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Abstract— Model predictive control (MPC) is a very popu-
lar controller design method in the process industry. A key
advantage of MPC is that it can accommodate constraints on
the inputs and outputs. Usually MPC uses linear or nonlinear
discrete-time models. In this paper and its companion paper
(“Part II: Hybrid Systems”) we give an overview of some results
in connection with MPC approaches for discrete-event systems
and hybrid systems. In general the resulting optimization
problems are nonlinear and nonconvex. However, for some
classes of discrete-event systems and hybrid systems tractable
solution methods exist.

In this paper we consider discrete-event systems, i.e., asyn-
chronous systems with event-driven dynamics. In particular, we
discuss MPC for a special class of discrete-event systems, viz.
max-plus-linear discrete-event systems, for both the noise-free
and perturbed case (i.e., with modeling errors and/or noise).

In the companion paper we will discuss MPC for some classes
of hybrid systems.

I. INTRODUCTION

Model predictive control (MPC) was pioneered simultane-

ously by Richalet et al. [28], and Cutler and Ramaker [11].

In the last decades MPC has shown to respond effectively to

control demands imposed by tighter product quality specifi-

cations, increasing productivity demands, new environmental

regulations, and fast changes in the market. As a result, MPC

is now widely accepted in the process industry. There are

several other reasons why MPC is probably the most applied

advanced control technique in this industry:

• MPC is a model-based controller design procedure that

can easily handle multi-input multi-output processes,

processes with large time-delays, non-minimum phase

processes, and unstable processes.

• It is an easy-to-tune method: in principle only three

parameters have to be tuned.

• MPC can handle constraints on the inputs and the

outputs of the process (due to, e.g., limited capacity of

buffers, actuator saturation, output quality specifications,

etc.) in a systematic way during the design and the

implementation of the controller.

• MPC can handle structural changes, such as sensor or

actuator failures, and changes in system parameters or

system structure, by adapting the model and by using a

receding horizon approach, in which the model and the

control strategy are regularly updated.

Conventional MPC uses discrete-time models (i.e., models

consisting of a system of difference equations). In this paper

and the companion paper [15] we propose some extensions

and adaptations of the MPC framework to classes of discrete-

event systems and hybrid systems that ultimately result

in “tractable” control approaches. For each of these cases

the proposed MPC approach has the following ingredients

(which are also present in conventional MPC): a prediction

horizon, a receding horizon procedure, and a regular update

of the model and re-computation of the optimal control input.

This paper is organized as follows. In Section II we

give a brief overview of conventional MPC for discrete-

time systems. Next, we introduce discrete-event systems and

max-plus-linear discrete-event systems in Section III. Section

IV then considers MPC for max-plus-linear discrete-event

systems.

For easy reference we here already list the abbreviations

used in this paper and in the companion paper [15]:

ELCP : extended linear complementarity problem

LP : linear programming

MIQP : mixed integer quadratic programming

MLD : mixed logical dynamical

MMPS : max-min-plus-scaling

MPC : model predictive control

MPL : max-plus linear

PWA : piecewise affine

QP : quadratic programming

SQP : sequential quadratic programming

II. MODEL PREDICTIVE CONTROL

In this section we give a short and simplified introduction

to conventional model predictive control (MPC) for nonlinear

discrete-time systems. For the sake of simplicity we will

only consider the deterministic, i.e., noiseless, case in this

brief introduction. More extensive information on MPC can

be found in [1], [4], [6], [8], [17], [22] and the references

therein.

A. Prediction model

Consider a plant with m inputs and l outputs that can be

modeled by a nonlinear discrete-time state space description

of the following form:

x(k+1) = f (x(k),u(k)) (1)

y(k) = h(x(k),u(k)) (2)
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Fig. 1. Representation of the MPC control scheme.

where f and h are smooth functions of x and u.

In MPC we consider the future evolution of the system

over a given prediction period [k + 1,k + Np], which is

characterized by the prediction horizon Np, and where k is

the current sample step (see Figure 1). For the system (1)–

(2) we can make an estimate ŷ(k + j|k) of the output at

sample step k+ j based on the state1 x(k) at step k and the

future input sequence u(k),u(k+ 1), . . . ,u(k+ j− 1). Using

successive substitution, we obtain an expression of the form

ŷ(k+ j|k) = Fj(x(k),u(k),u(k+1), . . . ,u(k+ j−1)) (3)

for j = 1, . . . ,Np. If we define the vectors

ũ(k) =
[

uT(k) . . . uT(k+Np −1)
]

T (4)

ỹ(k) =
[

ŷT(k+1|k) . . . ŷT(k+Np|k)
]

T , (5)

we obtain the following prediction equation:

ỹ(k) = F(x(k), ũ(k)) . (6)

B. Cost criterion and constraints

The cost criterion J used in conventional MPC reflects the

reference tracking error (Jout) and the control effort (Jin):

J(k) = Jout(k)+λJin(k)

= ‖ỹ(k)− r̃(k)‖2
Q +λ‖ũ(k)‖2

R

=
(

ỹ(k)− r̃(k)
)

TQ
(

ỹ(k)− r̃(k)
)

+λ ũT(k)Rũ(k)

where λ is a nonnegative integer, and r̃(k) contains the

reference signal (defined similarly to ỹ(k) (cf. (5))), and Q,

R are positive definite matrices.

