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Model predictive control for perturbed continuous piecewise affine

systems with bounded disturbances

I. Necoara, B. De Schutter, T.J.J. van den Boom, J. Hellendoorn

Abstract— Continuous piecewise-affine systems are a pow-
erful tool for describing or approximating both nonlinear and
hybrid systems. In this paper we extend the Model Predictive
Control (MPC) framework for continuous piecewise-affine
systems that we have developed previously to deterministic
uncertainty. We show that the resulting MPC optimization
problem can be transformed into a sequence of linear opti-
mization problems (LP), which can be solved very efficiently.

I. INTRODUCTION

Recently, hybrid systems have attracted the interest of

both academia and industry due to their ability to model

the interaction between continuous and logic components.

In particular, several authors have studied a subclass of

hybrid systems, piecewise affine systems (PWA) [1], [6],

[10], since they represent a powerful tool for approximating

nonlinear systems with arbitrary accuracy and since a rich

class of hybrid systems can be described by PWA systems.

PWA systems are defined by partitioning the state space

in a finite number of polyhedral regions and associating to

each region a different affine dynamic. Another subclass

of hybrid systems is the class of max-min-plus-scaling

(MMPS) systems, the evolution equations of which can be

described using the operations maximization, minimization,

additions and scalar multiplication. Using the results of

[4], [8] we can prove that continuous PWA systems are

equivalent with MMPS systems. In this paper we consider

MMPS systems, and thus also continuous PWA systems.

The relation between PWA and MMPS systems is useful

for the investigation of structural properties of PWA systems

such as observability and controllability [10], but also in

designing controller schemes like model predictive control

(MPC) [2], [4]. Using the work of [4] in which MPC for

MMPS (and equivalently for continuous PWA) systems for

the deterministic noise-free case without modeling errors is

proposed, we further extend MPC for the cases with noise

and modeling errors.

An important difference between MPC and some other

control methods is the explicit use of a prediction model.

Because the models play such an important role in MPC,

we must also take into account noise and error modeling

when we implement MPC. Ignoring the noise can lead to

a bad tracking or even to unstable closed-loop behavior.
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Also uncertainty in the modeling phase leads to errors in

the system equations. Therefore, both modeling errors and

noise and disturbances perturb the system by introducing

uncertainty in the system equations. In general it is dif-

ficult to distinguish them one from another, but usually

fast changes will be considered as noise and disturbance,

whereas slow changes or permanent errors are considered as

modeling errors. In this paper both are treated in one single

framework. We model noise and disturbances by including

extra additive terms in the system equations for MMPS

systems. We consider the deterministic case, therefore the

uncertainty is bounded. Note that there are some results in

the literature on noise and modeling errors for some classes

of hybrid systems (see [7], [11], [12]) but to the authors’

best knowledge this is the first time that such an approach

is used for the MMPS framework.

This paper is organized as follows. A brief review of

PWA and MMPS systems is given and MPC for them as

it was developed in [4] is presented in Section II. Further

we show that the optimal solution of a multi-parametric

linear programming problem is an MMPS function of the

parameter. In Section III we discuss MPC for perturbed

MMPS systems. We obtain an efficient MPC method which

is based on minimizing the worst-case cost criterion. More

specifically, we prove that the optimization problem at each

step of MPC can be transformed into a sequence of linear

programming problems (LP), for which efficient solution

methods exist. We conclude with an worked example in

Section IV.

II. PRELIMINARIES

A. Equivalence between Continuous PWA and MMPS sys-

tems

Definition 2.1: A vector-valued function f : Rn → R
m

is said to be a continuous PWA function if there exists

a finite family C1, ..., CN of closed polyhedral regions that

covers Rn and for each i ∈ {1, ..., N}, j ∈ {1, ...,m}, each

component fj of f can be expressed as fj(x) = αT
i,j x+βi,j

for any x ∈ Ci, with αi,j ∈ R
n, βi,j ∈ R.

Note that because the polyhedral regions Ci are closed, it

results that f is indeed continuous (i.e. each component of

f is continuous), because f is continuous on the boundary

between any two regions.

