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Abstract— Model predictive control (MPC) is a very popu-
lar controller design method in the process industry. A key
advantage of MPC is that it can accommodate constraints on
the inputs and outputs. Usually MPC uses linear or nonlinear
discrete-time models. In this paper and its companion paper
(“Part I: Discrete-Event Systems”) we give an overview of
some results in connection with MPC approaches for some
tractable classes of discrete-event systems and hybrid systems.
In general the resulting optimization problems are nonlinear
and nonconvex. However, for some classes tractable solution
methods exist.

After having discussed MPC for max-plus-linear discrete-
event systems in the companion paper, we now discuss MPC for
some classes of hybrid systems, viz. mixed logical dynamical sys-
tems, max-min-plus-scaling systems, and continuous piecewise-
affine systems.

I. INTRODUCTION

We assume that the reader either has read the introduction

to model predictive control (MPC) given in the companion

paper [26], or is familiar with the basics of MPC, i.e., a

model-based on-line control approach with the following in-

gredients: a prediction horizon, a receding horizon procedure,

and a regular update of the model and re-computation of

the optimal control input. More extensive information on

MPC can be found in [1], [8], [16], [20], [32], [46] and

the references therein.

Conventional MPC uses discrete-time models (i.e., mod-

els consisting of a system of difference equations). In the

companion paper [26] we have already discussed MPC for

some tractable classes of discrete-event systems. In this paper

we propose some extensions and adaptations of the MPC

framework to classes of hybrid systems that ultimately result

in “tractable” control approaches.

This paper is organized as follows. In Section II we

present hybrid systems and some specific subclasses of

hybrid systems: piecewise affine systems, mixed logical

dynamical systems, and max-min-plus-scaling systems. An

MPC approach for these classes of hybrid systems is then

presented in Sections III and IV.

For easy reference we list the abbreviations used in this

paper and the companion paper [26]:

ELCP : extended linear complementarity problem

LP : linear programming

MIQP : mixed integer quadratic programming

MLD : mixed logical dynamical

MMPS : max-min-plus-scaling

MPC : model predictive control

MPL : max-plus linear

PWA : piecewise affine

QP : quadratic programming

SQP : sequential quadratic programming

II. HYBRID SYSTEMS

A. General hybrid systems

Hybrid systems arise throughout business and industry

in areas such as interactive distributed simulation, traffic

control, plant process control, aircraft, robotics, manufactur-

ing, and automotive applications. There are several possible

definitions of hybrid systems. For some authors a hybrid

system is a coupling of a continuous-time or analog system

and a discrete-time or digital system (in practice often a

continuous-time, analog plant and an asynchronous, digital

controller). We shall use a somewhat different definition.

For us, hybrid systems arise from the interaction between

continuous-variable systems1 and discrete-event systems. In

general we could say that a hybrid system can be in one

of several modes of operation, whereby in each mode the

behavior of the system can be described by a system of

difference or differential equations, and that the system

switches from one mode to another due to the occurrence of

events (see Figure 1). The mode transitions may be caused

by an external control signal, by an internal control signal

(if the controller is already included in the system under

consideration), or by the dynamics of the system itself, i.e.,

when a certain boundary in the state space is crossed. At

a switching time instant there may be a reset of the state

(i.e., a jump in the values of the state variables) and/or the

dimension of the state may change.

There are many modeling and analysis techniques for

hybrid systems. Typical modeling techniques are predicate

calculus, real-time temporal logics, timed communicating

1Continuous-variable systems are systems the behavior of which can be
described by a system of difference or differential equations.

1



x(k+1) = f1(x(k),u(k))

y(k) = g1(x(k),u(k))

x(k+1) = f2(x(k),u(k))

y(k) = g2(x(k),u(k))

x(k+1) = f3(x(k),u(k))

y(k) = g3(x(k),u(k))

x(k+1) = f4(x(k),u(k))

y(k) = g4(x(k),u(k))

x(k+1) = fN(x(k),u(k))

y(k) = gN(x(k),u(k))

Fig. 1. Schematic representation of a hybrid system with N modes. In
each mode the behavior of the hybrid system is described by a system of
difference (or differential) equations. The system goes from one mode to
another due to the occurrence of an event (this is indicated by the arrows).

sequential processes, hybrid automata, timed automata, timed

Petri nets, and object-oriented modeling languages such as

Modelica, SHIFT or Chi. Current analysis techniques for

hybrid systems include formal verification, perturbation anal-

ysis, and computer simulation. Furthermore, special mathe-

matical analysis techniques have been developed for specific

subclasses of hybrid systems. We shall only discuss some of

these methods. For more information on the other methods

the interested reader is referred to [3], [4], [39], [44], [47],

[57], [59] and the references cited therein.