In practical situations, there will be constraints on the input

and output signals of the plant (caused by limited capacity

1For the sake of simplicity, we assume that all the components of the
state can be measured, or that the system is observable such that the current
state can be reconstructed from the past output sequence (using, e.g., an
(extended) Kalman filter).

of buffers, limited transportation rates, saturation, etc.). This

is reflected in the nonlinear constraint function

Cc(k, ũ(k), ỹ(k))6 0 , (7)

which is often taken to be linear:

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) . (8)

The MPC problem at sample step k consists in minimizing

J(k) over all possible future input sequences subject to the

constraints. This is usually a nonconvex optimization prob-

lem. To reduce the complexity of the optimization problem a

control horizon Nc is introduced in MPC, which means that

the input is taken to be constant beyond sample step k+Nc:

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1. (9)

In addition to a decrease in the number of optimization

parameters and thus also the computational burden, a smaller

control horizon Nc also gives a smoother control signal,

which is often desired in practical situations.

C. Receding horizon approach

MPC uses a receding horizon principle. At time step k the

future control sequence u(k), . . . ,u(k+Np −1) is determined

such that the cost criterion is minimized subject to the

constraints. At time step k the first element of the optimal

sequence (u(k)) is applied to the process. At the next time

instant the horizon is shifted, the model is updated with new

information of the measurements, and a new optimization at

time step k+1 is performed.

D. The standard MPC problem

The MPC problem at sample step k for the nonlinear

discrete-time system described by (1)–(2) is defined as

follows:

Find the input sequence {u(k), . . . ,u(k + Np − 1)} that

minimizes the cost criterion J(k) subject to the evolution

equations (1)–(2) of the system, the nonlinear constraint

(7), and the control horizon constraint (9).

For linear discrete-time systems and with linear constraints

(8) only, the MPC problem boils down to a convex quadratic

programming problem, which can be solved very efficiently.

Furthermore, in this case the solution can be even computed

off-line and reduces to the simple evaluation of an explicitly

defined piecewise affine function [3].

Traditionally MPC uses linear discrete-time models for the

process to be controlled. In this paper and the companion

paper [15] we consider the extension and adaptation of

the MPC framework to discrete-event systems and hybrid

systems. In general, MPC for discrete-event systems and

hybrid systems results in hard nonconvex nonlinear and often

even nonsmooth optimization problems with integer and real-

valued variables, but — as we shall see — for some classes of

discrete-event systems and hybrid systems tractable solution

methods exist.
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III. DISCRETE-EVENT SYSTEMS

A. General discrete-event systems

Typical examples of discrete-event systems are flexible

manufacturing systems, telecommunication networks, paral-

lel processing systems, traffic control systems, and logis-

tic systems. The class of discrete-event systems essentially

consists of man-made systems that contain a finite number

of resources (e.g., machines, communications channels, or

processors) that are shared by several users (e.g., product

types, information packets, or jobs) all of which contribute to

the achievement of some common goal (e.g., the assembly of

products, the end-to-end transmission of a set of information

packets, or a parallel computation) [2].

One of the most characteristic features of a discrete-event

system is that its dynamics are event-driven as opposed

to time-driven: the behavior of a discrete-event system is

governed by events rather than by ticks of a clock. An event

corresponds to the start or the end of an activity. For a

production system possible events are: the completion of

a part on a machine, a machine breakdown, or a buffer

becoming empty. Events occur at discrete time instants.

Intervals between events are not necessarily identical; they

can be deterministic or stochastic.

There exist many different modeling and analysis frame-

works for discrete-event systems such as Petri nets, finite

state machines, queuing networks, automata, (extended) state

machines, semi-Markov processes, max-plus algebra, formal

languages, temporal logic, perturbation analysis, process al-

gebras, and computer models (see [2], [7], [16], [18]–[20],

[27], [33] and the references therein).

Although in general discrete-event systems lead to a

nonlinear description in conventional algebra, there exists

a subclass of discrete-event systems for which this model

becomes “linear” when we formulate it in the max-plus

algebra [2], [9], [10], which has maximization and addition

as its basic operations. Discrete-event systems in which

only synchronization2 and no concurrency3 or choice occur

can be modeled using the operations maximization (cor-

responding to synchronization: a new operation starts as

soon as all preceding operations have been finished) and

addition (corresponding to durations: the finishing time of

an operation equals the starting time plus the duration). This

leads to a description that is “linear” in the max-plus algebra.

