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October 28, 2004

Abstract

In this paper we derive stabilization conditions for the class of PWA systems

using the linear matrix inequality (LMI) framework. We consider the class of

piecewise affine feedback controllers and the class of piecewise quadratic Lya-

punov functions that guarantee stability of the closed-loop system. We take into

account the piecewise structure of the system and therefore the matrix inequalities

that we solve are less conservative. We prove that the infinite-horizon quadratic

cost is bounded if certain LMIs are satisfied. Using the upper bound of the infinite-

horizon quadratic cost as a terminal cost and constructing also a convex terminal

set we show that the receding horizon control stabilizes the PWA system. We

derive also an algorithm for enlarging the terminal set based on a backward pro-

cedure; therefore, the prediction horizon can be chosen shorter, removing some

computations off-line.

1 Introduction

Hybrid systems model the interaction between continuous and logic components. Re-

cently, hybrid systems have attracted the interest of both academia and industry [5, 6,

10, 12, 27, 28, 31], but general analysis and control design methods for hybrid systems

are not yet available. For this reason, several authors have studied special subclasses

of hybrid systems for which analysis and control techniques are currently being de-

veloped: discrete-event systems [7], piecewise affine systems (PWA) [2–4, 14, 24, 27],

etc.

Model Predictive Control (MPC) is the most successful control technology imple-

mented in industry due to its ability to handle complex systems with hard input-output

constraints. MPC is a control scheme in which the current input is computed by solv-

ing, at each sample step, a optimal control problem; the optimization yields an op-

timal input sequence and the current control action is chosen to be the first input in
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this sequence. The theory of the MPC for linear systems is quite mature, but its ex-

tension to hybrid systems is still an active area of research. Recently, research have

been focused on developing stabilizing controllers for hybrid systems and in particu-

lar for PWA systems. PWA models are very popular, since they represent a power-

ful tool for approximating nonlinear systems with arbitrary accuracy and since a rich

class of hybrid systems can be described by PWA systems. PWA systems are defined

by partitioning the state space of the system in a finite number of polytopes and as-

sociating to each polytope a different affine dynamic. Several results about stability

of PWA systems and MPC schemes for such systems can be found in the literature,

see [2, 4, 14, 17, 18, 20, 22, 23, 27, 29] and the references therein. In [22] are derived

piecewise linear (PWL) controllers and quadratic Lyapunov functions, based on LMIs

approach that guarantee stability of the closed-loop PWA system. One of the first re-

sults in guaranteeing stability of MPC for PWA systems is obtained in [4], where a

terminal equality constraint approach is presented. This type of constraint is very re-

strictive, therefore in order to guarantee feasibility of the optimal problem we need a

long prediction horizon, that leads to an optimization problem very demanding from

computational point of view. In [20] a terminal set and a terminal cost approach is pre-

sented for guarantee stability of the MPC scheme for PWA systems in which the origin

lies in the interior of one of the polytopes. In [17] this approach is extended to PWA

systems, constructing a terminal set corresponding to the piecewise linear (PWL) dy-

namics of the systems and the terminal cost is derived from solving some linear matrix

inequalities (LMI) for the same PWL dynamics.

In this paper we continue in the same line of research. We derive LMIs condition

for stabilization of PWA systems using PWA feedback controllers and also piecewise

quadratic Lyapunov functions. We take into account also the structure of our system,

introducing less conservatism in the LMIs. We also derive LMIs conditions that assure

the controller satisfies constraints on input and output. We will show that the infinite-

horizon quadratic cost is bounded if certain LMIs are satisfied. Moreover from these

LMIs we derive a feedback controller that guarantees asymptotic stability of the closed-

loop system with a convex region of attraction. In general this set is small, therefore we

show that applying the receding horizon controller we can also guarantee stability, and

we prove that this controller is better than the original feedback controller, i.e. by this

method the region of attraction increases such that for an infinite horizon we obtain the

maximal region of attraction. We derive a stable MPC scheme with a convex terminal

set and the upper bound of the infinite-horizon quadratic cost is used as a terminal cost.

If the terminal set is small, we need a long prediction horizon. Therefore we present an

algorithm for enlarging this set based on backward procedure and then we show that a

certain inner polytope approximation of this set can be used also as a terminal set. By

enlarging the terminal set the prediction horizon can be chosen shorter, therefore the

computational complexity decreases.

