. In each mode the system is described by a

max-plus-linear state equation with different system

matrices for each mode. The switching changes the

structure of the system, and so allows us to break

synchronization and to change the order of events.

We define a control design problem for such a sys-

tem to optimize the system’s behavior. In general

this will lead to a mixed integer optimization prob-

lem.

1t.j.j.vandenboom,b.deschutter}@dcsc.tudelft.
nl, http://www.dcsc.tudelft.nl

2 MAX-PLUS ALGEBRA AND SWITCHING

MAX-PLUS-LINEAR SYSTEMS

2.1 Max-plus algebra

In this section we give the basic definition of the

max-plus algebra and we present some results on a

class of max-plus functions.

Define ε = −∞ and Rε = R ∪ {ε}. The max-

plus-algebraic addition (⊕) and multiplication (⊗)

are defined as follows [1, 4]:

x⊕ y = max(x, y) x⊗ y = x+ y

for numbers x, y ∈ Rε, and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

2.2 Max-plus-linear systems

In [1, 4] it has been shown that discrete event sys-

tems in which there is synchronization but no con-

currency can be described by a model of the form

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) . (1)

Systems that can be described by this model will

be called max-plus-linear systems. The index k is

called the event counter. For discrete event systems

the state x(k) typically contains the time instants at

which the internal events occur for the kth time, the

input u(k) contains the time instants at which the

input events occur for the kth time, and the output

y(k) contains the time instants at which the output

events occur for the kth time.



2.3 Switching max-plus-linear systems

In this paper we will consider discrete event systems

that can switch between different modes of opera-

tion. In each different mode ℓ = 1, . . . , nm, the sys-

tem is described by a max-plus-linear state equation

x(k) = A(ℓ)(k)⊗ x(k− 1)⊕B(ℓ)(k)⊗ u(k) (2)

in which the matrices A(ℓ), B(ℓ) are the system

matrices for the ℓ-th mode. The switching allows

us to change the structure of the system, to break

synchronization and to change the order of events.

Note that each mode ℓ corresponds to a set of re-

quired synchronizations and an event order sched-

ule, which leads to a model (2) with system matrices

(A(ℓ), B(ℓ)) for the ℓ-th model.

The moments of switching are determined by a

switching mechanism. We define the switching

variable z(k), which may depend on the previous

state x(k − 1), previous mode ℓ(k − 1), the input

variable u(k) and an (additional) control variable

v(k):

z(k) = Φ(x(k−1), ℓ(k−1), u(k), v(k)) ∈ R
nz .

(3)

We partition R
nz in nm subsets Z(i), i =

1, . . . , nm. The mode ℓ(k) is now obtained by de-

termining in which set z(k) is for event k. So if

z(k) ∈ Z(i), then ℓ(k) = i. In some systems

the switching mechanism will completely depend

on the state x(k− 1) and input u(k), in other exam-

ples z(k) will be equal to v(k) and so we can control

the switching by choosing an appropriate v(k).

3 EXAMPLES OF SWITCHING

MAX-PLUS-LINEAR SYSTEMS

3.1 Production system
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Figure 1: A production system.

Consider the production system of Figure 1. This

system consists of five machines M1, M2, M3, M4

and M5. The raw material is fed to machine M1

and M2, where preprocessing is done. Both prod-

ucts now have to be finished in either unit M3 and

M4, which basically perform the same task, but the

processing time of M3 is longer than M4. There-

fore, the products coming from machine M1 and

M2 are directed to a switching device Sw, that feeds

the first product in the kth cycle to the slower ma-

chine M3 and the second product to the faster ma-

chine M4. Finally, the products are assembled (in-

stantaneously1) in machine M5 and become avail-

able. We assume that each machine starts working

as soon as possible on each batch, i.e., as soon as

the raw material or the required intermediate prod-

ucts are available, and as soon as the machine is idle

(i.e., the previous batch has been finished and has

left the machine). We define u(k) as the time in-

stant at which the system is fed for the kth time,

y(k) = x5(k) as time instant at which the kth prod-

uct leaves the system and xi(k) as the time instant

at which machine i starts for the kth time. The vari-

able tj for j = 1, . . . , 4 is the transportation time,

and di for i = 1, . . . , 5 is the processing time on

machine i. The system equations for x1 and x2 are

given by

x1(k) = max(x1(k − 1) + d1, u(k) + t1)

x2(k) = max(x2(k − 1) + d2, u(k) + t2)