Therefore, discrete-event systems with synchronization but

no concurrency are called max-plus-linear discrete-event sys-

tems. Typical examples are serial production lines, production

systems with a fixed routing schedule, and railway networks.

2Synchronization requires the availability of several resources at the same
time (e.g., before we can assemble a product on a machine, the machine
has to be idle and the various parts have to be available).

3Concurrency appears when at a certain time there is a choice among
several resources (e.g., a job may be executed on one of the several machines
that can handle that job and that are idle at that time).

B. Max-plus algebra and max-plus-linear discrete-event

systems

1) Max-plus algebra: The basic operations of the max-

plus algebra are maximization and addition, which will be

represented by ⊕ and ⊗ respectively:

x⊕ y = max(x,y) and x⊗ y = x+ y

for x,y ∈ Rε
def
= R∪ {−∞}. Define ε = −∞. The structure

(Rε ,⊕,⊗) is called the max-plus algebra [2], [10]. The

operations ⊕ and ⊗ are called the max-plus-algebraic addi-

tion and max-plus-algebraic multiplication respectively since

many properties and concepts from linear algebra can be

translated to the max-plus algebra by replacing + by ⊕ and

× by ⊗ [2], [10]. The rules for the order of evaluation

of the max-plus-algebraic operators are similar to those of

conventional algebra. So ⊗ has a higher priority than ⊕.

The matrix εm×n is the m × n max-plus-algebraic zero

matrix: (εm×n)i j = ε for all i, j. The matrix En is the n×n

max-plus-algebraic identity matrix: (En)ii = 0 for all i and

(En)i j = ε for all i, j with i 6= j. The basic max-plus-algebraic

operations are extended to matrices as follows. If A,B∈R
m×n
ε

and C ∈ R
n×p
ε , then

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n

⊕

k=1

aik ⊗ ck j = max
k

(aik + ck j)

for all i, j. Note the analogy with the definitions of matrix

sum and product in conventional linear algebra. The max-

plus-algebraic matrix power of A ∈ R
n×n
ε is defined as

follows: A⊗0
= En, and A⊗k

= A⊗A⊗k−1
for k = 1,2, . . .

2) Max-plus-linear discrete-event systems: Discrete-event

systems with only synchronization and no concurrency can

be modeled by a max-plus-algebraic model of the following

form [2] (see also Example 3.3):

x(k+1) = A⊗ x(k) ⊕ B⊗u(k) (10)

y(k) =C⊗ x(k) (11)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m is the

number of inputs and l the number of outputs.

For a manufacturing system, u(k) would typically repre-

sent the time instants at which raw material is fed to the

system for the (k+1)th time, x(k) the time instants at which

the machines start processing the kth batch of intermediate

products, and y(k) the time instants at which the kth batch

of finished products leaves the system.

Note the analogy of the description (10) – (11) with the

state space model for conventional linear time-invariant

discrete-time systems. This analogy is another reason why

the symbols ⊕ and ⊗ are used to denoted max and +.

Remark 3.1 Apart from the fact that in (10)–(11) the

components of the input, output and state vector are event
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Fig. 2. A simple manufacturing system.

times, an important difference between the descriptions (10)–

(11) for discrete-event systems and (1)–(2) for discrete-time

systems is that the counter k in (10)–(11) is an event counter

(and event occurrence instants are in general not equidistant),

whereas in (1)–(2) k is a sample counter that increases each

clock cycle. ✷

A discrete-event system that can be modeled by (10) –

(11) will be called a max-plus-linear (MPL) time-invariant

discrete-event system.

Remark 3.2 For (linear) discrete-time systems the influence

of noise is usually modeled by adding an extra noise term

to the state and/or output equation. For MPL models the

entries of the system matrices correspond to production times

or transportation times. So instead of modeling noise (i.e.,

the variation in the processing times), by adding an extra

max-plus-algebraic term in (10) or (11), noise should rather

be modeled as an additive term to these system matrices.

However, this would not lead to a nice model structure.

Therefore, and for the sake of simplicity, we will use the

MPL model (10) – (11) as an approximation of a discrete-

event system with uncertainty and/or modeling errors when

we present the extension of the MPC framework to MPL

systems. This also motivates the use of a receding horizon

strategy when we define MPC for MPL systems, since then

we can regularly update our model of the system as new

measurements become available. Note, however, that the

approach given in Section IV below can also be extended

to the case where noise is present (see Section VII and [30],

[31]). ✷

Example 3.3 Consider the production system of Fig. 2. This

manufacturing system consists of three processing units: P1,

P2 and P3, and works in batches (one batch for each finished

product). Raw material is fed to P1 and P2, processed and

sent to P3 where assembly takes place. The processing times

for P1, P2 and P3 are respectively d1 = 11, d2 = 12 and d3 = 7

time units. It takes t1 = 2 time units for the raw material to get

from the input source to P1, and t3 = 1 time unit for a finished

product of P1 to get to P3. The other transportation times and

the set-up times are assumed to be negligible. At the input of

the system and between the processing units there are buffers

with a capacity that is large enough to ensure that no buffer

overflow will occur. A processing unit can only start working

on a new product if it has finished processing the previous

product. Each processing unit starts working as soon as all

parts are available.