A continuous PWA system in state space representation

is a system of the form:

x(k + 1) = Px(x(k), u(k)) (1)

y(k) = Py(x(k), u(k)), (2)



where Px and Py are continuous PWA functions, with input

u, output y and state x.

Definition 2.2: A scalar-valued MMPS function f :
R

n → R is generated from the set of affine functions by

the recursive relation:

f(x) = max(fk(x), fl(x))|min(fk(x), fl(x)) (3)

where fk, fl : Rn → R are again MMPS functions, and

the symbol | stands for “or”. For vector-valued MMPS

functions the above statements hold component-wise.

An MMPS system is written in the following form:

x(k + 1) = Mx(x(k), u(k)) (4)

y(k) = My(x(k), u(k)), (5)

where Mx, My are vector-valued MMPS functions.

Proposition 2.3: [4] Any scalar-valued MMPS function

f : Rn → R can be written into min-max canonical form

f(x) = min
j=1,...,l̂

max
i∈Tj

(αT
i,jx+ βi,j), (6)

or into max-min canonical form

f(x) = max
j=1,...,l

min
i∈Sj

(γT
i,jx+ δi,j), (7)

for some integers l̂, l, N ; {Sj}
l
j=1 and {Tj}

l̂
j=1 each are

a family of incomparable (with respect to ⊆) subsets of

{1, ..., N} and αi,j , γi,j ∈ R
n, βi,j , δi,j ∈ R.

Proposition 2.4: [8] Any continuous PWA function can

be written as MMPS function and vice-versa.

Corollary 2.5: Continuous PWA systems and MMPS

systems are equivalent in the sense that for a given contin-

uous PWA model there exists an MMPS model (and vice-

versa) such that the input-output behavior of both models

coincides.

Note that the above propositions imply that any continu-

ous PWA system (1)–(2) can be written in the form (4)–(5),

with each component of Mx and My in min-max canonical

form (6) or max-min canonical form (7).

B. MPC for MMPS systems

In this section we give a short overview of the main

results of [4]. Note that in that paper modeling errors or

noise and disturbance in the model are not included.

In MMPS-MPC we define for each sample step k, a cost

criterion

J(k) = Jout(k) + λJin(k),

over the period [k, k+Np − 1], where Np is the prediction

horizon and λ > 0 is a weighting factor. By optimizing

this cost criterion we obtain an optimal input sequence

u∗(k), ..., u∗(k+Np− 1), but we apply only the first input

sample u∗(k) according to a receding horizon strategy. At

the next sample step the whole procedure is repeated.

Now we explain in more details how the MPC for

MMPS systems can be implemented efficiently in the case

when the cost criterion J(k) is an MMPS function of the

input. Assuming that at each step k, the state x(k) can be

measured or predicted, we can make an estimation of the

output of the model (4)–(5):

ŷ(k + j|k) = Mj(x(k), u(k), ..., u(k + j)) (8)

at sample step k+ j for j = 0, ..., Np − 1 where Mj is an

MMPS function of x(k), u(k), ..., u(k + j).
Our goal is to track a reference signal r. Define ũ(k) =

[uT (k), ..., uT (k+Np − 1)]T , ỹ(k) = [ŷT (k|k), ..., ŷT (k+
Np − 1|k)]T , r̃(k) = [rT (k), ..., rT (k +Np − 1)]T .

We consider only linear constraints on the input1

P (k)ũ(k) + q(k) ≤ 0. (9)

In practical situations, such constraints occur when we have

to guarantee that the input signal must stay within certain

bounds2, e.g. m(k+j) ≤ u(k+j) ≤ M(k+j), where m(·)
and M(·) are the lower and upper bounds respectively.

As output cost functions we will take:

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1

Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞, (10)

which reflect the tracking error, and are MMPS functions

of x(k), ũ(k), r̃(k). As input cost function one could take:

Jin,1(k) = ‖ũ(k)‖1, Jin,∞(k) = ‖ũ(k)‖∞, (11)

which are also MMPS functions of ũ(k). Or we can use any

other output or input cost criterion that can be expressed as

an MMPS function of ũ(k).
We introduce a control horizon Nc such that

u(k+ j) = u(k+Nc−1) for j = Nc, ..., Np−1, (12)

to decrease the number of degrees of freedom for ũ(k) and

thus we obtain a reduction in computational effort but this

also makes the control signal smooth and the controller

more robust. Note that (12) can also be expressed in the

form (9).