If x1(k) + d1 ≤ x2(k) + d2, the product of M1

will be directed to M3 and the product of M2 will

be directed to M4, and we obtain:

x3(k) = max(x1(k) + d1, x3(k−1) + d3)

= max(x1(k−1) + 2d1, x3(k−1) + d3,

u(k) + d1 + t1)

x4(k) = max(x2(k) + d2, x4(k−1) + d4)

= max(x2(k−1) + 2d2, x4(k−1) + d4,

u(k) + d2 + t2)

x5(k) = max(x3(k) + d3, x4(k) + d4 + t8)

= max(x1(k−1) + 2d1 + t1 + d3,

x2(k−1) + 2d2 + d4 + t8,

x3(k−1) + 2d3, x4(k−1) + 2d4 + t8,

u(k) + d1 + t1 + d3,

u(k) + d2 + t2 + d4 + t8)

For this first mode (x1(k) + d1 ≤ x2(k) + d2) we

obtain the system matrices

A(1) =













1 ε ε ε ε
ε 3 ε ε ε
1 ε 6 ε ε
ε 6 ε 4 ε
8 11 12 9 ε













B(1)=













4
1
5
4
11













Similarly, for this second mode (x1(k) + d1 >
x2(k) + d2) we obtain the system matrices

A(2) =













1 ε ε ε ε
ε 3 ε ε ε
ε 6 6 ε ε
1 ε ε 4 ε
7 12 12 9 ε













B(2)=













4
1
4
5
10













1I.e. with a negligible processing time.



To decide the switching mechanism, we define the

switching variable

[

z1(k)
z2(k)

]

=

[

x1(k) + d1
x2(k) + d2

]

=

[

max(x1(k−1) + 2d1, u(k) + d1 + t1)
max(x2(k−1) + 2d2, u(k) + d2 + t2)

]

=

[

max(x1(k−1) + 2, u(k) + 5)
max(x2(k−1) + 6, u(k) + 4)

]

and the sets

Z(1) = {z ∈ R
2|z1 ≤ z2},

Z(2) = {z ∈ R
2|z1 > z2}.

Now the state space equation of our system is given

by (2).

3.2 Railway network

Consider the railroad network of Figure 2 (see also

[11]). There are 4 stations in this railroad network

(A, B, C and D) that are connected by 5 single tracks

(1/7, 2/4, 3, 5, 9) and one double track (tracks 6 &

8). There are three trains available. The first train

follows the route D → A → B → D, the second

train follows the route A → B → C → A, and the

third train follows the route D → A → C → D.

We assume that there exists a periodic timetable that

schedules the earliest departure times of the trains.

The period of the timetable is T = 60 minutes. So

if a departure of a train from station B is scheduled

at 5.30 a.m., then there is also scheduled a departure

of a train from station B at 6.30 a.m., 7.30 a.m., and

so on.

Each track of the railway network has a number and

a train allocated to it. For the sake of simplicity we

will say “(virtual) train j” to denote the (physical)

train on a specific track. The number of tracks in

the network is equal to 7, the number of physical

trains in the network is equal to 3, and the number of

virtual trains in the network is equal to 9. Let xj(k),
j = 1, . . . , 9 be the time instant at which train j
departs from its station for the kth time. Let dj(k)
be the departure time for this train according to the

time schedule, and let aj(k) be the transportation

time for this train j.