An important trade-off in the context of modeling and

analysis of hybrid systems is that of modeling power versus

decision power: the more accurate the model is the less

we can analytically say about its properties. Furthermore,

many analysis and control problems lead to computationally

hard problems for even the most elementary hybrid systems

[9]. As tractable methods to analyze general hybrid systems

are not available, several authors have focused on special

subclasses of hybrid dynamical systems for which analysis

and/or control design techniques are currently being devel-

oped. Some examples of such subclasses are:

• mixed logical dynamical (MLD) systems [5], [6],

• piecewise-affine (PWA) systems [56],

• linear complementarity systems [38], [58],

• extended linear complementarity systems [37],

• max-min-plus scaling (MMPS) systems [21],

• timed automata [2],

• timed Petri nets [48], [53].

In this paper we will consider PWA systems, MLD sys-

tems, and MMPS systems. Note that some of these classes

(in particular MLD, PWA, (extended) linear complementarity

and constrained MMPS systems) are equivalent [37], possibly

under mild additional assumptions related to well-posedness

and boundedness of input, state, output or auxiliary vari-

ables. Each subclass has its own advantages over the others.

E.g., stability criteria were proposed for PWA systems [41],

analysis and control techniques for PWA systems in [11],

[29], [40], control and verification techniques for MLD

hybrid models [5]–[7] and for MMPS systems [21], [24],

[25], and conditions of existence and uniqueness of solution

trajectories (well-posedness) for linear complementarity sys-

tems [38], [58]. So it really depends on the application which

of these classes is best suited.

In the next subsections we will discuss some tractable

classes of hybrid systems, for which MPC control design

methods are available as we will see in Sections III and IV.

Note that — in contrast to the companion paper [26],

which dealt with discrete-event systems, and where k was

an event step counter k, — in this paper the counter k is

either a sample step counter (in case of systems with a

time-driven behavior) or an event counter (for event-driven

systems). Furthermore, the inputs, outputs, and states are not

necessarily time instants any longer as was the case in the

companion paper [26].

B. PWA systems

PieceWise Affine (PWA) systems [56] are described by

x(k+1)=Aix(k)+Biu(k)+ fi

y(k)=Cix(k)+Diu(k)+gi
for

[

x(k)
u(k)

]

∈ Ωi, (1)

for i = 1, . . . ,N where Ω1, . . . ,ΩN are convex polyhedra

(i.e., given by a finite number of linear inequalities) in

the input/state space. PWA systems have been studied by

several authors (see [5], [6], [19], [40]–[43], [56] and the

references therein) as they form the “simplest” extension of

linear systems that can still model nonlinear and nonsmooth

processes with arbitrary accuracy and that are capable of

handling hybrid phenomena.

Example 2.1 As a very simple example of a PWA model

we can consider an integrator with upper saturation:

x(k+1) =

{

x(k)+u(k) if x(k)+u(k)6 1

1 if x(k)+u(k)> 1
(2)

y(k) = x(k) . (3)

If we rewrite the model (2)–(3) as in (1), then we have

Ω1 =
{

(x(k),u(k)) ∈ R
2
∣

∣ x(k)+u(k)6 1
}

Ω2 =
{

(x(k),u(k)) ∈ R
2
∣

∣ x(k)+u(k)> 1
}

A1 = 1, A2 = 0, B1 = 1, B2 = 0

f1 = 0, f2 = 1, C1 =C2 = 1

D1 = D2 = 0, g1 = g2 = 0 . ✷

C. MLD systems

This subsection is based on the seminal paper [6].
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TABLE I

TRUTH TABLE.

X1 X2 X1 ∧X2 X1 ∨X2 ∼X1 X1 ⇒ X2 X1 ⇔ X2 X1 xor X2

T T T T F T T F

T F F T F F F T

F T F T T T F T

F F F F T T T F

1) Preliminaries: First, we will provide some tools to

transform logical statements involving continuous variables

into mixed-integer linear inequalities.