Since after substitution of ỹ(k) using (8), the cost func-

tion J(k) is an MMPS function of ũ(k) which can be

written in min-max canonical form, it follows that at each

sample step k we have to solve an optimization problem of

the following form

min
ũ(k)

min
j=1,...,l̂

max
i∈Tj

(αT
i,j ũ(k) + βi,j(k)) (13)

subject to P (k)ũ(k) + q(k) ≤ 0,

so for any j = 1, ..., l̂ we obtain a linear programming

problem:

min
ũ(k),t(k)

t(k) (14)

subject to

{

P (k)ũ(k) + q(k) ≤ 0

t(k) ≥ αT
i,j ũ(k) + βi,j(k)), i ∈ Tj .

1We can take into account also constraints on states, but in this case the
number of optimization problems that must be solved increases.

2Actually we can also allow state or output constraints provided that
after substitution they lead to linear or convex constraints in input, because
the algorithm used below is based on cutting plane method for convex
optimization, which can deal also with convex constraints.



The linear programming problems are easy to solve

using the simplex method or an interior point algorithm

[9]. Let [t∗(k) ũ∗T
(j)(k)]

T be the optimal solution of (14).

To obtain the solution of (13), we solve (14) for j =
1, ..., l̂ and afterward we select the ũ∗

(j)(k) for which

maxi∈Tj
(αT

i,j(k)ũ
∗

(j)(k) + βi,j(k)) is the smallest.

C. Multi-parametric linear programming

The following proposition characterizes the solution to

a multi-parametric linear programming problem (mp-lpp)

defined in the following way:

max cTx (15)

subject to Sx ≤ q + Uθ, (16)

where x ∈ R
n is the optimization variable, θ ∈ Θ = {θ ∈

R
s : Wθ ≤ ω} ⊆ R

s is the vector of parameters, S ∈
R

m×n, c ∈ R
n, q ∈ R

m, and U ∈ R
m×s.

For simplicity we assume that for any θ ∈ Θ (where Θ
is a closed polyhedron), the problem (15)–(16) has a finite

optimal solution. Let V ∗(θ) denote the maximum value of

the objective function in problem (15)–(16) and x∗(θ) the

optimizer3 related to V ∗(θ) for any θ ∈ Θ.

Proposition 2.6: With the above notations, the function

V ∗ : Θ → R is a concave MMPS function (i.e. only a min

expression). Furthermore, there exists an MMPS function

X∗ : Θ → R
n such that X∗(θ) ∈ x∗(θ) for all θ ∈ Θ.

Proof: In [5] it is proved that V ∗ : Θ → R is a

concave PWA function and that there exists a continuous

PWA function X∗ : Θ → R
n such that X∗(θ) ∈ x∗(θ)

for all θ ∈ Θ. It is well known that a concave (convex)

PWA function is also continuous [3]. Therefore, V ∗ is a

continuous PWA function, and also an MMPS function

(according to Proposition 1.4). Using the same arguments

we can also prove that X∗ is an MMPS function. ♦
The reader is referred to [3] for a geometric algorithm

for computing the solution to an mp-lpp.

III. MPC FOR PERTURBED CONTINUOUS PWA

OR MMPS SYSTEMS

A. Perturbed continuous PWA or MMPS systems

In this section we extend the continuous PWA (or equiv-

alently the MMPS) deterministic model (1)–(2) or (4)–(5),

without noise, to take also the uncertainty into account.

The MPC method is based on a model of the system;

the prediction of the future behavior is made using the

respective model. Therefore we must also take into account

the uncertainty when we implement MPC. If we ignore

the noise we can get a bad tracking or even an unstable

closed-loop behavior. Uncertainty in the modeling of the

plant leads to errors in the system equations. Therefore,

both modeling errors and noise and disturbances perturb the

system by introducing uncertainty in the system equations.

