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Abstract: In this paper we derive stabilization conditions for the class of piecewise affine

(PWA) systems using the linear matrix inequality (LMI) framework. We take into account

the piecewise structure of the system and therefore the matrix inequalities that we solve

are less conservative. Using the upper bound of the infinite-horizon quadratic cost as

a terminal cost and constructing also a convex terminal set we show that the receding

horizon control stabilizes the PWA system. We derive also an algorithm for enlarging

the terminal set based on a backward procedure; therefore, the prediction horizon can be

chosen shorter, removing some computations off-line.

Keywords: piecewise affine system, linear matrix inequalities, model predictive control.

1. INTRODUCTION

Hybrid systems model the interaction between contin-

uous and logic components. Currently, general analy-

sis and control design methods for hybrid systems are

not yet available. For this reason, several authors have

studied special subclasses of hybrid systems for which

control techniques are currently being developed such

as manufacturing systems (Cassandras et al., 2001)

and piecewise affine (PWA) systems (Bemporad and

Morari, 1999; Rantzer and Johansson, 2000).

Model Predictive Control (MPC) is the most suc-

cessful advanced control technology implemented in

industry due to its ability to handle complex sys-

tems with hard input-output constraints. Recently, the

research has focused on developing stabilizing con-

trollers for hybrid systems and in particular for PWA

systems. PWA systems are defined by partitioning

the state space of the system in a finite number of
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polytopes and associating to each polytope a differ-

ent affine dynamic. Several results about stability of

PWA systems and MPC schemes for such systems

can be found in the literature, e.g. (Bemporad and

Morari, 1999; Rantzer and Johansson, 2000; Mignone

et al., 2000; Lazar et al., 2004; Mayne and Rakovic,

2003; Goebel et al., 2004).

One of the first results about the stability of MPC for

PWA systems is obtained in (Bemporad and Morari,

1999), where a terminal equality constraint approach

is presented. This type of constraint is rather restric-

tive. Therefore, in order to guarantee feasibility of

the MPC problem we need a long prediction hori-

zon, which results in computationally demanding opti-

mization problems. A stabilizing terminal set and cost

MPC scheme for PWA systems has been developed in

(Mayne and Rakovic, 2003; Lazar et al., 2004). Stabil-

ity has been guaranteed in (Lazar et al., 2004) using

the LMI framework and by developing an algorithm

for constructing a polyhedral positively invariant set

for the PWL dynamics.



In this paper we derive a stable MPC scheme using the

LMI framework. For the piecewise linear (PWL) dy-

namics we derive LMI conditions that provide a piece-

wise linear feedback controller that stabilizes those

dynamics. We take into account also the piecewise

structure of the system; conservativeness is reduced

by implementing the S-procedure. We derive a stable

MPC scheme with a convex terminal set and the upper

bound of the infinite-horizon quadratic cost is used as

a terminal cost. We present an algorithm for enlarging

this set based on a backward procedure. By enlarging

the terminal set the prediction horizon can be chosen

shorter. Therefore the computational complexity de-

creases, removing some computations off-line.

We define a PWA system as:

x(k + 1) = Aix(k) +Biu(k) + ai, if x(k) ∈ Pi

y(k) = Cix(k) + ci, (1)

where {Pi}i∈I is a partition of R
n into a number

of polyhedral cells (n, nu, ny denotes the number of

states, inputs and outputs). Let I0 ⊆ I (I1 ⊆ I) be the

set of indexes for the cells that contain (do not contain)

the origin in their closure. So ai = 0 for any i ∈ I0.