We use the following notations: a PWA system is defined as

{

x(k + 1) = Ãix(k) + B̃iu(k) + ãi, if x(k) ∈ Pi

y(k) = C̃ix(k) + c̃i,
(1)

where {Pi}i∈I is a partition of Rn into a number of polyhedral cells (n is the number

of states). Let I0 ⊆ I be the set of indexes for the cells that contain origin in their

closure. Similarly, let I1 ⊆ I be the set of indexes that do not contain the origin in

their closure. Each polyhedral cell is given by: Pi = {x ∈ R
n : Ei

1x ≥ e1, E
i
2x > e2},

but we assume that the closure cl(Pi) = {x ∈ R
n : Ẽix ≥ ei} with ei = 0 for i ∈ I0.
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So Ẽi = [Ei,T
1 Ei,T

2 ]T . We also introduce

Ai=

[

Ãi ãi
0 1

]

, Bi=

[

B̃i

0

]

, x̄ =

[

x
1

]

, Ci=
[

C̃i c̃i
]

, Ei=
[

Ẽi − ei
]

.

with ãi = 0, c̃i = 0 for i ∈ I0.

With the previous notations, the PWA system (1) can be written as a piecewise

linear (PWL) system (see also [24] for continuous time case):

{

x̄(k + 1) = Aix̄(k) +Biu(k), if x(k) ∈ Pi

y(k) = Cix̄(k),
(2)

where the closure of Pi is given by cl(Pi) = {x ∈ R
n : Eix̄

T ≥ 0} for any i ∈ I.

2 Boundaries on the infinite-horizon quadratic cost us-

ing static feedback controllers

2.1 Lower bounds

In this section we consider a generalization of the standard linear quadratic control for

the system (1). The problem is to bring the system to the equilibrium point x(∞) = 0
from an arbitrary initial state x(0) = x0, satisfying constraints on input and output,

limiting also the infinite-horizon quadratic cost:

J∞(x0,u) =

∞
∑

k=0

xT (k)Qx(k) + uT (k)Ru(k) (3)

with Q = QT ≥ 0, R = RT > 0 and u = (u(0), u(1), ...).
In this paper we consider the following type of constraints1:

Uc = {u ∈ R
nu : |uj | ≤ uj,max, for j = 1, ..., nu} (4)

Xc = {x ∈ R
n : |yj | ≤ yj,max, for j = 1, ..., ny}. (5)

with uj,max, yj,max > 0, therefore the sets Uc, Xc are convex, compact and contain the

origin in the interior. We define now the problem that we would like to solve:

Definition 2.1 Problem P

Design a feedback controller u = F (x) for system (1) that:

(i) limits the infinite-horizon quadratic cost in a positively invariant set E , i.e.

∀x0 ∈ E ⇒ x(k) ∈ E , ∀k ≥ 0
(ii) makes the closed-loop asymptotically stable, with x(∞) = 0
(iii) satisfies the constraints u(k) ∈ Uc, y(k) ∈ Xc, ∀k ≥ 0. ♦

We denote also with Q̄ =

[

Q 0
0 0

]

, then we have the following proposition:

1We can consider more general constraints, for instance: uj,min ≤ uj ≤ uj,max, with uj,min <

0, uj,max > 0. Similar for output.
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Proposition 2.2 If there exists symmetric matrices {P i, U ij , V i}i,j∈I , such that U ij , V i

has all elements non-negative and that verify the following LMIs:

[

R+BT
i P jBi BT

i P jAi

AT
i P jBi AT

i P jAi − P i + Q̄− ET
i U ijEi

]

≥ 0, P i > ET
i V iEi (6)

for any i, j ∈ I , then any trajectory (u, x) of the system (1) with x(∞) = 0 and

x(0) = x0 ∈ Pi0 verifies

J∞(x0,u)≥ sup{x̄T
0 P i0 x̄0: (P i, U ij , V i) issolution of (6)} (7)

Moreover any trajectory (u, x) of the system (1) with x(∞) = 0 and x(0) = x0 ∈ Pi0 ,

satisfying the constraints (4), (5) on the input and output verifies also the lower bound