In the sequel both are treated in the same framework.

3In general, x∗(θ) is set-valued.

As in conventional linear systems, we model the noise

and disturbances by including a noise term in the system

equations for continuous PWA systems. Hence, we consider

the perturbed continuous PWA model:

x(k + 1) = Px(x(k), u(k), e(k)) (17)

y(k) = Py(x(k), u(k), e(k)), (18)

where Px and Py are continuous vector-valued PWA func-

tions and the uncertainty caused by disturbances and errors

in the estimation of the real system is gathered in the

uncertainty vector e(k). We assume that this uncertainty is

included in a bounded polyhedral set E = {e ∈ R
s : Se ≤

q} and if consecutive noise samples e(k),...,e(k + j) are

related, we assume that this relation is linear (e.g. a system

of linear equalities or inequalities).

Using the equivalence between continuous PWA and

MMPS systems, the perturbed continuous PWA model (17)–

(18) can be also written as a MMPS system:

x(k + 1) = Mx(x(k), u(k), e(k)) (19)

y(k) = My(x(k), u(k), e(k)), (20)

where Mx, My are vector-valued MMPS functions.

We assume that at each step k of MPC, the state x(k)
is available (can be measured or estimated) and we gather

the uncertainty over the interval [k, k + Np − 1] in the

vector ẽ(k) = [eT (k), ..., eT (k + Np − 1)]T ∈ Ẽ , where

Ẽ , according to our assumption, is a bounded polyhedral

set. Then it is easy to see that the prediction ŷ(k + j|k) of

the future output for the system (19)–(20) can be written in

MMPS form, for j = 0, ..., Np − 1.

Using as cost criterion a combination of (10) and (11):

J(k) = Jout(k) + λJin(k)

and keeping in mind that all these cost criteria are MMPS

expressions4, we get a min-max canonical form of J(k):

J(ẽ(k), ũ(k), x(k)) = min
j=1,...,l̂

max
i∈Tj

(αi,jx(k)+

+ βi,j ũ(k) + γi,j ẽ(k) + δi,j), (21)

or a max-min canonical representation:

J(ẽ(k), ũ(k), x(k)) = max
j=1,...,l

min
i∈Sj

(ᾱi,jx(k)+

+ β̄i,j ũ(k) + γ̄i,j ẽ(k) + δ̄i,j). (22)

B. Worst-case MMPS-MPC

In this section we study MPC for perturbed MMPS

systems when e(k) is a bounded uncertainty. We want to

minimize an MMPS cost criterion J(k) = Jout(k)+λJin(k)
subject to some constraints. As we said, we consider only

linear constraints on input, i.e. constraints of the form (9).

The worst-case MMPS-MPC problem at step k is defined:

min
ũ(k)

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k), x(k)) (23)

subject to P (k)ũ(k) + q(k) ≤ 0, (24)

4Recall that |x| = max(x,−x) for x ∈ R.



where J(·) is given by (21) or (22).

For a given ũ(k), x(k) we define the inner worst-case

MMPS-MPC problem

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k), x(k)). (25)

We denote5

ẽ∗(ũ(k), x(k)) = arg max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k), x(k)), (26)

J∗(ũ(k), x(k)) = J(ẽ∗(ũ(k), x(k)), ũ(k), x(k)). (27)

Proposition 3.1: For a given ũ(k) and x(k),
ẽ∗(ũ(k), x(k)) given by (26) can be computed using

a sequence of linear programming problems.

Proof: Because the uncertainty e(k) is in a bounded

polyhedral set E , ẽ(k) will also be in a bounded polyhedral

set: Ẽ = {ẽ(k) : S̃ẽ(k) ≤ q̃}.