We consider logical statements that will be represented

using the notation Xi, such as, e.g., X1: “x 6 0”, or X2:

“temperature is cold”. Then Xi is called a literal, and it has

a truth value of either “T” (true) or “F” (false). We use the

following notation for boolean connectives: “∧” (and), “∨”

(or), “∼” (not), “⇒” (implies), “⇔” (if and only if ), “xor”

(exclusive or). These connectives are defined by means of the

truth table given in Table I, and they satisfy several properties

(see, e.g., [18]), such as:

X1 ⇒ X2 is the same as ∼X1 ∨X2 (4)

X1 ⇒ X2 is the same as ∼X2 ⇒∼X1 (5)

X1 ⇔ X2 is the same as (X1 ⇒ X2)∧ (X2 ⇒ X1) . (6)

One can associate with a literal Xi a logical variable δi ∈
{0,1} that has a value of either 1 if Xi = T, or 0 if

Xi = F. A propositional logic problem, where a statement

X must be proved to be true given a set of (compound)

statements involving literals X1, . . . ,Xn, can thus be solved by

means of an integer linear program, by suitably translating

the original compound statements into linear inequalities

involving logical variables δ1, . . . ,δn. In fact, the following

propositions and linear constraints can easily be seen to be

equivalent [60, p. 176]:

X1 ∧X2 is equivalent to δ1 = δ2 = 1 (7)

X1 ∨X2 is equivalent to δ1 +δ2 > 1 (8)

∼X1 is equivalent to δ1 = 0 (9)

X1 ⇒ X2 is equivalent to δ1 −δ2 6 0 (10)

X1 ⇔ X2 is equivalent to δ1 −δ2 = 0 (11)

X1 xorX2 is equivalent to δ1 +δ2 = 1 . (12)

We can use this computational inference technique to model

logical parts of processes (on/off switches, discrete mecha-

nisms, combinational and sequential networks), and heuristic

knowledge about plant operation as integer linear inequali-

ties. In this way we can construct models of hybrid systems.

As we are interested in systems which contain both

logic and continuous dynamics, we wish to establish a

link between the two worlds. As will be shown next, we

end up with mixed-integer linear inequalities, i.e., linear

inequalities involving both continuous variables x ∈ R
n and

logical variables δ ∈ {0,1}nδ .

Consider the statement X
def
= [ f (x)6 0], where f : Rn →R.

Assume that x ∈ X , where X is a given bounded set, and

define

M = max
x∈X

f (x), m = min
x∈X

f (x) . (13)

Theoretically, an over-estimate (under-estimate) of M (m)

suffices for our purpose. However, more realistic estimates

provide computational benefits [60, p. 171]. Now it is easy

to verify that

[ f (x)6 0]∧ [δ = 1] is true if and only if

f (x)−δ 6−1+m(1−δ ) (14)

[ f (x)6 0]∨ [δ = 1] is true if and only if

f (x)6 Mδ (15)

∼[ f (x)6 0] is true if and only if

f (x)> εtol , (16)

where εtol is a small tolerance (typically the machine preci-

sion), beyond which the constraint is regarded as violated.

By (4) and (15), it also follows that

[ f (x)6 0]⇒ [δ = 1] is true if and only if

f (x)> ε +(m− ε)δ (17)

[ f (x)6 0]⇔ [δ = 1] is true if and only if
{

f (x)6 M(1−δ )

f (x)> ε +(m− ε)δ .
(18)

Finally, we report procedures to transform products of

logical variables, and of continuous and logical variables,

in terms of linear inequalities by introducing some auxiliary

variables [60, p. 178]. The product term δ1δ2 can be replaced

by an auxiliary logical variable δ3 = δ1δ2. Then, [δ3 = 1]⇔
[δ1 = 1]∧ [δ2 = 1], and therefore

δ3 = δ1 δ2 is equivalent to











−δ1 +δ3 6 0

−δ2 +δ3 6 0

δ1 +δ2 −δ3 6 1 .

Moreover, the term δ f (x), where f : Rn →R and δ ∈ {0,1},

can be replaced by an auxiliary real variable y = δ f (x) that

satisfies

[δ = 0]⇒ [y = 0], [δ = 1]⇒ [y = f (x)] .
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Therefore, by defining M and m as in (13), y = δ f (x) is

equivalent to

y 6 Mδ (19)

y > mδ (20)

y 6 f (x)−m(1−δ ) (21)

y > f (x)−M(1−δ ) . (22)

2) MLD systems: The results of the previous section

will now be used now to express relations describing the

evolution of systems where physical laws, logic rules, and

operating constraints are interdependent. Before giving a

general definition, we first consider an example.

Example 2.2 Consider the following PWA system:

x(k+1) =

{

0.8x(k)+u(k) if x(k)> 0

−0.8x(k)+u(k) if x(k)< 0
(23)

where x(k) ∈ [−10,10], and u(k) ∈ [−1,1]. The condition

x(k)> 0 can be associated with a binary variable δ (k) such

that

[δ (k) = 1]⇔ [x(k)> 0] .