Let u(k) be the time instant at which a batch of raw

material is fed to the system for the (k + 1)th time, xi(k)
the time instant at which Pi starts working for the kth time,

and y(k) the time instant at which the kth finished product

leaves the system. Now consider x1(k+1), the time instant

at which P1 starts processing the (k+1)st batch. As we have

to wait for the (k+ 1)st batch of raw material to arrive at

P1 (which happens at time instant u(k)+ t1 = u(k)+2), and

for the kth batch to be processed completely at P1 (which

happens at time instant x1(k)+ d1 = x1(k)+ 11), and since

we assume that P1 starts processing a new batch as soon as

the raw material is available and as the processing unit is

idle again, we have

x1(k+1) = max(x1(k)+11, u(k)+2)

= 11⊗ x1(k)⊕2⊗u(k) .

In a similar way we find

x2(k+1) = max(x2(k)+12, u(k)+0)

= 12⊗ x2(k)⊕0⊗u(k)

x3(k+1) = max(x1(k+1)+11+1, x2(k+1)+12+0,

x3(k)+7)

= max(x1(k)+11+11+1, u(k)+2+11+1,

x2(k)+12+12+0, u(k)+0+12+0,

x3(k)+7)

= max(x1(k)+23, x2(k)+24, x3(k)+7,

u(k)+14)

= 23⊗ x1(k) ⊕ 24⊗ x2(k) ⊕ 7⊗ x3(k)⊕

14⊗u(k)

y(k) = x3(k)+7+0

= 7⊗ x3(k),

or, in max-plus-algebraic matrix notation (with ε =−∞):

x(k+1) =





11 ε ε
ε 12 ε

23 24 7



⊗ x(k) ⊕





2

0

14



⊗u(k)

y(k) =
[

ε ε 7
]

⊗ x(k) . ✷

IV. MPC FOR MPL DISCRETE-EVENT SYSTEMS

A. Prediction

Consider a discrete-event system modeled by an MPL

model of the form (10)–(11). We assume that x(k), the state

at event step k, can be measured or estimated using previous

measurements. We can then use (10) – (11) to estimate the

evolution of the output of the system for the input sequence
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u(k), . . . ,u(k+Np −1) (cf. (3)):

ŷ(k+ j|k) =C⊗A⊗ j
⊗ x(k) ⊕

j−1
⊕

i=0

C⊗A⊗ j−i
⊗B⊗u(k+ i) ,

or, in matrix notation (cf. (6)),

ỹ(k) = H ⊗ ũ(k)⊕g(k) (12)

with

H =











C⊗B ε . . . ε
C⊗A⊗B C⊗B . . . ε

...
...

. . .
...

C⊗A⊗
Np−1

⊗B C⊗A⊗
Np−2

⊗B . . . C⊗B











g(k) =













C⊗A

C⊗A⊗2

...

C⊗A⊗
Np













⊗ x(k) ,

where ũ(k) and ỹ(k) are defined by (4)–(5). Note the analogy

between these expressions and the corresponding expressions

for conventional linear time-invariant discrete-time systems.

B. Cost criterion

Just as in conventional MPC we define a cost criterion of

the form

J(k) = Jout(k)+λJin(k)

at event step k. For the tracking error or output cost criterion

Jout and the input cost criterion Jin several criteria are possible

in a discrete-event systems context.

A straightforward translation of the cost criterion used

in conventional MPC systems (with Q the identity matrix)

would yield

Jout(k) =
(

ỹ(k)− r̃(k)
)

T ⊗
(

ỹ(k)− r̃(k)
)

= 2

Np
⊕

j=1

l
⊕

i=1

(

ŷi(k+ j|k)− ri(k+ j)
)

= 2 max
j=1,...,Np

max
i=1,...,l

(

ŷi(k+ j|k)− ri(k+ j)
)

. (13)

This objective function does not force the difference between

ŷ(k+ j|k) and r(k+ j) to be small since there is no absolute

value in (13). Therefore, it is not very useful in practice.

If the due dates r for the finished products are known and

if we have to pay a penalty for every delay, a well-suited

cost criterion is the tardiness:

Jout,tard(k) =
Np

∑
j=1

l

∑
i=1

max(ŷi(k+ j|k)− ri(k+ j),0) .

If we have perishable goods, then we could want to minimize

the differences between the due dates and the actual output

time instants. This leads to

Jout,1(k) =
Np

∑
j=1

l

∑
i=1

|ŷi(k+ j|k)− ri(k+ j)|= ‖ỹ(k)− r̃(k)‖1 .

If we want to balance the output rates, we could consider the

following cost criterion:

Jout,∆(k) =
Np

∑
j=2

l

∑
i=1

|∆2ŷi(k+ j|k)|

where

∆2s(k) = ∆s(k)−∆s(k−1) = s(k)−2s(k−1)+ s(k−2) .