We assume that the closure of Pi can be written as:

cl(Pi) = {x ∈ R
n : Ẽix ≥ ei} with ei = 0 for

i ∈ I0. We define the infinite-horizon quadratic cost:

J∞(x0,u) =

∞
∑

k=0

xT (k)Qx(k) + uT (k)Ru(k)

with Q = QT ≥ 0, R = RT > 0 and u =
(u(0), u(1), ...) We consider the constraints:

Uc = {u ∈ R
nu : |uj | ≤ uj,max, j = 1, ..., nu} (2)

Xc = {x ∈ R
n : |yj | ≤ yj,max, j = 1, ..., ny}, (3)

with uj,max, yj,max > 0.We define now the problem

that we would like to solve:

Definition 1.1. Problem P Design a feedback con-

troller u = F (x) for system (1) that: (i) limits the

infinite-horizon quadratic cost in a positively invariant

set E , i.e. x(0) = x0 ∈ E ⇒ x(k) ∈ E , for all k ≥
0. (ii) makes the closed-loop asymptotically stable,

i.e. x(∞) = 0. (iii) satisfies the constraints u(k) ∈
Uc, x(k) ∈ Xc for all k ≥ 0 . ♦

2. DETERMINATION OF A CONVEX

INVARIANT SET AND THE CONTROLLER

First we want to derive a local controller that stabilizes

the PWL dynamics of the system (i.e. for all i ∈ I0 for

which ai = 0) and using this controller we construct

also a convex positive invariant set corresponding to

these dynamics. We define the local PWL feedback

controller: u(k) = Fix(k) if x(k) ∈ Pi, and the

piecewise quadratic function:

V (k) = xT (k)P (k)x(k), P (k) = Pi if x(k) ∈ Pi

We want to find Fi, Pi ∈ R
n×n, i ∈ I0, with Pi > 0,

such that the following conditions are fulfilled:

x(∞) = 0,

V (k + 1)− V (k) ≤ −l(x(k), F (k)x(k)), ∀ k ≥ 0,

where l(x, u) := xTQx + uTRu. The second condi-

tion can be written as:

xT (Ai +BiFi)
TPj(Ai +BiFi)x− xTPix+ xTQx

+ xTFT
i RFix ≤ 0, for all x ∈ Pi, i, j ∈ I0. (4)

The matrix inequalities (4) must be valid only for x ∈
Pi. Using the S-procedure (see e.g. (Jonsson, 2001))

we can rewrite them to be valid on the entire space Rn.

One method (Rantzer and Johansson, 2000) to relax

the matrix inequalities (4) is: find Fi, Pi, Uij , i, j ∈
I0, with Pi > 0 and Uij having all entries non-

negative that satisfy the following matrix inequalities:

(Ai +BiFi)
TPj(Ai +BiFi)− Pi +Q

+ FT
i RFi + ET

i UijEi ≤ 0, for all i, j ∈ I0. (5)

We define X0 = ∪i∈I0
Pi and we consider an inner

approximation with an ellipsoid of this set:

{x ∈ R
n : xTHx ≤ 1} ⊆ X0.

In the sequel the symbol * is used to induce a symmet-

ric structure in an LMI. We have:

Proposition 2.1. (i) If the following LMIs:




Pi −Q− ET
i UijEi ∗ ∗

Ai +BiFi Sj 0
Fi 0 R−1



 > 0 (6)

and the following bilinear matrix inequalities (BMIs)

SiPi + PiSi ≤ 2I (7)

have solution Pi, Si, Fi, Uij , i, j ∈ I0, with Pi > 0
and all entries of Uij non-negative, then this is also a

solution of (5).

(ii) We define the set E(ρ) = {x ∈ R
n : xTPjx ≤

ρ, j ∈ I0}, with ρ > 0. Note that this set is convex

and contains the origin in the interior. If the following

LMIs are satisfied:
[

τjH − Pj 0
0 −τj + ρ

]

≤ 0 (8)

for all j ∈ I0 and with τj > 0, then E(ρ) is a positive

invariant set for the closed-loop system 2 .

(iii) If we require u(k + l) ∈ Uc for all l ≥ 0, once

x(k) ∈ E(ρ) then an additional LMI must be satisfied:
[

Λ− ET
i WiEi Fi

∗ Pi

]

≥ 0 with Λjj ≤ u2
j,max/ρ (9)

for all i ∈ I0 and j = 1, ..., nu, where the matrices

Wi have all entries non-negative.