(7) but this time subject to the following LMIs: for any i, j ∈ I

[

R+BT
i P jBi BT

i P jAi

AT
i P jBi AT

i P jAi − P i +Q

]

−





Eu 0 eu
0 Ey ey
0 Ei 0





T

U ij





Eu 0 eu
0 Ey ey
0 Ei 0



≥0

(8)

Proof: We define the following piecewise quadratic function:

V (k)=























[

x(k)

1

]T [

P̃i 0

0 0

][

x(k)

1

]

if i ∈ I0
[

x(k)

1

]T

P i

[

x(k)

1

]

if i ∈ I1

=















x(k)T P̃ix(k) if i ∈ I0
[

x(k)

1

]T

P i

[

x(k)

1

]

if i ∈ I1

with P i ∈ R
n+1×n+1, P̃i ∈ R

n×n and P i > ET
i V iEi for all i ∈ I1, P̃i > ET

i V iEi

for all i ∈ I0 (i.e. it is not necessary P i, P̃i > 0 on the entire state space, but rather

on Pi). With these conditions we have that V (k) > 0 for any x(k) 6= 0.

We introduce the notations:

P i =

[

P̃i 0
0 0

]

, if i ∈ I0

l(x(k), u(k)) = xT (k)Qx(k) + uT (k)Ru(k) = x̄T (k)Q̄x̄(k) + uT (k)Ru(k)

V (k) = x̄T (k)P (k)x̄(k) with P (k) = P i if x(k) ∈ Pi.

If we assume that at sample step k ≥ 0, the state x(k) ∈ Pi and x(k+1) = Ãix(k) +
B̃iu(k) + ãi ∈ Pj then imposing

V (k)− V (k + 1) ≤ l(x(k), u(k)) when x(k) ∈ Pi (9)

and applying the S-procedure [15,25] for x̄(k) ∈ cl(Pi) = {Eix̄ ≥ 0} and using Fact

1 (see Appendix), we get

V (k)− V (k + 1) ≤ l(x̄(k), u(k))− x̄(k)TET
i U ijEix̄(k) (10)

for any x̄(k) ∈ R
n+1, u(k) ∈ R

nu .

From the last relation we obtain for any x̄(k) ∈ R
n+1, u(k) ∈ R

nu that
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x̄T (k)P ix̄(k) − (Aix̄(k) + Biu(k))
TP j(Aix̄(k) + Biu(k)) ≤ x̄T (k)Q̄x̄(k) +

uT (k)Ru(k)− x̄(k)TET
i U ijEix̄(k). This relation leads us to LMI (6).

For the second part, we observe that writing (9) for k = 0, 1, 2..., with x(∞) = 0
and thus V (∞) = 0 and adding these relations yields:

(V (0)− V (1)) + (V (1)− V (2)) + ... ≤ l(x(0), u(0)) + l(x(1), u(1)) + ... which

leads us to (7).

Let us now also take into account the constraints. The constraints on the input

(4) can be written as [Eu eu][u
T 1]T ≥ 0 and the constraints on the output (5) as

[Ey ey][x
T 1]T ≥ 0. Then by applying the S-procedure and Fact 1 for [uT , xT , 1]T ∈

R
nu+n+1 we have to replace the LMIs (6) with the LMIs (8). Then any trajectory (x, u)

of system (1) with x(∞) = 0 and x(0) = x0 ∈ Pi0 , satisfying the constraints (4), (5)

verifies also the lower bound (7) but this time subject to the above LMIs (8). ♦

Remark 2.3 Upper and lower bounds for the infinite-horizon quadratic cost were de-

rived for continuous time PWA systems in [24].

We can define a set Ω = {(i, j) : x(k) ∈ Pi, x(k + 1) ∈ Pj} that represents all

possible transitions from one region to another and then to restrict i, j ∈ Ω only. The

set Ω can be determined via reachability analysis (see [2]). ♦

2.2 Upper bounds for the infinite-horizon cost

In order to obtain an upper bound for J∞(x0) we should take a particular control law.