We determine for any fixed [ũT (k) x(k)] the optimal

ẽ∗(ũ(k), x(k)), using the max-min canonical form (22) of

J(·), by solving the following optimization problem:

max
ẽ(k)

max
j=1,...,l

min
i∈Sj

(ᾱi,jx(k) + β̄i,j ũ(k)+

+ γ̄i,j ẽ(k) + δ̄i,j)

subject to S̃ẽ(k) ≤ q̃, (28)

which is equivalent with:

max
j=1,...,l

max
ẽ(k)

min
i∈Sj

(ᾱi,jx(k) + β̄i,j ũ(k)+

+ γ̄i,j ẽ(k) + δ̄i,j)

subject to S̃ẽ(k) ≤ q̃. (29)

Now for any j = 1, ..., l we have to solve the following

optimization problem:

max
ẽ(k)

min
i∈Sj

(ᾱi,jx(k) + β̄i,j ũ(k)+

+ γ̄i,j ẽ(k) + δ̄i,j)

subject to S̃ẽ(k) ≤ q̃,

which is equivalent with the following linear programming

problem:

max
ẽ(k),t(j)(k)

t(j)(k) (30)

subject to










t(j)(k) ≤ ᾱi,jx(k) + β̄i,j ũ(k)+

+γ̄i,j ẽ(k) + δ̄i,j for each i ∈ Sj

S̃ẽ(k) ≤ q̃.

(31)

To obtain the solution of (28) we solve (30)–(31)

for each j = 1, ..., l, with the optimal solution

[t∗(j)(ũ(k), x(k)) ẽ∗T(j)(ũ(k), x(k))]
T and then we select as

ẽ∗(ũ(k), x(k)), the optimal solution ẽ∗(j)(ũ(k), x(k)) for

which mini∈Sj
(ᾱi,jx(k)+β̄i,j ũ(k)+ γ̄i,j ẽ

∗

(j)(ũ(k), x(k))+

δ̄i,j) is the largest. ♦

5Note that in general ẽ∗(ũ(k), x(k)) may be set-valued, but as we will
use Proposition 2.6, this does not matter.

Remark 3.2 We assume that the feasible set of the states is

a closed polyhedral set X and we denote with U = {ũ(k) :
P (k)ũ(k) + q(k) ≤ 0} which is also a closed polyhedron.

Remark 3.3 Note that in practice the input ũ(k) will always

be bounded. Furthermore, we only consider the behavior

of the system over finite horizons. As a consequence, the

state x(k) will also be bounded for any k. This implies

that for any [ũT (k) xT (k)] ∈ U ×X (closed polyhedron),

the multi-parametric linear programming problem (25) has

a finite optimal solution.

Proposition 3.4: With the notations (26)–(27), J∗ : U ×
X → R is an MMPS function and ẽ∗ : U ×X → R

s is a

PWA function.

Proof: For each j = 1, ..., l we denote with

[t∗(j)(ũ(k), x(k)) ẽ∗T(j)(ũ(k), x(k))]
T

the optimal solution of the mp-lpp (30)–(31), with the

parameter θ = [ũT (k) xT (k)]T ∈ Θ with Θ = U × X

a closed polyhedral set (see Remark 3.2). From Proposition

2.6 we know that t∗(j)(·, ·) is an MMPS function of the

argument (ũ(k), x(k)). But

J∗(ũ(k),x(k)) = max
j=1,...,l

(t∗(j)(ũ(k), x(k))).

We obtain thus directly an MMPS expression of J∗(·, ·).
Furthermore ẽ∗(ũ(k), x(k)) = ẽ∗(j)(ũ(k), x(k)) if

t∗(j)(ũ(k), x(k)) ≥ t∗(i)(ũ(k), x(k)) for any i ∈ {1, ..., l} \
{j}. But each ẽ∗(j)(·, ·) is an MMPS function, and therefore

a continuous PWA function. This implies that ẽ∗(·, ·) is a

PWA function, but not necessarily continuous. ♦

The outer worst-case MMPS-MPC problem is now de-

fined as:

min
ũ(k)

J∗(ũ(k), x(k)) (32)

subject to P (k)ũ(k) + q(k) ≤ 0. (33)

where we assume that at sample step k, the state x(k) is

given.

Proposition 3.5: Given x(k), the outer worst-case

MMPS-MPC problem can be solved using a sequence of

LPs.

Proof: From Proposition 3.4 we know that J∗ : U×X → R

is an MMPS function. Therefore it can be written in the

following min-max canonical form

J∗(ũ(k), x(k)) = min
j=1,...,l̂

max
i∈Tj

(αi,jx(k) + βi,j ũ(k) + δi,j).