(iv) If we require y(k+1+ l) ∈ Xc for all l ≥ 0, once

x(k) ∈ E(ρ) then the following additional LMI must

be satisfied:
[

Γ− ET
i ViEi Ci(Ai +BiFi)
∗ Pi

]

≥ 0,Γjj ≤
y2j,max

ρ

2 If we assume that X0 is a polytope X0 = {x : cT
l
x ≤ 1, l =

1, ..., s}, then the LMI (8) can be replaced with: cT
l
ρP−1

j
cl ≤ 1,

which can be written as LMI (see also (Necoara et al., 2004)).



for all i ∈ I0 and j = 1, ..., ny , where Vi have all

entries non-negative. Note that by taking γ = 1/ρ all

formulas (6)–(2) become LMIs except (7).

Proof: (i) The BMIs (7) imply that

0 < Si ≤ P−1
i if and only if 0 < Pi ≤ S−1

i

(see also (Slupphaug and Foss, 1999)). Applying now

the Schur complement to (6), this leads to:

0 <Pi −Q− ET
i UijEi − (Ai +BiFi)

TS−1
j (∗)

− FT
i RFi ≤ Pi −Q− ET

i UijEi

− (Ai +BiFi)
TPj(∗)− FT

i RFi

i.e. formula (5).

(ii) It is well-known (Vandenberghe and Boyd, 1996)

that inclusion of ellipsoids

{x : xTPjx ≤ ρ} ⊆ {x ∈ R
n : xTHx ≤ 1} ⊆ X0

can be expressed as an LMI (8). Then if x(k) ∈
E(ρ)∩ Pi0 , for some io ∈ I0 then xT (k)Pi0x(k) ≤ ρ
and x(k + 1) = (Ai0 + Bi0Fi0)x(k). Therefore, for

any j ∈ I0 according to (i) we have:

xT (k + 1)Pjx(k + 1) ≤ xT (k)Pi0x(k) ≤ ρ.

So x(k + 1) ∈ E(ρ). By induction we can see that if

x(k) ∈ E(ρ) then x(k + l) ∈ E(ρ) for any l ≥ 0. So

E(ρ) is an invariant set. E(ρ) is convex, because it is

the intersection of ellipsoids (Pi > 0) and it contains

the origin because each ellipsoid contains the origin.

(iii) The constraint on the input (2) is equivalent with

u2
j (k) ≤ u2

j,max. We have E(ρ) ⊆ {x : xTPix ≤ ρ}
and thus if x(k) ∈ E(ρ) ∩ Pi then

u2
j (k) ≤ max

x(k)∈E(ρ)
(Fix(k))

2
j ≤ max

xTPix≤ρ
(Fix)

2
j

≤ max
xT Pi

ρ
x≤1

(Fix)
2
j ≤ ‖√ρ(FiP

−1/2
i )j‖22

= ρ(FiP
−1
i FT

i )jj = ρ(FiP
−1
i FT

i )jj

≤ ρΛjj ≤ u2
j,max.

Taking Wi with all entries non-negative and applying

the S-procedure, the last inequality translates into:

Λ− FiP
−1
i FT

i − ET
i WiEi ≥ 0

and Λjj ≤
u2

j,max

ρ , which is the LMI (9) using γ = 1
ρ .

(iv) The LMI (2) is derived in the same way. ♦

Remark 2.2 The matrix inequalities (5) can be rewrit-

ten as BMIs by introducing dummy variables. We use

the BMI formulation from Proposition 2.1 because

there are algorithms in the literature (see (Fares et

al., 2001)) for solving BMIs in the form (6)–(7). ♦
Remark 2.3 Using Finsler’s lemma, we can provide

the general solution of the LMIs (5). For a more

detailed discussion about the general solution of the

LMIs (5), the reader is referred to (Necoara et al.,

2004).

♦

If we do not apply the S-procedure for (4), i.e. we

replace the condition “x ∈ Pi“, with x ∈ R
n, then

(4) becomes:

(Ai +BiFi)
TPj(Ai +BiFi)

− Pi +Q+ FT
i RFi ≤ 0 (10)

for all i, j ∈ I0. The matrix inequalities (10) were

solved in (Kothare et al., 1996) for linear systems with

polytopic uncertainty, making a so-called linearizing

change of variables by introducing: Si = P−1
i , Fi =

YiSi. This linearization is also employed in (Lazar et

al., 2004) for the particular case of PWL systems. We

use here another linearization of (4), namely Pi =
S−1
i , Fi = YiG

−1. Using this change of variables we

see that the determination of the control law does not

depend explicitly on the Lyapunov matrices Pi. The

extra degree of freedom introduced by the matrices

G which is not considered symmetric, is incorporated

in the control variable (see (Daafouz and Bernussou,

2001) for more details about this type of linearization).