Our first impulse would be to take the ordinary linear quadratic control:

Fi = −(R+BT
i P iBi)

−1BiP iAi = [F̃i fi] (11)

with fi = 0 when i ∈ I0. But, in general, the PWA control law

u(k) =

{

F̃ix(k) + fi, if i ∈ I1
F̃ix(k), if i ∈ I0

cannot guarantee stability of system (2). If the closed-loop system

x̄(k + 1) = (Ai +BiFi)x̄(k), x(k) ∈ Pi (12)

is asymptotically stable then we can choose this controller in order to obtain an upper

bound for the infinite-horizon cost (we can check stability via LMI feasibility as we

will see in the sequel). Indeed, similar to Proposition 2.2 we introduce the piecewise

quadratic function:

V (x) =

{

xT P̃ix, if i ∈ I0
xT P̃ix+ 2pTi x+ pii, if i ∈ I1

We want to find Pi ∈ R
n+1×n+1, i ∈ I with

Pi =

[

P̃i 0
0 0

]

, if i ∈ I0, Pi =

[

P̃i pi
pTi pii

]

, if i ∈ I1

such that x(∞) = 0, Pi > ET
i ViEi for all i ∈ I (Vi has all elements non-negative

which implies that Pi > 0 only on a set that contains Pi) and

V (k + 1)− V (k) ≤ −l(x̄(k), F (k)x̄(k)) for any k (13)

5



If x(k) ∈ Pi and x̄(k + 1) = (Ai +BiFi)x̄(k) ∈ Pj then (13) becomes

x̄T (k)(Ai +BiFi)
TPj(Ai +BiFi)x̄(k)− x̄T (k)Pix̄(k)

≤ −x̄T (k)Q̄x̄(k)− x̄T (k)FT
i RFix̄(k) for x(k) ∈ Pi (14)

Because we need (14) to be valid only for x ∈ Pi, we can use S-procedure in or-

der to reduce conservatism when we solve (14). Using Fact 1 (see Appendix), one

method found in the literature (see [24]) is to relax the matrix inequality (14) to: find

Pi, Uij , i, j ∈ I, such that Uij has all entries non-negative that satisfies the following

matrix inequalities

x̄T (Ai +BiFi)
TPj(Ai +BiFi)x̄− x̄TPix̄ ≤ −x̄T Q̄x̄−

− x̄TFT
i RFix̄− x̄TET

i UijEix̄, for any x̄ ∈ R
n+1 (15)

This gives rise to the following LMIs in Pi, Uij , Vi (all entries of Uij , Vi non-negative):

(Ai +BiFi)
TPj(Ai +BiFi)− Pi + Q̄+ FT

i RFi + ET
i UijEi ≤ 0, for all i, j ∈ I

Pi > ET
i ViEi, for all i ∈ I. (16)

Proposition 2.4 If x0 ∈ Pi0 then

J∞(x0) ≤ inf{x̄T
0 Pi0 x̄0 : (Pi, Uij , Vi) is solution of (16)} (17)

Proof: From (13) we have

(V (1)−V (0))+(V (2)−V (1)) + ...≤−l(x̄(0), F (0)x̄(0))−l(x̄(1), F (1)x̄(1))− ...

and because x(∞) = 0 then V (∞) = 0, which implies −V (0) ≤ −J∞(x0). Therefore

(17) holds. ♦

If the linear quadratic controller (11) is not stabilizing for (12), i.e. the LMIs (16)

do not have a solution, or does not satisfy the constraints on input/output, we look for

another controller. In the sequel we derive this controller that solves problem P.

We denote with Fi = [F̃i fi] with fi = 0 for i ∈ I0 and the piecewise quadratic

function: V (k) = x̄T (k)P (k)x̄(k) with P (k) = Pi if x(k) ∈ Pi. We want to find

Fi, Pi ∈ R
n+1×n+1, i ∈ I, with

Pi =

[

P̃i 0
0 0

]

, if i ∈ I0;Pi =

[

P̃i pi
pTi pii

]

, if i ∈ I1

such that:

1. x(∞) = 0

2. V (k + 1)− V (k) ≤ −l(x̄(k), F (k)x̄(k)), k ≥ 0

3. the resulting input-output sequence should satisfy the input/output constraints.

We do not require Pi > 0 on the entire space but rather Pi > 0 on Pi, which using S-

procedure can be expressed as Pi > ET
i ViEi, where Vi has all elements non-negative.