By using the transformation (18), this equation can be

expressed by the inequalities

−mδ (k)6 x(k)−m

−(M+ ε)δ 6−x− ε ,

where M =−m = 10, and ε is a small positive scalar. Then

(23) can be rewritten as

x(k+1) = 1.6δ (k)x(k)−0.8x(k)+u(k) .

By defining a new variable z(k) = δ (k)x(k), which, by (19)–

(22), can be expressed as

z(k)6 Mδ (k) (24)

z(k)> mδ (k) (25)

z(k)6 x(k)−m(1−δ (k)) (26)

z(k)> x(k)−M(1−δ (k)) , (27)

the evolution of system (23) is given by the linear state update

equation

x(k+1) = 1.6z(k)−0.8x(k)+u(k)

subject to the linear constraints (24)–(27). ✷

The example above can be generalized by describing systems

through the following linear relations:

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k) (28)

y(k) =Cx(k)+D1u(k)+D2δ (k)+D3z(k) (29)

E1x(k)+E2u(k)+E3δ (k)+E4z(k)6 g5, (30)

where x(k) = [ xT
r (k) xT

b (k) ]
T with xr(k) ∈ R

nr and xb(k) ∈
{0,1}nb (y(k) and u(k) have a similar structure), and where

z(k)∈R
rr and δ (k)∈{0,1}rb are auxiliary variables. Systems

of the form (28)–(30) are called Mixed Logical Dynamical

(MLD) systems.

The MLD formalism allows specifying the evolution of

the continuous variables (through linear dynamic equations),

the evolution of the discrete variables (through propositional

logic statements and automata), and also the mutual inter-

action between the two. As explained above the key idea

of the approach consists of embedding the logic part in the

state equations by transforming boolean variables into 0-1

integers, and by expressing the relations as mixed-integer

linear inequalities. MLD systems are therefore capable of

modeling a broad class of systems, such as PWA systems,

linear hybrid systems, finite state machines, (bi)linear sys-

tems with discrete inputs, etc. [6].

Remark 2.3 It is assumed that for all x(k) with xb(k) ∈
{0,1}nb , all u(k) with ub(k)∈ {0,1}mb , all z(k)∈R

rr , and all

δ (k) ∈ {0,1}rb satisfying (30) it holds that x(k+1) and y(k)
determined from (28)–(29) are such that xb(k+1) ∈ {0,1}nb

and yb(k) ∈ {0,1}lb . This is without loss of generality, as we

can take binary components of states and outputs (if any) to

be auxiliary variables as well (see the proof of Proposition

1 of [5]). ✷

D. MMPS systems

In [25] a class of discrete-event systems and hybrid

systems has been introduced that can be modeled using the

operations maximization, minimization, addition and scalar

multiplication. Expressions that are built using these opera-

tions are called Max-Min-Plus-Scaling (MMPS) expressions.

Definition 2.4: An MMPS expression f of the variables

x1, . . . , xn is defined by the grammar2

f := xi|α|max( fk, fl)|min( fk, fl)| fk + fl |β fk (31)

with i ∈ {1,2, . . . ,n}, α , β ∈ R, and where fk, fl are again

MMPS expressions.

An example of an MMPS expression is, e.g., 3x1−8x2+9+
max(min(3x1,−9x2),−x2 −3x3).

Consider now systems that can be described by

x(k+1) = Mx(x(k),u(k),d(k)) (32)

y(k) = My(x(k),u(k),d(k)), (33)

where Mx, My are MMPS expressions in terms of the

components of x(k), u(k) and the auxiliary variables d(k),
which are all real-valued. Such systems will be called MMPS

systems. If in addition, we have a condition of the form

Mc(x(k),u(k),d(k))6 c(k) ,

with Mc an MMPS expression, we speak about constrained

MMPS systems. A typical example of an (unconstrained)

MMPS is a traffic-signal controlled intersection [21].

2The symbol | stands for “or”, and the definition is recursive.
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Example 2.5 It is easy to verify that if we recast the PWA

model (2)–(3) of Example 2.1 into an MMPS model we

obtain

x(k+1) = min(x(k)+u(k),1)

y(k) = x(k) . ✷

E. Equivalence between continuous PWA systems and

MMPS systems

In [37] it has been shown that PWA systems, MLD

systems and constrained MMPS systems are equivalent under

mild additional assumptions related to well-posedness and

boundedness of input, state, output or auxiliary variables.

Now we consider another equivalence between continuous

PWA systems and (unconstrained) MMPS systems in more

detail as it will be the basis for the MPC approach derived

in Section IV below.