A straightforward translation of the conventional MPC

input cost criterion ũT(k)ũ(k) (where we have taken R equal

to the identity matrix) would lead to

Jin(k) = ũT(k)⊗ ũ(k)

= 2

Np−1
⊕

j=0

m
⊕

i=1

ui(k+ j)

= 2 max
j=0,...,Np−1

max
i=1,...,m

ui(k+ j) ,

i.e., we get a minimization of the input time instants. Since

this could result in input buffer overflows, a better objective

is to maximize the input time instants. For a manufacturing

system, this would correspond to a scheme in which raw

material is fed to the system as late as possible. As a

consequence, the internal buffer levels are kept as low as

possible. This also leads to a notion of stability if we

let instability for the manufacturing system correspond to

internal buffer overflows. So for MPL systems an appropriate

cost criterion is

Jin,2(k) =−ũT(k)ũ(k) .

Note that this is exactly the opposite of the input effort

cost criterion for conventional discrete-time systems. Another

objective function that leads to a maximization of the input

time instants is

Jin,Σ(k) =−
Np

∑
j=1

m

∑
i=1

ui(k+ j−1) .

If we want to balance the input rates, we could take

Jin,∆(k) =
Np−1

∑
j=1

l

∑
i=1

|∆2ui(ik+ j| .

C. Constraints

Just as in conventional MPC we can consider the linear

constraint (8). Furthermore, it is easy to verify that typical

constraints for discrete-event systems such as minimum or

maximum separation between input and output events:

a1(k+ j)6 ∆u(k+ j)6 b1(k+ j) for j = 0, . . . ,Nc−1, (14)

a2(k+ j)6 ∆ŷ(k+ j|k)6 b2(k+ j) for j = 1, . . . ,Np, (15)

or maximum due dates for the output events:

ŷ(k+ j|k)6 r(k+ j) for j = 1, . . . ,Np , (16)

5



can also be recast as a linear constraint of the form (8). The

same holds for the straightforward translation of the linear

constraint (8) into its max-plus-algebraic equivalent

Ac(k)⊗ ũ(k) ⊕ Bc(k)⊗ ỹ(k)6 cc(k) .

This condition can also be recast as a linear constraint of the

form (8).

Since for MPL systems the input and output sequences

correspond to occurrence times of consecutive events, they

should be nondecreasing. Therefore, we should always add

the condition ∆u(k+ j)> 0 for j = 0, . . . ,Np−1 to guarantee

that the input sequences are nondecreasing.

A straightforward translation of the conventional control

horizon constraint would imply that the input should stay

constant from event step k+Nc on, which is not very useful

for MPL systems since there the input sequences should

normally be increasing. Therefore, we change this condition

as follows: the feeding rate should stay constant beyond

event step k+Nc, i.e., ∆u(k+ j) = ∆u(k+Nc − 1) for j =
Nc, . . . ,Np −1, or

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1 . (17)

This condition introduces regularity in the input sequence and

it prevents the buffer overflow problems that could arise when

all resources are fed to the system at the same time instant

as would be implied by the conventional control horizon

constraint (9).

D. The MPL-MPC problem

If we combine the material of previous subsections, we

finally obtain the following problem:

min
ũ(k)

Jout(k)+λJin(k) (18)

subject to

ỹ(k) = H ⊗ ũ(k)⊕g(k) (19)

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) (20)

∆u(k+ j)> 0 for j = 0, . . . ,Np −1 (21)

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1. (22)

This problem will be called the MPL-MPC problem for event

step k. MPL-MPC also uses a receding horizon principle.

V. ALGORITHMS TO SOLVE THE MPL-MPC PROBLEM

A. Nonlinear optimization

In general the problem (18) – (22) is a nonlinear nonconvex

optimization problem: although the constraints (20) – (22) are

convex in ũ and ỹ, the constraint (19) is in general not convex.

So we could use standard multi-start nonlinear nonconvex

local optimization methods to compute the optimal control

policy.

The feasibility of the MPC-MPL problem can be verified

by solving the system of (in)equalities (19) – (22)4. If the

problem is found to be infeasible we can use the same tech-

niques as in conventional MPC and use constraint relaxation

[6].

B. The ELCP approach

Now we discuss an alternative approach which is based on

the Extended Linear Complementarity problem (ELCP) [12].

Consider the ith row of (19) and define Ji = { j |hi j 6= ε}.