Condition 2 is implied by the existence of a solution Fi, Pi of the matrix inequalities

x̄T (Ai +BiFi)
TPj(Ai +BiFi)x̄− x̄TPix̄+ x̄T Q̄x̄+ x̄TFT

i RFix̄ < 0, ∀ x ∈ Pi,
(18)
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and applying S-procedure we obtain the following matrix inequalities:

(Ai +BiFi)
TPj(Ai +BiFi)−Pi+Q̄+ FT

i RFi + ET
i UijEi<0, ∀ i, j ∈ I, (19)

Pi > ET
i ViEi, for all i ∈ I (20)

where we require Uij , Vi have all entries non-negative. In the sequel the symbol *

is used to induce a symmetric structure in an LMI. The following proposition give a

solution to (19)-(20):

Proposition 2.5 The matrix inequalities (19)–(20) have a solution if and only if the

following matrix inequalities have a solution

[

BT
i PjBi + θR− I BT

i PjAi + Fi

∗ AT
i PjAi−Pi +ET

i UijEi+θQ̄−FT
i Fi

]

<0

Pi > ET
i ViEi (21)

where Uij , Vi have all entries non-negative and θ > 0.

Proof: It is easy to see that (19) can be written as

[

Fi

I

]T[
BT

i PjBi +R BT
i PjAi

∗ AT
i PjAi − Pi + ET

i UijEi + Q̄

][

Fi

I

]

<0

Now M⊥ denotes the orthogonal complement of M (M⊥ exists only if M has linear

dependent rows). We have then MTM⊥ = 0 and M⊥M⊥T > 0. In our case we have

the relation

[

−I
FT
i

]⊥

=

[

Fi

I

]T

. Therefore, the previous formula can be written

[

−I
FT
i

]⊥

Qij

[

−I
FT
i

]⊥T

<0 (22)

where Qij=

[

BT
i PjBi +R BT

i PjAi

∗ AT
i PjAi − Pi + ET

i UijEi + Q̄

]

. Using now the Finsler’s

lemma (see Appendix) we obtain that (22) is equivalent with

Qij < σi,j

[

−I
FT
i

]

[

−I Fi

]

(23)

with σij ∈ R. Of course (23) has a solution if and only if

Qij < σ

[

−I
FT
i

]

[

−I Fi

]

(24)

with σ > 0 has a solution (Take σ > maxi,j{0, σij} for the implication “(23) ⇒ (24)”.

The other implication is obvious). Now if we divide (24) with σ > 0 and denote with

Pi → 1/σPi, Uij → 1/σUij , Vi → 1/σVi and θ → 1/σ we obtain (21). ♦

The matrix inequalities (21) are not LMIs due to the term FT
i Fi. Therefore we

have to use standard algorithms for solving bilinear matrix inequalities (BMI). The

algorithms for solving BMIs cover both local and global approaches. Local approaches

are less computationally intensive , and they consist in searching a feasible solution: if

it exists then we have solved the problem, otherwise one cannot tell whether there is a

7



feasible solution or not. Global algorithms are able to find a solution if the problem is

feasible. The branch-and-bound algorithm of Tuan [30] can be used to solve globally

our problem, although in this case the computational time is increasing in comparison

with local approach.

Now we discuss some possible relaxations for (19)–(20). First relaxation is to

replace (20) with Pi > 0. In this case we can apply the Schur complement to (19).

Note that (19) is equivalent with

(Ai+BiFi)
TS−1

j (Ai +BiFi)−Pi+Q̄+FT
i RFi + ET

i UijEi<0, ∀ i, j ∈ I (25)

0 < Pj ≤ S−1
j , ∀ j ∈ I (26)

In this way we take into account also the case Sj = P−1
j . We give now a sketch of the

proof: it is clear that if (19) has a solution then there exists an ǫ > 0 such that (Ai +
BiFi)

TPj(Ai+BiFi)−Pi+Q̄+FT
i RFi+ET

i UijEi < −ǫ(Ai+BiFi)
T (Ai+BiFi).

Then, we can take S−1
j = Pj + ǫI and thus we obtain (25)–(26). The other implication

is obvious.