A function f : Rn → R is said to be a continuous PWA

function if and only if the following conditions hold [19]:

1) The domain space R
n is divided into a finite number

of polyhedral regions R(1), . . . ,R(N).

2) For each i ∈ {1, . . . ,N}, f can be expressed as

f (x) = αT
(i)x+β(i) (34)

for any x ∈ R(i) with α(i) ∈ R
n and β(i) ∈ R.

3) f is continuous on any boundary between two regions.

A continuous PWA system is a system of the form

x(k+1) = Px(x(k),u(k)) (35)

y(k) = Py(x(k),u(k)) , (36)

where Px and Py are vector-valued continuous PWA func-

tions. Note that the main difference with the PWA systems

introduced in Section II-B is that now we require the PWA

functions to be continuous on the boundary between the

regions that make up the partition of the domain.

Theorem 2.6 ([34], [51]): If f is a continuous PWA func-

tion of the form (34), then there exist index sets I1, . . . , Iℓ ⊆
{1, . . . ,N} such that

f = max
j=1,...,ℓ

min
i∈I j

(αT
(i)x+β(i)) .

From the definition of MMPS functions it follows that (see

also [34], [51]):

Lemma 2.7: Any MMPS function is also a continuous

PWA function.

From Theorem 2.6 and Lemma 2.7 it follows that con-

tinuous PWA systems and (unconstrained) MMPS systems

are equivalent, i.e., for a given continuous PWA model there

exists an MMPS model (and vice versa) such that the input-

output behavior of both models coincides.

Corollary 2.8: Continuous PWA models and (uncon-

strained) MMPS models are equivalent.

Note that this is an extension of the results of [37], which

prove an equivalence between (not necessarily continuous)

PWA models and MMPS models, but there some extra

auxiliary variables and some additional algebraic MMPS

constraints between the states, the inputs and the auxiliary

variables were required to transform the PWA model into an

MMPS model.

III. MPC FOR MLD SYSTEMS3

A. The MLD-MPC problem

An important control problem for MLD systems is to

stabilize the system to an equilibrium state or to track a

desired reference trajectory. In general finding a control law

that attains these objectives for an MLD system is not an

easy task, as in general MLD systems are neither linear4

nor even smooth. MPC provides a successful tool to perform

these task, as will be shown next. For the sake of brevity we

will concentrate on the stabilization to an equilibrium state.

Consider the MLD system (28)–(30) and an equilibrium

state/input/output triple (xeq,ueq,yeq), and let (δeq,zeq) be

the corresponding pair of auxiliary variables. Let x̂(k+ j|k)
denote the estimate of the state x at sample step k+ j based

on the information available at sample step k. In a similar

way we also define ŷ(k+ j|k), δ̂ (k+ j|k), and ẑ(k+ j|k). Now

we consider the MLD-MPC problem at sample step k with

objective function

J(k) =
Np

∑
j=1

‖x̂(k+ j|k)− xeq‖
2
Qx

+‖u(k+ j−1)−ueq‖
2
Qu
+

‖ŷ(k+ j|k)− yeq‖
2
Qy

+‖δ̂ (k+ j−1|k)−δeq‖
2
Qδ

+

‖ẑ(k+ j−1|k)− zeq‖
2
Qz

where Qu, Qx are positive definite matrices, and Qy, Qδ , Qz

are nonnegative definite matrices. Furthermore, in addition to

the MLD system equations we have the end-point condition

x̂(k+Np|k) = xeq ,

and possibly also a control horizon constraint5 of the form

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1.

Now we have:

Theorem 3.1 ([6]): Consider an MLD system (28)–(30)

and an equilibrium state/input/output triple (xeq,ueq,yeq), and

let (δeq,zeq) be the corresponding pair of auxiliary variables.

Assume that the initial state x(0) is such that a feasible

solution of the MLD-MPC problem exists for sample step 0.

The input signal resulting from applying the optimal MLD-

MPC input signal in a receding horizon approach stabilizes

3Also this section is based on [6].
4Due to the integer constraints δi ∈{0,1}, the linear inequality (30) results

in a nonlinear relation between δ and x, u, and between z and x, u.
5While in other contexts introducing a control horizon constraint amounts

to hugely down-sizing the optimization problem at the price of a reduced
performance, for MLD systems the computational gain is only partial, since

all the (auxiliary) variables δ̂ (k+ ℓ|k) and ẑ(k+ ℓ|k) for ℓ = Nc, . . . ,Np −1
remain in the optimization.
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the MLD system in the sense that

lim
k→∞

x(k) = xeq , lim
k→∞

‖y(k)− yeq‖Qy = 0 ,

lim
k→∞

u(k) = ueq , lim
k→∞

‖δ (k)−δeq‖Qδ
= 0 ,

lim
k→∞

‖z(k)− zeq‖Qz = 0 .