Proposition 2.4. (i) If the following LMIs in G,Yi, Si









G+GT − Si ∗ ∗ ∗
AiG+BiYi Sj ∗ ∗

Q̄1/2G 0 I ∗
R1/2Yi 0 0 I









> 0 (11)

for all i, j ∈ I0 have a solution then Fi =
YiG

−1, Pi = S−1
i are a solution of (10).

(ii) Let E(ρ) be defined as in Proposition 2.1. If the

following LMIs are satisfied:
[

τjH
−1 − Sj 0
0 −τj + 1/ρ

]

≥ 0 (12)

for all j ∈ I0 and with τj > 0, then E(ρ) is a positive

invariant set for the closed-loop system.

(iii) If we require u(k + l) ∈ Uc for all l ≥ 0, once

x(k) ∈ E(ρ) then an additional LMI must be satisfied:
[

Λ Yi

∗ G+GT − Si

]

≥ 0 with Λjj ≤ u2
j,max/ρ (13)

for all i ∈ I0 and j = 1, ..., nu.

(iv) If we require y(k + 1 + l) ∈ Xc for all l ≥ 0,

once x(k) ∈ E(ρ) then the additional LMIs must be

satisfied:
[

Γ Ci(AiG+BiYi)

∗ G+GT − Si

]

≥ 0 with Γjj ≤ y2j,max/ρ.

(14)

for all i ∈ I0 and j = 1, ..., ny . Note that taking

γ = 1/ρ all previous formulas become LMIs.

Proof: Basically the proof for (i) uses some matrix

manipulations and the Schur complement (see also

(Daafouz and Bernussou, 2001; Necoara et al., 2004)).

The points (ii)–(iv) can be proved using similar argu-

ments as in Proposition 2.1 (ii)–(iv). ♦
Now we assume that by applying one of the ap-

proaches proposed before (Proposition 2.1 or Propo-



sition 2.4) we obtained Fi, Pi, for all i ∈ I0. Then

we have:

Corollary 2.5. (i) If we consider only the PWL dy-

namics of the system (1), then the PWL feedback

controller u(k) = Fix(k), x(k) ∈ Pi, i ∈ I0
asymptotically stabilizes these dynamics with a region

of attraction X0 and the infinite-horizon quadratic

cost is bounded: J∞(x0) ≤ xT
0 Pix0, for any x0 ∈

Pi, for all i ∈ I0.
(ii) The PWL feedback controller u(k) = Fix(k), x(k) ∈
Pi makes the origin locally asymptotically stable, with

the input and output satisfying the constraints (2)–(3),

and it has a region of attraction E = ∪i∈I0
({x :

xTPix ≤ ρ}∩Pi), i.e. the feedback controller u(k) =
Fix(k), x(k) ∈ Pi solves locally the Problem P, and

moreover J∞(x0) ≤ ρ, for any x0 ∈ E ∩ Pi.

Proof: It can be easily seen that V (x) = xTPix,

x ∈ Pi is a piecewise quadratic Lyapunov function for

the closed-loop system: x(k+1) = (Ai+BiFi)x(k),
x(k) ∈ Pi, i ∈ I0. The rest of the proof follows

immediately. ♦

3. MODEL PREDICTIVE CONTROL LAW

3.1 Stable MPC

In the previous section we have found a PWL feedback

controller u(k) = F (k)x(k) that solves Problem P

with a positive invariant set E . In general this set

is small in comparison with Emax, defined as the

largest domain of attraction achievable by a control

law solving problem P. In this section we show the

benefits of MPC applied to solve Problem P.

We consider a prediction horizon N , we assume that

at sample time k the state x(k) is available (i.e. can

be measured or estimated), and we split the infinite-

horizon cost into two parts:

J∞(x(k),u) = JN (x(k)) + J∞(x(k +N)).