Now, using the Schur complement, (25)–(26) is equivalent with





Pi − Q̄− ET
i UijEi ∗ ∗

Ai +BiFi Sj 0
Fi 0 R−1



 > 0 (27)

0 < Pj ≤ S−1
j (28)

In Appendix (Fact 5) we give an algorithm for finding a solution for (27)–(28) based

on an idea from [13].

We define X0 = ∪i∈I0
Pi and we consider an inner approximation with an ellipsoid

of this set:

E(H) = {x ∈ R
n : xTHx ≤ 1} ⊆ X0.

The computation of a maximal volume ellipsoid included in a polytope can be done

using convex optimization (see [33]).

Proposition 2.6 (i) If the following LMIs in Pi = PT
i > 0, Si = ST

i > 0, Fi, Uij =
UT
ij , with all entries of Uij non-negative





Pi − Q̄− ET
i UijEi ∗ ∗

Ai +BiFi Sj 0
Fi 0 R−1



 > 0 (29)

and the following bilinear matrix inequalities (BMIs)

SiPi + PiSi ≤ 2I (30)

have a solution Pi, Si, Fi, Uij , i, j ∈ I then they are also solution of (27)–(28).

(ii) The following set E(ρ) = {x ∈ R
n : xT P̃jx ≤ ρ, j ∈ I0}, ρ > 0 is a positive

invariant set for the closed-loop system, convex, compact, containing the origin in the

interior if the following LMIs are satisfied:

[

τH − P̃j 0
0 −τ + ρ

]

≤ 0 (31)

with τ > 0 and j ∈ I0.
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(iii) If we require the input u(k + l) to satisfy (4) for all l ≥ 0, once x(k) ∈ E(ρ)
then an additional LMI must be satisfied:

[

Λ− ET
i WiEi Fi

∗ Pi

]

≥ 0 with Λjj ≤ u2
j,max/ρ (32)

where the matrices Wi have all entries non-negative for any i ∈ I0.

(iv) If we require the output y(k+1+l) to satisfy (5) for all l ≥ 0, once x(k) ∈ E(ρ)
then the following additional LMIs must be satisfied:

[

Γ− ET
i W̃iEi Ci(Ai +BiFi)
∗ Pi

]

≥ 0, Γjj ≤ y2j,max/ρ (33)

where the matrices W̃i have all entries non-negative for any i ∈ I0. Taking γ = 1/ρ
all formulas (29)-(33) are LMIs except (30).

Proof: (i) We have 4 possibilities: i, j ∈ I1; i, j ∈ I0; i ∈ I0, j ∈ I1; i ∈ I1, j ∈
I0. For brevity we discuss here only the first case (the other three cases can be proved

similarly, see also Appendix). The BMIs (30) imply that

0 < Si ≤ P−1
i if and only if 0 < Pi ≤ S−1

i

(see also [26]). Applying the Schur complement to (29) and using the last inequality

we get:

0 <Pi − Q̄− ET
i UijEi − (Ai +BiFi)

TS−1
j (∗)− FT

i RFi

≤ Pi − Q̄− ET
i UijEi − (Ai +BiFi)

TPj(∗)− FT
i RFi

i.e. formula (19) is valid with the requirement Uij has all entries non-negative.

(ii) It is well-known [32] that inclusion of ellipsoids

{x : xT P̃jx ≤ ρ} ⊆ E(H) ⊆ X0

can be expressed as an LMI (31). Then if x(k) ∈ E(ρ) ∩ Pi0 , for some io ∈ I0, then

xT (k)P̃i0x(k) ≤ ρ and x(k + 1) = (Ãi0 + B̃i0 F̃i0)x(k).
Therefore, for any j ∈ I0 according to (i) we have:

xT(k + 1)P̃jx(k + 1)=xT(k)(Ãi0+B̃i0 F̃i0)
TP̃j(Ãi0+B̃i0 F̃i0)x(k)≤xT (k)P̃i0x(k)≤ρ

according to condition 2. By induction we can see that if x(k) ∈ E(ρ) then x(k + l) ∈
E(ρ) for all l ≥ 0. E(ρ) is convex2 and compact because it is the intersection of

ellipsoids (the ellipsoids are convex and compact sets because P̃i > 0) and it contains

the origin in the interior because each ellipsoid contains the origin: P̃i > 0.