B. Algorithms for the MLD-MPC optimization problem

Let us now show that the MLD-MPC problem can be

recast as a mixed integer quadratic programming (MIQP)

problem. For the MLD case using successive substitution for

(28) results in the following prediction equation for the state:

x̂(k+ j|k) = A jx(k)+

j−1

∑
i=0

A j−i
(

B1u(k+ i)+B2δ (k+ i)+B3z(k+ i) .

For ŷ(k+ j|k) we have a similar expression. Now we define

ũ(k) =
[

uT(k) . . . uT(k+Np −1)
]

T

ỹ(k) =
[

ŷT(k+1|k) . . . ŷT(k+Np|k)
]

T ,

and in similar way also δ̃ (k) and z̃(k). If we define

Ṽ (k) =
[

ũT(k) ỹT(k) δ̃ T(k) z̃T(k)
]T

,

we obtain the following equivalent formulation for the MLD-

MPC problem:

min
Ṽ (k)

Ṽ T(k)S1Ṽ (k)+2(S2 + xT(k)S3)Ṽ (k) (37)

subject to F1Ṽ (k)6 F2 +F3x(k) , (38)

for appropriately defined matrices S1, S2, S3, F1, F2, F3.

Note that Ṽ (k) contains both real-valued and integer-valued

components. As the objective function is quadratic, the

problem (37)–(38) is an MIQP problem.

MIQP problems are classified as NP-hard [33], [55], which

— loosely speaking — means that, in the worst case, the

solution time grows exponentially with the problem size.

Several algorithmic approach have been applied successfully

to medium and large-size application problems [31], the

four major ones being cutting plane methods, decomposition

methods, logic-based methods, and branch-and-bound meth-

ods. In [6] the authors use a branch-and-bound method as

several authors seems to agree on the fact that branch-and-

bound methods are the most successful for mixed integer

programming problems [30].

As described by [6], [30], the branch-and-bound algo-

rithm for MIQP consists of solving and generating new

quadratic programming (QP) problems in accordance with

a tree search, where the nodes of the tree correspond to

QP subproblems. The QP subproblems involve real-valued

variables only, and are thus efficiently solvable using a

modified simplex method or an interior point method [50],

[52], [61].

For a worked example of the MLD-MPC approach we

refer the interested reader to [6].

IV. MPC FOR CONTINUOUS PWA AND MMPS SYSTEMS

In the previous section we have already discussed how

the MPC problem for MLD systems (and thus also PWA

systems) can be recast as an MIQP problem. In this section

we will define the MMPS-MPC problem and show that for

(unconstrained) MMPS systems, and thus also for continuous

PWA systems, the MPC problem can be transformed into

solving a sequence of real (so not integer!) linear program-

ming (LP) problems. The approach we propose is based on

canonical forms for MMPS functions, which are introduced

below, and it is similar to the cutting-plane algorithm for

convex optimization problems.

A. Canonical forms of MMPS functions

Theorem 4.1: Any MMPS function f : Rn → R can be

rewritten in the min-max canonical form

f = min
i=1,...,K

max
j=1,...,ni

(αT
(i, j)x+β(i, j)) (39)

or in the max-min canonical form

f = max
i=1,...,L

min
j=1,...,mi

(γT
(i, j)x+δ(i, j)) (40)

for some integers K, L, n1, . . . ,nK , m1, . . . ,mL, vectors

α(i, j),γ(i, j), and real numbers β(i, j),δ(i, j).
Proof: We will only sketch the proof of the theorem

(see [28] for the full proof). Moreover, we only consider the

min-max canonical form since the proof for the max-min

canonical form is similar.

It is easy to verify that if fk and fl are affine functions, then

the functions that result from applying the basic constructors

of an MMPS function (max, min, +, and scaling — cf. (31))

are in min-max canonical form6.

Now we use a recursive argument that consists in showing

that if we apply the basic constructors of an MMPS function

to two (or more) MMPS functions in min-max canonical

form, then the result can again be transformed into min-max

canonical form. Consider two MMPS functions f and g in

min-max canonical form7: f = min(max( f1, f2),max( f3, f4))
and g = min(max(g1,g2),max(g3,g4)). Using the following

properties (with α,β ,γ ,δ ∈ R):

• minimization is distributive w.r.t. maximization, i.e.,

min
(

α,max(β ,γ)
)

= max
(

min(α,β ),min(α,γ)
)

. So

min
(

max(α,β ),max(γ ,δ )
)

=

max
(

min(α,γ),min(α,δ ),min(β ,γ),min(β ,δ )
)

;

• the max operation is distributive w.r.t. min. Hence,

max
(

min(α,β ),min(γ ,δ )
)

=

6We allow “void” min or max statements of the form min(s) or max(s),
which by definition are equal to s for any expression s. Alternatively, we
can write min(s,s) or max(s,s).