We have

ỹi(k) = max
j∈Ji

(hi j + ũ j(k),gi(k)) ,

or, equivalently,

ỹi(k)> hi j + ũ j(k) for j ∈ Ji

ỹi(k)> gi(k)

with the extra condition that at least one inequality should

hold with equality (i.e., at least one residue or slack variable

should be equal to 0):

(ỹi(k)−gi(k)) · ∏
j∈Ji

(ỹi(k)−hi j − ũ j(k)) = 0 . (23)

Hence, (19) can be rewritten as a system of the form

Aelcpỹ(k)+Belcpũ(k)+ celcp(k)> 0 (24)

∏
j∈φi

(Aelcpỹ(k)+Belcpũ(k)+ celcp(k)) j = 0

for i = 1, . . . , lNp (25)

for appropriately defined matrices and vectors Aelcp, Belcp,

celcp, and index sets φi. We can rewrite the linear constraints

(20) – (22) as

Delcp(k)ỹ(k)+Eelcp(k)ũ(k)+ felcp(k)> 0 (26)

Gelcpũ(k)+helcp = 0 . (27)

So the feasible set of the MPC problem (i.e., the set of

feasible system trajectories) coincides with the set of solu-

tions of the system (24) – (27), which is a special case of

an Extended Linear Complementarity Problem (ELCP) [12].

In [12] we have also developed an algorithm to compute

a compact parametric description of the solution set of an

ELCP. In order to determine the optimal MPC policy we

can use nonlinear optimization algorithms to determine for

which values of the parameters the objective function J over

the solution set of the ELCP (24) – (27) reaches its global

minimum. The algorithm of [12] to compute the solution

set of a general ELCP requires exponential execution times,

which that the ELCP approach is not feasible if Nc is large.

4In general this is a nonlinear system of equations but if the constraints
depend monotonically on the output, the feasibility problem can be recast
as a linear programming problem (cf. Theorem 5.2).
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C. Monotonically nondecreasing objective functions

Now consider the relaxed MPL-MPC problem, which

is also defined by (18) – (22) but with the =-sign in (19)

replaced by a >-sign. Note that whereas in the original

problem ũ(k) is the only independent variable, since ỹ(k) can

be eliminated using (19), the relaxed problem has both ũ(k)
and ỹ(k) as independent variables. It is easy to verify that the

set of feasible solutions of the relaxed problem coincides with

the set of solutions of the system of linear inequalities (24),

(26), (27). So the feasible set of the relaxed MPC problem is

convex. Hence, the relaxed problem is much easier to solve

numerically.

A function F : y → F(y) is a monotonically nondecreasing

function if ȳ 6 y̌ implies that F(ȳ) 6 F(y̌). Now we show

that if the objective function J and the linear constraints are

monotonically nondecreasing as a function of ỹ (this is the

case for J = Jout,tard, Jin,2, Jin,Σ, or Jin,∆, and, e.g., (Bc)i j > 0

for all i, j), then the optimal solution of the relaxed problem

can be transformed into an optimal solution of the original

MPC problem. So in that case the optimal MPC policy can

be computed very efficiently. If in addition the objective

function is convex (e.g., J = Jout,tard or Jin,Σ), we finally get

a convex optimization problem.

Remark 5.1 Note that Jin,Σ is a linear function. So for

J = Jin,Σ the problem even reduces to a linear programming

(LP) problem, which can be solved very efficiently. It easy to

verify that for J = Jout,tard the problem can also be reduced

to an LP problem by introducing some additional dummy

variables. ✷

Theorem 5.2: Let the objective function J and mapping

ỹ → Bc(k)ỹ be monotonically nondecreasing functions of

ỹ. Let (ũ∗, ỹ∗) be an optimal solution of the relaxed MPC

problem. If we define ỹ♯ = H ⊗ ũ∗⊕g(k), then (ũ∗, ỹ♯) is an

optimal solution of the original MPC problem.

Proof: First we show that (ũ∗, ỹ♯) is a feasible solution

of the original problem. Clearly, (ũ∗, ỹ♯) satisfies (19), (21)

and (22). Since ỹ∗ > H⊗ ũ∗⊕g(k) = ỹ♯ and since ỹ → Bc(k)ỹ
is monotonically nondecreasing, we have

Ac(k)ũ
∗+Bc(k)ỹ

♯
6 Ac(k)ũ

∗+Bc(k)ỹ
∗
6 cc(k) .

So (ũ∗, ỹ♯) also satisfies the constraint (20). Hence, (ũ∗, ỹ♯)
is a feasible solution of the original problem. Since the set

of feasible solutions of the original problem is a subset

of the set of feasible solutions of the relaxed problem, we

have J(ũ, ỹ) > J(ũ∗, ỹ∗) for any feasible solution (ũ, ỹ) of

the original problem. Hence, J(ũ∗, ỹ♯) > J(ũ∗, ỹ∗). On the

other hand, we have J(ũ∗, ỹ♯) 6 J(ũ∗, ỹ∗) since ỹ♯ 6 ỹ∗ and

since J is a monotonically nondecreasing function of ỹ. As a

consequence, we have J(ũ∗, ỹ♯) = J(ũ∗, ỹ∗), which implies

that (ũ∗, ỹ♯) is an optimal solution of the original MPC

problem.