Then, the outer worst-case MMPS-MPC problem (32)–(33)

can be written as

min
ũ(k)

min
j=1,..,l̂

max
i∈Tj

(αi,jx(k) + βi,j ũ(k) + δi,j)

subject to P (k)ũ(k) + q(k) ≤ 0.



T

             Temperature

u
1

Basic
   Source

Disturbance

e

Controlled

   Source
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For any j = 1, ..., l̂ we must solve the following LP:

min
ũ(k),t(j)

t(j)

subject to (34)
{

t(j) ≥ αi,jx(k) + βi,j ũ(k) + δi,j , for each i ∈ Tj

P (k)ũ(k) + q(k) ≤ 0.

To obtain the solution of (32)–(33), we solve (34), obtaining

the optimal solution [t∗(j)(x(k)) ũ∗T
(j)(x(k))]

T , for each

j = 1, ..., l̂ and then we select the optimal ũ∗(x(k)) as the

optimal solution ũ∗

(j)(x(k)) for which maxi∈Tj
(αi,jx(k)+

βi,j ũ
∗

(j)(x(k)) + δi,j) is the smallest. ♦
Corollary 3.6: According to this algorithm, the worst-

case MMPS-MPC problem can be solved using a sequence

of linear programming problems. Moreover the associate

controller is a PWA function of the argument, the state x(k).
Proof: In order to solve the problem (23)–(24), first we

look for the worst-case uncertainty ẽ(k) as a function

of ũ(k), x(k) (Proposition 3.1) while in the second step

we want to find the optimal input ũ(k) corresponding

to the worst-case uncertainty (Proposition 3.5). First step

is computed off-line. Second step can be solved using

a sequence of linear programming problems according to

Proposition 3.5.

For the second part of the corollary, we consider the

multi-parametric linear programming problem (34), with the

parameter x(k) ∈ X with X a polyhedral set. Then the

optimal solution [t∗(j)(·) u
∗T
(j)(·)]

T is an MMPS function of

the argument x(k) (according to Proposition 2.6). Therefore

ũ∗

(j)(·) is a PWA function. But

ũ∗(k) = ũ∗

(j)(x(k)) if t∗(j)(x(k)) ≤ t∗(i)(x(k)),

for i ∈ {1, ..., l̂} \ {j}. So, the worst-case MMPS-MPC

controller u∗(k) is a PWA function of the argument x(k). ♦
Note that the reduction to canonical form is computa-

tionally intensive, but can be done off-line ( for both the

inner and outer worst-case MMPS-MPC problem). Further-

more, the complexity of the reduction process can also be

reduced by already eliminating redundant terms during the

intermediate steps of the transformations. Also note that this

elimination of the redundant terms can be done off-line.

IV. EXAMPLE

Now we present an example for which we apply the

above method. Consider a room with a basic heat source and

an additional controlled heat source (see Figure 1). Let u

be the contribution to the increase in room temperature per

time unit caused by the controlled heat source (so u ≥ 0).

For the basic heat source, this value is assumed to be

constant and equal to 1. The temperature in the room is

assumed to be uniform and obeys the first-order differential

equation

Ṫ (t) = α(T (t))T (t) + u(t) + 1 + e1(t) ,

the modeling error being gathered in scalar variable e1. We

assume that the temperature coefficient has the following

piecewise constant form:

α(T ) =

{

1 if T < 0

−1 if T ≥ 0.

We assume that the temperature is measured, but the mea-

surement is noisy: y(t) = T (t) + e2(t).
Using the Euler discretization scheme, with a sample time

of 1 time unit and denoting the state x(k) = T (k · 1), we

get the following continuous discrete-time PWA system:

x(k + 1) =

{

2x(k) + u(k) + e1(k) + 1 if x(k) < 0

u(k) + e1(k) + 1 if x(k) ≥ 0

(35)

y(k) = x(k) + e2(k) (36)

Let −2 ≤ e1(k), e2(k) ≤ 2, e1(k) + e2(k) ≤ 1, i.e. the de-

terministic uncertainty is given by the bounded polyhedron

E = {[e1 e2]
T : −2 ≤ e1(k), e2(k) ≤ 2

e1(k) + e2(k) ≤ 1}.