7For the sake of simplicity we only consider two min-terms in f and g,
each of which consists of the maximum of two affine functions. However,
the proof also holds if more terms are considered.
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min
(

max(α,γ),max(α,δ ),max(β ,γ),max(β ,δ )
)

;

• min(α,β )+min(γ ,δ )=min(α + γ ,α +δ ,β + γ ,β +δ )

max(α,β )+max(γ ,δ )=max(α+γ ,α+δ ,β +γ ,β +δ )

max(α,β ) =−min(−α,−β ) ;

• if ρ ∈ R is nonnegative, then

ρ max(α,β ) = max(ρα,ρβ )

ρ min(α,β ) = min(ρα,ρβ ) ;

it can be shown that max( f ,g), min( f ,g), f +g and β f can

again be written in min-max canonical form.

B. The MMPS-MPC problem

We can use the deterministic model (32)–(33) either as

a model of an MMPS system, as the equivalent model of a

continuous PWA system, or as an approximation of a general

smooth nonlinear system. Note that we do not include model-

ing errors or uncertainty in the model. However, since MPC

uses a receding finite horizon approach, we can regularly

update the model and the state estimate as new information

and measurements become available.

We can make an estimate ŷ(k+ j|k) of the output of the

system (32)–(33) at sample step k + j based on the state

x(k) and the future input sequence u(k), . . . ,u(k + j − 1).
Using successive substitution, we obtain an expression of

the following form:

ŷ(k+ j|k) = Fj(x(k),u(k), . . . ,u(k+ j−1))

for j = 1, . . . ,Np. Clearly, ŷ(k+ j|k) is an MMPS function of

x(k),u(k), . . . ,u(k+ j−1).
In this section we consider the following output and input

cost functions (see also Section IV-B of [26]):

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1 , Jin,1(k) = ‖ũ(k)‖1 , (41)

Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞ , Jin,∞(k) = ‖ũ(k)‖∞ . (42)

Since we have |x| = max(x,−x) for all x ∈ R, it is easy to

verify that these cost functions are also MMPS functions.

Just as in conventional MPC and in MPC for max-

plus-linear discrete-event systems (cf. [26]), we can define

(non)linear constraints

Cc(k, ũ(k), ỹ(k))6 0 , (43)

or

Ac(k)ũ(k)+Bc(k)ỹ(k)6 cc(k) , (44)

and a control horizon constraint

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1, (45)

or

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1 . (46)

This then results in the MMPS-MPC problem.

C. Algorithms for the MMPS-MPC optimization problem

1) Nonlinear or ELCP optimization: In general the

MMPS-MPC optimization problem is a nonlinear, nonconvex

optimization problem. Some of the methods discussed in

Section V of the companion paper [26] can also be used

to solve the MMPS-MPC optimization problem: we can

use multi-start nonlinear optimization based on sequential

quadratic programming (SQP) [10], [52], or we can use

a method based on the extended linear complementarity

problem (ELCP) [23]. However, both methods have their

disadvantages.

If we use the SQP approach, then we usually have to

consider a large number of initial starting points and perform

several optimization runs to obtain (a good approximation of)

the global minimum. In addition, the objective functions that

appear in the MMPS-MPC optimization problem are non-

differentiable and PWA (if we use the cost criteria given in

(41)–(42)), which makes the SQP algorithm less suitable for

them.

The main disadvantage of the ELCP approach is that the

execution time of this algorithm increases exponentially as

the size of the problem increases. This implies that this

approach is not feasible if Nc or the number of inputs and

outputs of the system are large.

An alternative option consists in transforming the MMPS

system into an MLD system since (constrained) MMPS

systems are equivalent to MLD systems [37]. The main dif-

ference between MLD-MPC and MMPS-MPC is that MLD-

MPC requires the solution of mixed integer-real optimization

problems. In general, these are also computationally hard

optimization problems.

Now we will present another method to solve the MMPS-

MPC optimization problem that is similar to the cutting-plane

method used in convex optimization [12].