From Section 2 we have available Ki, Pi, for all i ∈
I0 and moreover we have obtained an upper bound for

J∞: x(k+N)TPix(k+N) ≥ J∞(x(k+N)), if x(k+
N) ∈ Pi. The quasi-infinite methods replaces the

second infinite term with its upper bound (Chen and

Allgower, 2000; Kothare et al., 1996). Then at each

sample step k we propose to solve the following

optimization problem which will be called Problem

QI(N ):

J∗(k) = min
uk

k+N−1
∑

j=k

xT (j)Qx(j) + uT (j)Ru(j)+

x(k +N)TP (k +N)x(k +N)

subject to



















uk = (u(k), ..., u(k +N − 1)) ∈ UN
c

equation (1)

(y(k + 1), ..., y(k +N)) ∈ XN
c

hard constraint: x(k +N) ∈ E(ρ),

where P (k +N) = Pi if x(k +N) ∈ Pi.

In the above formulation we detect the standard ingre-

dients for a stable MPC scheme: a terminal cost and

constraint set (see (Mayne et al., 2000)). According to

(Mayne et al., 2000), ideally, the terminal cost should

be the infinite-horizon cost, but in contrast to the linear

case this cannot be computed explicitly due to the

nonlinearity of the system. Therefore, we replace it

with the upper bound that we derived in Section 2.

According to the receding horizon principle, at each

step k we apply to the system only the first sample:

u(k) = FRH,N (x(k)) := u∗
k(1).

Let F(N,x0) be the set of all feasible inputs corre-

sponding to QI(N ) and let ERH(N) be the set of initial

states x0 such that F(N,x0)6=⊘. Consider the closed-

loop system given by the receding horizon control:

ΣRH

{

x(k + 1) = Aix(k) +BiF
RH,N (x(k)) + ai

y(k) = Cix(k) + ci, if x(k) ∈ Pi.

Proposition 3.1. We assume that we obtained Fi, Pi,

E(ρ) using Section 2. Then we have:

(i) ERH(N) is a positive invariant set for ΣRH and

E(ρ) ⊆ ERH(N), for all N > 0 (15)

(ii) the MPC scheme corresponding to Problem QI(N )

asymptotically stabilizes the system (1) with u(k) =
u∗
k(1). Therefore, this quasi-infinite receding horizon

control solves Problem P.

(iii) ERH(N) ⊂ ERH(N + 1) and limN→∞ ERH(N)
= ∪∞

N=1ERH(N) = Emax.Moreover, if there exists

an N∗ such that ERH(N∗) = ERH(N∗ + 1) then

Emax = ERH(N∗).

Proof: (i) Let x0 ∈ ERH(N) ∩ Pi. Then the optimiza-

tion problem QI(N ) has an optimal solution u∗
0 =

(u(0)∗, ..., u(N − 1)∗) ∈ UN
c , (y(1)∗, ..., y(N)∗) ∈

XN
c . At the next sample step if x(N)∗ ∈ E(ρ) ∩

Pj with j ∈ I0, we have a feasible input: u1 =
(u(1)∗, ..., u(N − 1)∗, Fjx(N)∗) ∈ F(N,Aix0 +
BiF

RH,N (x0) + ai). In conclusion x1 = Aix0 +
BiF

RH,N (x0) + ai ∈ ERH(N). Therefore, (applying

induction) we can prove that ERH(N) is a positively

invariant set for ΣRH. Moreover, for any x0 ∈ E(ρ)
there exists a feasible input sequence for Problem

QI(N ), namely (F (0)x0, ..., F (N − 1)x(N − 1)),
where F (·) ∈ {Fi, i ∈ I0} and thus x0 ∈ ERH(N),
so that E(ρ) ⊆ ERH(N), for all N > 0.

(ii) It can be proved easily using inequalities (4) that:

J∗(k + 1)− J∗(k) ≤ −‖x(k)∗‖2Q
i.e. the optimal quasi-infinite cost J∗(k) is a Lya-

punov function for the closed-loop system, and due to

the previous inequality we have asymptotic stability.