(iii) The constraint on the input (4) is equivalent with u2
j (k) ≤ u2

j,max. We have

E(ρ) ⊆ {x : xT P̃ix ≤ ρ} and if x(k) ∈ E(ρ) ∩ Pi then

u2
j (k)≤ max

x(k)∈E(ρ)
(F̃ix(k))

2
j ≤ max

xT P̃ix≤ρ
(F̃ix)

2
j ≤ max

xT P̃i
ρ
x≤1

(F̃ix)
2
j ≤ ‖√ρ(F̃iP̃

−1/2
i )j‖22

= ρ(F̃iP̃
−1
i F̃T

i )jj = ρ(FiP
−1
i FT

i )jj ≤≤ ρΛjj ≤ u2
j,max on Pi.

2We observe that E(ρ) is in particular an invariant set for the free switching system with the modes

i ∈ I0.
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Taking Wi with all entries non-negative, and applying the S-procedure, the last in-

equality translates in:

Λ− FiP
−1
i FT

i − ET
i WiEi ≥ 0

and Λjj ≤
u2

j,max

ρ which is the LMI (32) if we denote with γ = 1
ρ .

(iv) The LMI (33) is derived in the same way. ♦

Remark 2.7 We have considered an ellipsoid approximation E(H) of X0. If X0 is

a polytope (or we can have a inner polytope approximation of X0) given by {x :
cTl x ≤ 1, l = 1, ..., s}, we can replace LMIs (31) with the following inequalities:

cTl ρP
−1
j cl ≤ 1 for all l = 1, ..., s. Using the Schur complement the last inequality

can be recast as an LMI in Pj and 1/ρ, which fits to our settings from Proposition 2.6.

We used here the fact that an ellipsoid {x : xTPx ≤ ρ} is contained in a half space

{x : cTx ≤ 1} if and only if cT ρP−1c ≤ 1. ♦

Remark 2.8 In Proposition 2.6 we can search for Pi, Fi, for which the volume of E(ρ)
is maximal, by considering the minimization of the convex cost function:

min−
∑

i∈I0
log det(Pi). There is a method to transform the matrix inequality

(28) into LMIs using the fact that S + S−1 ≥ 2I for any S > 0. Then we can replace

(28) with the more conservative LMI Pj + Sj ≤ 2I . ♦

We propose now a second relaxation. If we do not apply the S-procedure for (18),

i.e. we replace the condition “x ∈ Pi“, with x ∈ R
n, then (18) becomes:

(Ai +BiFi)
TPj(Ai +BiFi)− Pi +Q+ FT

i RFi ≤ 0 (34)

for all i, j ∈ I0 and Pi > 0. The matrix inequalities (34) were solved in [16] making

a so-called linearizing change of variables by introducing: S = P−1, Fi = YiS. This

type of linearization for (34) is also used in [17], where a stabilizing receding horizon

control for PWL systems is developed. If we use this linearization we have to impose

a certain structure on matrices Pi. In order to avoid this conservatism, we propose here

another linearization of (34), namely Pi = S−1
i , Fi = YiG

−1. Using this change of

variables we see that the determination of the control law does not depend explicitly

on the Lyapunov matrices Pi. The extra degree of freedom introduced by the matrix G
which is not considered symmetric, is incorporated in the control variable, removing

the special structure of Pi to G. A similar linearizing method was used in [9] in the

context of stabilizing linear parameter varying (LPV) systems.

Proposition 2.9 (i) If the following LMIs in G,Yi, Si









G+GT − Si ∗ ∗ ∗
AiG+BiYi Sj ∗ ∗

Q̄1/2G 0 I ∗
R1/2Yi 0 0 I









> 0 (35)

for all i, j ∈ I have a solution then Fi = YiG
−1, Pi = S−1

i are solutions of (18).

(ii) The following set E(ρ) = {x ∈ R
n : xT P̃jx ≤ ρ, j ∈ I0}, ρ > 0 is a positive

invariant set for the closed-loop system, convex and compact, containing the origin in

the interior if the following LMIs are satisfied:.

[

τH−1 − S̃j 0
0 −τ + 1/ρ

]

≥ 0 (36)
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with τ > 0 and j ∈ I0.