TABLE I

THE CPU TIME NEEDED TO COMPUTE THE OPTIMAL INPUT SEQUENCE

VECTORS FOR THE EXAMPLE OF SECTION VI FOR Nc = 4,5,6,7. FOR

Nc = 7 WE HAVE NOT COMPUTED THE ELCP SOLUTION SINCE IT

REQUIRES TOO MUCH CPU TIME.

CPU time (s)

ũopt
Nc = 4 Nc = 5 Nc = 6 Nc = 7

ũelcp 5.525 106.3 287789 —

ũnlcon 0.870 1.056 1.319 1.470

ũpenalty 0.826 0.988 1.264 1.352

ũrelaxed 0.431 0.500 0.562 0.634

ũlp 0.029 0.030 0.031 0.032

VI. EXAMPLE

Consider the production system of Example 3.3. Let us

now compare the efficiency of the methods discussed in

Section V when solving one step of the MPC problem

for the objective function J(k) = Jout,tard(k) + Jin,Σ(k) (so

λ = 1) with the additional constraints 2 6 ∆u(k + j) 6 12

for j = 0, . . . ,Nc − 1. We take Nc = 5 and Np = 8. Assume

that k = 0, x(0) = [ 0 0 10 ]T, u(−1) = 0, and r̃(k) =
[ 40 45 55 66 75 85 90 100 ]T.

The objective function J and the linear constraints are

monotonically nondecreasing as a function of ỹ so that

we can apply Theorem 5.2. We have computed a solution

ũelcp obtained using the ELCP method and the ELCP algo-

rithm of [12], a solution ũnlcon using nonlinear constrained

optimization, a solution ũpenalty using linearly constrained

optimization with a penalty function for the nonlinear con-

straints, a solution ũrelaxed for the relaxed MPC problem,

and an LP solution ũlp (cf. Remark 5.1). For the nonlinear

constrained optimization we have used a sequential quadratic

programming algorithm, and for the linear optimization a

variant of the simplex algorithm. All these methods result in

the same optimal input sequence:

{uopt}
7
k=0 = 12,24,35,46,58,70,82,94.

The corresponding output sequence is

{yopt(k)}
8
k=1 = 33,45,56,67,79,91,103,115,

and the corresponding value of the objective function is

J(0) =−381.

In Table I we have listed the CPU time needed to compute

the various input sequence vectors ũ for Nc = 4,5,6,7 on a

Pentium II 300 MHz PC with the optimization routines called

from MATLAB and implemented in C (average values over

10 experiments). For the input sequence vectors that have

to be determined using a nonlinear optimization algorithm

selecting different (feasible) initial points always leads to the

same numerical value of the final objective function (within
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a certain tolerance). Therefore, we have only performed one

run with a random feasible initial point for each of these

cases.

The CPU time for the ELCP algorithm of [12] increases

exponentially as the number of variables increases (see also

Table I). So in practice the ELCP approach cannot be used

for on-line computations if the control horizon or the number

of inputs or outputs are large. In that case one of the other

methods should be used instead. Looking at Table I we see

that the ũlp solution — which is based on Theorem 5.2 and

an LP approach — is clearly the most interesting. For more

results we refer the interested reader to [13].

VII. MPL-MPC: THE PERTURBED CASE

The approach presented in the previous sections can be

extended to the perturbed case as follows. We extend the

noise-free deterministic MPL model (10)–(11) to include

uncertainty, such as modeling errors and disturbances [30],

[31]. Therefore, we consider the following (time-varying)

MPL system:

x(k+1) = A(k)⊗ x(k)⊕B(k)⊗u(k) (28)

y(k) =C(k)⊗ x(k)⊕D(k)⊗u(k) (29)

where A(k), B(k) and C(k) represent uncertain system ma-

trices due to modeling errors or disturbances. Usually fast

changes in the system matrices will be considered as noise

and disturbances, whereas slow changes or permanent errors

are considered as model mismatch. Both features will be

treated in one single framework here. The uncertainty caused

by disturbances and errors in the estimation of physical

variables is gathered in the uncertainty vector e(k). We as-

sume that the uncertainty either is bounded or has stochastic

properties. We also assume that the uncertainty vector e(k)
captures the complete time-varying aspect of the system. We

collect the uncertainty over the interval [k,k+Np −1] in one

vector

ẽ(k) =
[

eT(k) . . . eT(k+Np −1)
]

T .

Now it is easy to verify that the prediction model, i.e., the

prediction of the future outputs for the system (28)–(29) can

be written in the following form5 (cf. (12)):

ỹ(k) = H(ẽ(k))⊗ ũ(k)⊕g(ẽ(k)) . (30)

Now we distinguish between two cases: bounded perturba-

tions and stochastic perturbations.

A. Bounded perturbations

In this case we assume that e(k) is bounded, and/or, in

the case that, e.g., consecutive noise samples e(k) and e(k−
1) are related, that the change ∆e(k) = e(k)− e(k − 1) is

5The full expressions for the matrix H(ẽ(k)) and the vector g(ẽ(k)) are
given in [31].

bounded. This implies that ẽ(k) ∈ Eẽ, with Eẽ a bounded set.