Therefore, in this way we can solve Problem P with

the feedback controller u(k) = FRH,N (x(k)) and the

positive invariant set ERH(N) .

(iii) Let x0 ∈ ERH(N). Then (u(0), ..., u(N −
1), F (N)x∗(N)) ∈ F(N + 1, x0), so that x0 ∈



ERH(N + 1). Therefore ERH(N) ⊆ ERH(N + 1).
As N → ∞ the Problem QI(N ) becomes an infinite-

horizon model predictive control problem implying

that limN→∞ ERH(N) = Emax.

Moreover, from the equality ERH(N∗) = ERH(N∗ +
1) it follows that there does not exist a state x0 6∈
ERH(N∗) such that with a feasible input u the state

x1 ∈ ERH(N∗). Hence, Emax = ERH(N). ♦

3.2 Enlargement of the terminal set using backward

procedure

The optimization problem QI(N ) that we have to

solve on-line at each sample step k is nonlinear and

non-convex (except in case N = 1 when it is convex),

and the computational time increases with the predic-

tion horizon N . If the terminal set is small, then we

need a long prediction horizon in order to have feasi-

bility for Problem QI(N ). Therefore, the optimization

problem will be computationally intensive. A larger

terminal set is E = ∪i∈I0
({x : xTPix ≤ ρ} ∩ Pi),

but this is not a convex set (it is a union of convex

sets). In the sequel we develop a method to enlarge the

terminal set based on a backward procedure that can

be done off-line, and thus we can efficiently implement

the stable MPC scheme derived before using a shorter

prediction horizon. So, we move some computations

off-line, resulting in a more efficient on-line imple-

mentation. We consider again only the PWL dynamics

of the system (1). The approach consists of 3 steps:

Step 1 Solve the following convex optimization:

min
G,Yi,Si

−
∑

i∈I

log detSi

subject to LMIs : (11), (13), (14), for all i, j ∈ I0
and define: Fi,1 = YiG

−1, Pi,1 = S−1
i ,

E1 = {x ∈ R
n : xTPi,1x ≤ 1, i ∈ I0}.

By Proposition 2.4 for any x ∈ E1, the controller

u = Fi,1x, if x ∈ Pi satisfies the input and output

constraints and maintains the trajectory of the closed-

loop system inside E1 converging to the origin.

Step 2 Using the previous terminal set Eprev = {x ∈
R

n : xTPi,prevx ≤ 1, i ∈ I0}, we construct a new

larger terminal set Enew based on a controller Fi,new,

that steers the system from Enew but not within Eprev
to the last terminal set Eprev, by solving the convex

optimization problem:

min
G,Yi,Si

−
∑

i∈I

log detSi

subject to



















[

G+GT − Si ∗
AiG+BiYi P−1

j,prev

]

> 0

Si ≥ τiP
−1
i,prev, τi ≥ 1

LMIs : (13), (14) for all i, j ∈ I0
Proof: We denote with Pi,new = S−1

i , Fi,new =
YiG

−1. Applying the Schur complement to the first

LMI from the previous optimization problem we have:

Pi,new = S−1
i ≥ (Ai +BiFi,new)Pj,prev(∗)T

i.e. if x0 ∈ (Enew ∩ Pi) \ Eprev and applying the

feedback controller u0 = Fi,newx0 then x1 = (Ai +
BiFi,new)x0 ∈ Eprev. The second LMI is equivalent

with: Eprev ⊆ Enew = {x ∈ R
n : xTPi,newx ≤

1, i ∈ I0}. The LMIs (13)–(14) guarantee that the

controller u(x) = Fi,newx, if x ∈ Pi satisfies the

input and output constraints. Step 2 is an iterative

procedure, i.e. we repeat it as long as we want, let

us say L times (and we stop when there is no more

increase in the volume of the set Enew). Therefore

we have available a sequence of controllers u =
Fi,lx, if x ∈ (El\El−1)∩Pi, i ∈ I0, l ∈ {1, · · · , L}
where by definition E0 is the empty set.