Table 1 summarizes the information in connection

with the nominal travelling times and the departure

times. All the times are measured in minutes. The

indicated departure times are the earliest departure

times in the initial station of the track expressed in

minutes after the hour. The first period starts at time

t = 0. At the beginning of the first period the first

train is in station A and the second train is in station

B.
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Figure 2: The railroad network of the example of Sub-

section 3.2.

train from travel dep constraints

-to time -arr

1 D-A 12 00-12 same train as 3−

connects to 9−

follows 7−

2 A-B 12 15-27 same train as 1

connects to 6−

follows 4−

3 B-D 20 30-50 same train as 2

4 A-B 12 19-31 same train as 6−

follows 2

connects to 7

5 B-C 10 34-44 same train as 4

6 C-A 25 47-12 same train as 5

7 D-A 12 04-16 same train as 9−

follows 1

8 A-C 25 19-44 same train as 7

9 C-D 10 47-57 same train as 8

connects to 5

Note: 3− denotes train 3 in the previous cycle

Table 1: The nominal travelling times and the departure

times for the railroad network.

The continuity constraints are that the trains on

tracks 1, 2 and 3 are physically the same train, and

the same holds for the trains on tracks 4, 5 and 6 and

for the trains on tracks 7, 8 and 9.

Connection constraints are introduced to allow the

passengers to change trains. In this network, train

1 has to wait for train 9 in the previous cycle with

minimum connection time cmin = 3. In the same

way, train 2 waits for train 6 in the previous cycle,

train 4 wait for train 7, and train 9 waits for train 5.

The minimum stopping time of train j at station j to

allow passenger to get off or on the train is fixed at

smin = 1.

Follow constraints are introduced to guarantee suf-

ficient separation time between two trains on the

same track (moving in the same direction). In this

network, train 4 is scheduled behind train 2 (train

4 follows train 2) with a minimum separation time



fmin = 4. In the same way, train 2 follows train 4 in

the previous cycle, train 7 follows train 1, and train

1 follows train 7 in the previous cycle.

Each train departs as soon as all the connections

are guaranteed (except for a connection when it is

broken), the passengers have gotten the opportunity

to change over and the earliest departure time indi-

cated in the timetable has passed. We assume that

in the first period all the trains depart according to

schedule. The j-th state xj(k) is the time instant at

which the train on track j departs from the initial

station of the track for the kth time.

Now we write down the equations that describe the

evolution of the xj(k)’s. First we consider the train

on track 1 and we determine x1(k), the time instant

at which this train departs from station A for the kth

time. The train has to wait at least until the train

has arrived in station A for the (k − 1)th time2 and

the passengers have got the time to get out of the

train so we have x1(k) ≥ x3(k − 1) + a3(k − 1) +
1. Furthermore, the train on track 1 has to wait for

the passengers of the train on track 9 in the (k −
1)th cycle, which arrives in station B at time instant

x9(k−1)+a9(k−1). The passengers have cmin = 3
minutes to change trains. Further the train on track

1 has to follow the train on track 7 in the previous

cycle with a minimum separation time fmin = 4.

According to the timetable3 the train on track 1 can

only depart after time instant 00 + k 60. Hence, we

have

x1(k) = max( x3(k−1) + a3(k−1) + smin ,

x7(k − 1) + fmin ,

x9(k−1) + a9(k−1) + cmin , d1(k) )

= max( x3(k−1) + 21 , x7(k − 1) + 4 ,

x9(k−1) + 13 , k 60 )

for k = 1, 2, . . . with x3(0) = x9(0) = −∞.

Using a similar reasoning, we find that the other de-

parture times are given by

x2(k) = max(x1(k) + 13, x4(k−1) + 4,

x6(k−1) + 28, 15 + k 60)

x3(k) = max(x2(k) + 13, 30 + k 60)

x4(k) = max(x2(k) + 4, x6(k−1) + 26,

2Under nominal operations the kth train on track 1 (e.g., the

one that departs from station D at 10.00 a.m.) proceeds to the

(k − 1)th train on track 3 (which has departed from station B at

9.30 a.m.) and not to the kth train on track 3 (which will depart

from station B at 10.30 a.m.).
3Note that in a undisturbed, well-defined time schedule the

term di(k) will be the largest. However, if due to unforeseen cir-

cumstances (an incident, a late departure, etc.) one of the trains

has a delay, the corresponding term can become larger than the

others, train i will depart later than the scheduled departure time

di(k) and will therefore also be delayed.

x7(k) + 15, 19 + k 60)

x5(k) = max(x4(k) + 13, 34 + k 60)

x6(k) = max(x5(k) + 11, 47 + k 60)

x7(k) = max(x9(k−1) + 11, x1(k) + 4, 4 + k 60)

x8(k) = max(x7(k) + 13, 19 + k 60)

x9(k) = max(x8(k) + 26, x5(k) + 13, 47 + k 60)

for k = 1, 2, . . . with xj(0) = −∞ for j =
1, 2, . . . , 9.