Recall that in MPL-MPC we want to minimize the criterion

J(k) = Jout(k)+λJin(k) ,

where Jout represents the output error and Jin is related to

the input dates. We aim to find the optimal input-output pair

(ũ(k), ỹ(k)) that minimizes J(k), where ỹ(k) and ũ(k) are

related by (30). Note that, in contrast to the noise-free case,

the relation between ũ(k) and ỹ(k) is not unique any longer

in the perturbed case because of the perturbation ẽ(k).
As ỹ(k) and therefore also Jout(k) depends on the pertur-

bation ẽ(k), we therefore introduce a worst-case criterion for

the bounded perturbation case:

Jwc(k) = max
ẽ(k)∈Eẽ

Jout(k)+λJin(k) .

In combination with (30) this leads to the worst-case MPL-

MPC problem at event step k, which is defined as follows:

min
ũ(k),ỹ(k)

Jwc(k) (31)

subject to

ỹ(k) = H(ẽ(k))⊗ ũ(k)⊕g(ẽ(k)) (32)

Ac(k)ũ(k)6 cc(k) (33)

∆u(k+ j)> 0 for j = 0, . . . ,Np −1 (34)

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1. (35)

Note that compared to linear constraint (20) on both inputs

and outputs used in the deterministic, noise-free MPL-MPC

problem (18)–(22) we now only consider linear input con-

straints (i.e., Bc = 0). The following proposition can then be

given for the worst-case MPL-MPC problem:

Proposition 7.1 ([31]): Assume that Jout is a monotoni-

cally nondecreasing, convex function of ỹ and that Jin is

convex in ũ. In that case Jwc(k) is convex in ẽ(k) (for a given

value of ũ(k)) and the worst-case MPC problem is convex

in ũ(k).

B. Stochastic perturbations

In the stochastic perturbation case e(k) is a stochastic

variable. Therefore, we introduce a stochastic cost criterion

Jst(k) = IE[Jout(k)]+λJin(k) ,

where IE[·] denotes the expected value. More specifically, we

could consider, e.g.,

Jst,1(k) =
l

∑
i=1

Np−1

∑
j=0

IE[ηi(k+ j)]−λ
m

∑
i=1

Np−1

∑
j=0

ui(k+ j) (36)

where ηi(k) denotes the ith “tardiness” given by

ηi(k) = max( yi(k)− ri(k) , 0 ) . (37)

This leads to the stochastic MPL-MPC problem:

min
ũ(k),ỹ(k)

Jst(k)
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subject to

ỹ(k) = H(ẽ(k))⊗ ũ(k)⊕g(ẽ(k)) (38)

Ac(k)ũ(k)+Bc(k)IE[ỹ(k)]6 cc(k) (39)

∆u(k+ j)> 0 for j = 0, . . . ,Np −1 (40)

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1. (41)

The following proposition can be given for the stochastic

MPL-MPC problem:

Proposition 7.2 ([30]): Consider the stochastic MPL-

MPC problem with cost criterion (36). Assume the linear

constraints (39) to be monotonically nondecreasing as a

function of IE[ỹ(k)] (i.e., (Bc)i j ≥ 0 for all i, j). In that case

the cost criterion (36) and the constraint (39) become convex

in ũ(k), and so the stochastic MPL-MPC problem will be a

convex problem in ũ(k).
Furthermore, a subgradient of the constraints and a subgra-

dient of the cost criterion can easily be derived (see [30]).

Note that under the monotonicity and convexity conditions

stated in Propositions 7.1 and 7.2 both the worst-case MPL-

MPC problem and the stochastic MPL-MPC problem turn

out to be convex optimization problems. These type of prob-

lems can be solved using reliable and efficient optimization

algorithms based on, e.g., interior point methods [26], [32].

VIII. EXTENSIONS AND RELATED RESEARCH

Tuning rules for MPL-MPC and properties such as stabil-

ity, timing issues, etc. have been discussed in [29]. The MPL-

MPC method derived above can also be extended to MPC

for discrete-event systems with hard and soft synchronization

constraints [14] such as railway networks (where some

connections may be broken — but at a cost — if delays

become too large), or logistic systems.

Above we have presented an MPC framework for MPL

discrete-event systems. Several other authors have already

developed methods to compute optimal control sequences

for MPL discrete-event systems [2], [5], [21], [23]–[25].

Compared to these methods one of the main advantages of

the MPL-MPC approach is that it allows to include general

linear inequality constraints on the inputs and outputs of the

system such as (20), or even simple constraints of the form

(14) or (15).

IX. CONCLUSIONS

In this paper we have presented an overview of some

results in connection with MPC for some tractable classes

of discrete-event systems. In the sequel paper [15] we will

present MPC for some tractable classes of hybrid systems.
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