The equivalent MMPS representation of (35)–(36) is:

x(k + 1) = min{2x(k) + u(k) + e1(k) + 1,

u(k) + e1(k) + 1} (37)

y(k) = x(k) + e2(k). (38)

Because at time step k the input u(k) has no influence

on y(k), we take Np = 3, Nc = 2, ỹ(k) = [ŷ(k +
1|k) ŷ(k + 2|k)]T , r̃(k) = [r(k + 1) r(k + 2)]T , ũ(k) =
[u(k) u(k+1)]T . Let the uncertainty vector e(k) be e(k) =
[e1(k) e2(k + 1)]T . Therefore, ẽ(k) = [eT (k) eT (k + 1)]T .

We consider the following constraints on the input6:

−4 ≤ u(k + 1)− u(k) ≤ 4 and u(k) ≥ 0 for all k.

As cost criterion we take

J(k) =Jout,∞(k) + λJin,1(k) =

‖ỹ(k)− r̃(k)‖∞ + λ‖ũ(k)‖1 (39)

The first term of J(k) expresses the fact that we penalize the

maximum difference between the reference and the output

signal, while the second term penalizes the absolute value

of the control effort.

6Because we have only heating: u(k) ≥ 0 and we assume that the rate
of heating is bounded.
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Fig. 2. Illustration of the worst-case MPC for a perturbed MMPS system.

Because u(k) ≥ 0, we have ‖u(k)‖1 = u(k) and

therefore we get the following formula for J(k) :

J(k) = max{y(k + 1)− r(k + 1) + λu(k) + λu(k + 1),

r(k + 1)− y(k + 1) + λu(k) + λu(k + 1),

y(k + 2)− r(k + 2) + λu(k) + λu(k + 1),

r(k + 2)− y(k + 2) + λu(k) + λu(k + 1)}.

Now we have

y(k + 1) = min{2x(k) + u(k) + e1(k) + e2(k + 1) + 1,

u(k) + e1(k) + e2(k + 1) + 1}

and

y(k + 2) = min{4x(k) + 2u(k) + u(k + 1) + 2e1(k)+

e1(k + 1) + e2(k + 2) + 3, 2u(k) + u(k + 1) + 2e1(k)

+ e1(k + 1) + e2(k + 2) + 3,

u(k + 1) + e1(k + 1) + e2(k + 2) + 1}.

Therefore, we can write now J(k) in max-min canonical

form:

J(k) = max{min{t1, t2}, t3, t4,min{t5, t6, t7}, t8, t9, t10}

where tj are appropriately defined affine functions of

x(k), u(k), u(k + 1), e(k), e(k + 1), r(k + 1), r(k + 2).
We compute now the closed-loop MPC controller over a

simulation period [1, 20], with λ = 0.1, initial state x(0) =
−6, u(−1) = 0 and the reference signal {r(k)}20k=1=-5 -5

-5 -5 -5 -3 -3 1 3 3 8 8 8 8 3 0 -1 -1 0 0 using the method

given in Section III.

In Figure 2, the top plot represents the output and the

reference signal. We see the MPC controller performs the

tracking quite well. In the second plot we show the optimal

input: we can see that always u(k) ≥ 0. Finally in the last

one we plot u∗(k + 1) − u∗(k). We can see that also the

constraint |u∗(k + 1) − u∗(k)| ≤ 4 is fulfilled, and that at

some moments this constraint is indeed active.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have extended the MPC framework

for MMPS (or equivalently for continuous PWA) systems

to include also bounded modeling errors, noise and/or

disturbances. We have considered the uncertainty as an

extra additive term on the system equations. This allowed

us to design a worst-case MMPS-MPC controller for such

systems based on min-max formulation. We have shown

that the resulting optimization problem can be computed

efficiently using a two-level optimization approach. In first

step we have to solve off-line a mp-lpp and then to write

the min-max canonical expression of J∗(x, ũ). On-line, we

solve only a sequence of LPs.
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