Using successive substitution we can eliminate all

right-hand terms with index k. By defining the

appropriate matrix A(1) and by using the (⊗,⊕)-
notation, we can rewrite the state equations as:

x(k) = A(1)(k)⊗ x(k − 1)⊕ d(k) . (4)

In the nominal operation we have assumed that

some trains should give pre-defined connections to

other trains, and the order of trains on the same track

is fixed. However, if one of the preceding trains

has a too large delay, then it is sometimes better

— from a global performance viewpoint — to let

a connecting train depart anyway or to change the

departure order on a specific track. This is done in

order to prevent an accumulation of delays in the

network. In this paper we consider the switching be-

tween different operation modes, where each mode

corresponds to a different set of pre-defined or bro-

ken connections and a specific order of train depar-

tures. We allow the system to switch between dif-

ferent modes, allowing us to break train connections

and to change the order of trains. Note that any bro-

ken connection or change of train order leads to a

new model, similar to the nominal equation (4), but

now with adapted system matrix A(ℓ) for the ℓ-th
model. We have the following system equation for

the perturbed operation for ℓ = 2, . . . , nm:

x(k) = A(ℓ)(k)⊗ x(k − 1)⊕ d(k) . (5)

In this railway network the switching variable z(k)
is equal to the control vector v(k), and each en-

try of v(k) corresponds to a specific control action,

so a specific (scheduled) synchronization or specific

(scheduled) event order. We assume v(k) to be bi-

nary, where vi(k) = 0 corresponds to the nominal

case, and vi(k) = 1 to the perturbed case (the syn-

chronization is broken or the order of two events is

switched). Each combination v1(k),. . . ,vm(k) cor-

responds to a fixed routing schedule with a specific

train order and specific connections.

4 THE MODEL PREDICTIVE CONTROL

PROBLEM

Consider switching max-plus-linear model (2)–(3).

We have two possible input signals, v(k) and u(k).



Let V(k) and U(k) be the sets of possible future

control actions v(k) and u(k), respectively. Some-

times values are predefined (e.g. in the railway sys-

tem u(k) = d(k)) or not applicable (e.g. in the

production system v(k) is not used). Often v(k) is

assumed to be binary, and each entry corresponds to

a specific control action (e.g. a specific scheduled

synchronization or specific scheduled event order).

Just as in conventional Model Predictive Con-

trol (MPC) [10] we define a cost criterion J and

we aim at computing the optimal input sequences

u(k), . . . , u(k+Np − 1), v(k), . . . , v(k+Np − 1)
that minimize a cost criterion J(k), possibly sub-

ject to linear constraints on the inputs and the states,

where Np is the prediction horizon. The cost cri-

terion reflects the input and output cost functions

(Jin and Jout, respectively) in the event period

[k, k +Np − 1]:

J(k) = Jout(k) + λJin(k) , (6)

where λ is a weighting parameter. The output cost

function is usually chosen as

Jout(k) =

Np−1
∑

j=0

‖ ê(k + j) ‖ ,

where ‖ · ‖ is an appropriate norm and ê is the

due date error (e.g. for the production system the

due date error of a product is given by êi(k) =
max(yi(k) − ri(k), 0), where r(k) is the desired

due date of the product, and for the railway system

the due date error is equal to the delay of a train,

so êi(k) = max(xi(k) − di(k), 0)). The input cost

function consists of two parts, Jin = Jin,u + Jin,v .