2) An LP-based algorithm: We assume that the cost cri-

teria given in (41)–(42) are used8. Recall that these objective

functions (and any linear combination of them) are MMPS

functions. The same holds for the estimate of future output

ỹ(k). So if we substitute ỹ(k) in the expression for J(k),
we finally obtain an MMPS function of ũ(k) as objective

function. From Theorem 4.1 it follows that this objective

function can be written in min-max canonical form as follows

(where — for the sake of simplicity of notation — we drop

the index k):

J = min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j))

for appropriately defined integers ℓ, n1, . . . ,nℓ, vectors α(i, j)

and integers β(i, j). Note that in general the expression ob-

tained by straightforwardly applying the manipulations of

the proof of Theorem 4.1 will contain a large number of

8The result below also holds for any other cost criterion that is an
MMPS function of ỹ(k) and ũ(k). So it follows from Theorem 2.6 that
any continuous PWA norm function can also be used.
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affine terms αT
(i, j)ũ+ β(i, j). However, many of these terms

are redundant9, and can thus be removed. This reduces the

number of affine terms. Also note that the (computationally

intensive) transformation into canonical form only has to

be performed once — provided that we explicitly consider

all terms that depend on k as additional variables when

performing the transformation, — and that it can be done

off-line.

The derivation below is similar to the cutting-plane al-

gorithm for convex optimization (see, e.g., [12]). Hence, it

requires constraints that are linear (or convex) in ũ. Note

that the control horizon constraints (45) or (46) satisfy this

condition. However, even if the original MPC constraint (43)

is linear in ũ(k) and ỹ(k), then in general this constraint is

not linear any more after substitution of ỹ(k). Therefore, from

now on we assume that there are only linear10 constraints on

the input ũ(k):

Pũ+q > 0 . (47)

In practice, constraints of the form (47) occur if we have to

guarantee that the control signal ũ(k) or the control signal

rate ∆ũ(k) stay within certain bounds. Note that in general P

and q may depend on x(k) and k, but for the sake of simplicity

of notation we do not explicitly indicate this dependence in

this paper.

To obtain the optimal MMPS-MPC input signal at sample

step k, we have to solve an optimization problem of the

following form:

min
ũ

min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 ,

or, equivalently,

min
i=1,...,ℓ

min
ũ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j)) (48)

subject to Pũ+q > 0 . (49)

Now let i ∈ {1, . . . , ℓ} and consider

min
ũ

max
j=1,...,ni

(αT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 .

It is easy to verify that this problem is equivalent to the

following LP problem:

min t (50)

subject to t > αT
(i, j)ũ+β(i, j) for j = 1, . . . ,ni (51)

Pũ+q > 0 . (52)

9E.g., since they appear twice, or since there are other terms in the max
(min) expression that are always larger (smaller) than the given term.

10The optimization algorithm used below, which is based on the cutting
plane algorithm for convex optimization, can also deal with convex con-
straints. So we can also allow convex constraints instead of (47).

This LP problem can be solved efficiently using (variants of)

the simplex method or an interior-point algorithm (see, e.g.,

[50], [61]).

To obtain the solution of (48)–(49), we solve (50)–(52) for

i= 1, . . . , ℓ and afterward we select the solution ũ
opt

(i)
for which

max
j=1,...,ni

(αT
(i, j)ũ

opt

(i)
+β(i, j)) is the smallest11. This results in an

algorithm to solve the MMPS-MPC problem that is more

efficient than the SQP or the ELCP approach.

For a worked example of the MMPS-MPC approach we

refer the interested reader to [27].

V. RELATED WORK IN CONNECTION WITH MPC FOR

HYBRID SYSTEMS

A similar approach as the one derived in Section V-C of the

companion paper [26], where we showed that for monoton-

ically nondecreasing objective functions and constraints the

MPC optimization problem can be recast as convex or linear

optimization problem, can also be applied to MPC for first-

order hybrid systems with saturation [21], [22] (an example

of these systems is a traffic-signal controlled intersection).

The perturbed MMPS-MPC case is considered in [49].

Note that MPC is related to optimal control. In this context,

optimal control of a classes of manufacturing systems is

considered in [17]. Other methods for optimal control of

hybrid systems are presented in [13]–[15], [35], [36], [45],

[54].

VI. CONCLUSIONS

In this paper and its companion paper [26] we have

presented an overview of some results in connection with

MPC for some tractable classes of discrete-event systems

and hybrid systems: max-plus-linear discrete-event systems,

mixed logical dynamical systems, max-min-plus-scaling sys-

tems, and continuous piecewise-affine systems.

Extension of the MPC approach to other tractable classes

of discrete-event systems and hybrid systems, improving

the computational complexity, and searching for good and

efficient approximations and solution methods are among the

major current research topics in this field.
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