Step 3 We want to find a piecewise quadratic terminal

cost P (x) = xTPix if x ∈ Pi such that stability is

guaranteed when we apply the MPC scheme based

on Problem QI(N ) with the terminal set EL. The se-

quence {Pi}i∈I0
is determined solving the following

LMIs, with Ui,j having all entries non-negative:

(Ai +BiFi,l)
TPj(Ai +BiFi,l)− Pi +Q+

FT
i,lRFi,l + ET

i Ui,jEi ≤ 0 (16)

for all i, j ∈ I0, l ∈ {1, · · · , L} (see the proof of (ii)

of Proposition 3.1 where the condition J∗(k + 1) −
J∗(k) ≤ −l(x(k), u(k)) is implied by the LMIs (16)).

Corollary 3.2. (i) The controller u(x) = Fi,lx, if x ∈
(El \ El−1) ∩ Pi, l ∈ {1, ..., L} solves Problem P .

(ii) EL is positive invariant for the closed-loop system.

(iii) Using EL as a terminal set and the terminal cost

P (x) = xTPix if x ∈ Pi, with Pi given by (16) in

Problem QI(N ), then Proposition 3.1 still holds.

Proof: It is obvious that this controller stabilizes the

system, because for any x0 ∈ EL in at most L
steps x(L) ∈ E1, and then according to Proposition

2.4 x(L) will converge asymptotically towards zero.

Moreover, this controller fulfills the input and output

constraints. For the last part, we observe that if x0 ∈
El ⊆ EL, then applying this feedback controller we

have (Ai + BiFi,l)x0 ∈ El−1 ⊆ EL. Therefore, EL is

a positive invariant set for the closed-loop system, and

the LMIs (22) guarantee stability for the MPC scheme

corresponding to Problem QI(N ). ♦

Remark 3.3 We can use also polyhedral or union of

polyhedral sets: ∪i∈I0
E(i) with E(i) = {x ∈ R

n :
Hix ≤ hi} ⊆ Pi as a positive invariant terminal

set. In this case Problem QI(N ) becomes a mixed-

integer quadratic programming problem. One way of

obtaining such a union of polyhedral sets is:

{x : xTPi,L−1x ≤ 1} ∩ Pi ⊆ E(i)
⊆ {x : xTPi,Lx ≤ 1} ∩ Pi

and then use ∪i∈I0
E(i) as a terminal set, and as

terminal cost P (x) = xTPi,Lx if x ∈ Pi, where Pi,L

are given by the LMIs (16). Finding such a set E(i) is

an LMI problem (see (Necoara et al., 2004)).
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Fig. 1. Enlargement of ellipsoidal terminal set and the

trajectory corresponding to MPC scheme QI(1).

Example: We consider the following system taken

from (Bemporad et al., 2000):

A1 =

[

0.35 −0.6062
0.6062 0.35

]

, A2 =

[

0.35 0.6062
−0.6062 0.35

]

B1 = B2 =

[

0
1

]

, |x1| ≤ 5, |x2| ≤ 5, |u| ≤ 1,

E1 = [1 0], E2 = [−1 0], Q = I, R = 0.1.

Iterating Step 2 for L = 3 we obtain the following

terminal set (positive invariant set):

E3 = {x ∈ R
2 : xT

[

0.0441 0
0 0.0627

]

x ≤ 1}

and applying then Step 3 we obtain the terminal cost:

P (x) = xT

[

6.7534 0
0 9.2863

]

x.

For N = 1 the optimization problem is feasible for

any x ∈ [−5 5]× [−5 5] (see also Fig. 1). Therefore,

at each step we solve a convex optimization problem.

4. CONCLUSIONS

We have derived stabilization conditions for the class

of PWA systems using the LMI framework. The LMIs

are derived using the piecewise structure of the sys-

tem; therefore, less conservatism is introduced in com-

parison with other approaches. Using the upper bound

of the infinite-horizon quadratic cost as a terminal cost

and constructing also a convex terminal set (ellipsoidal

or polyhedral) we have shown that the quasi-infinite

receding horizon control stabilizes the PWA system.

We have proposed an algorithm based on a backward

procedure to enlarge the terminal set in order to re-

duce the on-line computational complexity by off-line

computations.
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