The first part Jin,u depends on u(k + j), j =
k, . . . , k +Np − 1 and is usually chosen as

Jin,u(k) = −

Np−1
∑

j=0

‖ u(k + j) ‖ ,

(see also [6]). The second part Jin,v is a function

of v(k + j), j = k, . . . , k + Np − 1. For dif-

ferent applications, Jin,v will have different appear-

ances (e.g. for the production system Jin,v(k) = 0
and for the railway system we choose Jin,v(k) =
∑Np−1

j=0

∑nv

i=1 vi(k + j)).

Since the input signal u(k) correspond to consecu-

tive event occurrence times, we have the additional

condition for j = 0, . . . , Np − 1:

∆u(k+j) = u(k+j)− u(k+j−1) ≥ 0 .

Furthermore, in order to reduce the number of de-

cision variables and the corresponding computa-

tional complexity we introduce a control horizon

Nc (≤ Np) and we impose the additional condition

that the input rate should be constant from the point

k +Nc − 1 on, so

∆u(k + j) = ∆u(k +Nc − 1) ,

for j = Nc, . . . , Np − 1. The same often holds for

the control variable v(k), which will be assumed to

be constant beyond control horizon Nc. This results

in the constraint v(k + j) = v(k + Nc − 1) for

j = Nc, . . . , Np − 1, or equivalently

∆v(k+j) = v(k+j)− v(k+j−1) = 0 ,

for j = Nc, . . . , Np − 1. Now the MPC control

problem for event step k can be defined as:

min
{u(k)∈U,v(k)∈V(k)}

J(k) (7)

subject to

x(k+j) = A(ℓ(k))(k)⊗x(k+j−1)

⊕B(ℓ(k))(k)⊗u(k+j) (8)

Φ(x(k − 1), ℓ(k − 1), u(k), v(k)) ∈ Z(ℓ(k)) (9)

∆u(k + j) ≥ 0 (10)

∆v(k +m) = 0 (11)

∆u(k +m)−∆u(k +Nc − 1) = 0 (12)

Ac(k)ũ(k) +Bc(k)ỹ(k) ≤ cc(k) (13)

for j = 0, . . . , Np−1, m = Nc, . . . , Np−1

where (13) may represent additional linear con-

straints on the inputs and the outputs.

MPC uses a receding horizon principle. This

means that after computation of the optimal con-

trol sequences u(k), . . . , u(k + Nc − 1) and

v(k), . . . , v(k+Nc − 1), only the first control sam-

ples u(k) and v(k) will be implemented, subse-

quently the horizon is shifted one sample, and the

optimization is restarted with new information of

the measurements.

In principle we have all elements to solve the re-

ceding horizon control problem (7)–(13). In general

we will have a mixed integer optimal control prob-

lem with both real parameters and binary parame-

ters. Sometimes (e.g. the production system) the

problem can be recast as a Extended Linear Com-

plementary Problem (ELCP) and can be solved effi-

ciently [7]. If the optimization is over a binary val-

ued v(k) (e.g. the railway problem) we obtain an

integer optimization problem, which can be solved

using genetic algorithms [5], tabu search [9], or a

branch-and-bound method [3]. In some particular

cases the problem can be recast as a Mixed Inte-

ger Linear Programming (MILP) or a Mixed Integer

Quadratic Programming (MIQP), for which reliable

algorithms are available [2, 8].



The application of the derived controller design

method to a railway network is given in [11].

5 DISCUSSION

We have presented a new way to model a class of

discrete event systems — the max-plus-linear dis-

crete event systems — that can operate in differ-

ent modes, in which the dynamics can be described

by a model that is “linear” in the max-plus algebra.

We have discussed two examples, a production sys-

tem and a railway network. An MPC controller de-

sign technique has been derived for this type of sys-

tems. In general the resulting optimization problem

requires a mixed integer optimization algorithm.

In future research we will study on the characteri-

zation of all discrete event systems that can be re-

cast as a switching max-plus-linear system. Fur-

thermore, we will try to find out what conditions

are needed on J , Φ and Z(ℓ(k)) to obtain particular

optimization problems (ELCP, MILP, MIQP).
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