(iii) If we require the input u(k + l) to satisfy (4) for all l ≥ 0, once x(k) ∈ E(ρ)
then an additional LMI must be satisfied:

[

Λ Yi

∗ G+GT − Si

]

≥ 0 with Λjj ≤ u2
j,max/ρ (37)

for any i ∈ I0.

(iv) If we require the output y(k+1+l) to satisfy (5) for all l ≥ 0, once x(k) ∈ E(ρ)
then the following additional LMI must be satisfied:

[

Γ C̃i(ÃiG+ B̃iYi)
∗ G+GT − Si

]

≥ 0 with Γjj ≤ y2j,max/ρ. (38)

for any i ∈ I0. Taking γ = 1/ρ all previous formulas become LMIs.

Proof: (i) We have to discuss also separate 4 cases, but for brevity we give the proof

only for first case (see Appendix for more details).

From (35) using the Schur complement, we observe first that G is a nonsingular

matrix because

G+GT > Si

and also

0 < Si ⇒ (Si −G)TS−1
i (Si −G) ≥ 0

therefore we get the following relation:

G+GT − Si ≤ GTS−1
i G

and

0 <G+GT − Si − (AiG+BiYi)
TS−1

j (∗)−GT Q̄G− Y T
i RYi

≤ GTS−1
i G− (AiG+BiYi)

TS−1
j (∗)−GT Q̄G− Y T

i RYi

= GT (S−1
i − (Ai +BiYiG

−1)TS−1
j (∗)− Q̄−G−TY T

i RYiG
−1)G

Taking Fi = YiG
−1, Pi = S−1

i we obtain from the last relation (18):

(Ai +BiFi)
TPj(Ai +BiFi)− Pi + Q̄+ FT

i RFi ≤ 0, for any i, j ∈ I

(ii) The LMIs (36) express the fact that

{x : xT S̃−1
j x ≤ ρ} ⊆ E(H) ⊆ X0

with S̃−1
j = P̃j (see [32]) and the rest of the proof is similar to the proof from Propo-

sition 2.6 (ii).

(iii) The constraint on the input (4) is equivalent with u2
j (k) ≤ u2

j,max. We have

E(ρ) ⊆ {x : xT P̃ix ≤ ρ} and if x(k) ∈ E(ρ) ∩ Pi then

u2
j (k) ≤ max

x(k)∈E(ρ)
(YiG

−1x(k))2j ≤ max
x̄TPix̄≤ρ

(YiG
−1x)2j

≤ max
x̄T Pi

ρ
x̄≤1

(YiG
−1x)2j ≤ ‖√ρ(YiG

−1S
1/2
i )j‖22 = ρ(YiG

−1SiG
−TY T

i )jj

≤ ρΛjj ≤ u2
j,max.

Therefore (37) holds. We used here Pi = S−1
i .

(iv) This proof is similar with (c). ♦
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Now we assume that the LMIs from Proposition 2.2 are feasible, and that we have

available P̄i, i ∈ I and also applying one of the approaches proposed before we

obtained Fi, Pi, i ∈ I. In this case we have the following two consequences:

Corollary 2.10 The origin of system (1) is globally asymptotically stable with the PWA

feedback controller u(k) = F̃ix(k)+fi, x(k) ∈ Pi and the infinite-horizon quadratic

cost is bounded by:

sup x̄T
0 P̄i0 x̄0 ≤ J∞(x0) ≤ inf x̄T

0 Pix̄0 (39)

for any x0 ∈ Pi0 .

We define γ = 1
ρ and replace then in Proposition 2.6 and Proposition 2.9. The PWA

feedback controller u(k) = Fix̄(k), x(k) ∈ Pi makes the origin locally asymptotically

stable, the input and output satisfying the constraints (4), (5) with a region of attraction

E = ∪i∈I0
({x : xTPix ≤ 1/γ} ∩ Pi)

i.e. the feedback controller u(k) = Fix̄(k), x(k) ∈ Pi solves locally the problem (P),

and moreover

J∞(x0) ≤ 1/γ

for any x0 ∈ E .

Proof: From the construction of Pi we know that x(∞) = 0. Actually we have that

the function

V (x) = x̄TPix̄, x ∈ Pi

is a piecewise quadratic Lyapunov function for the closed-loop system:

x(k + 1) = Ãix(k) + B̃i[F̃i fi][x(k)
T 1]T + ãi, x(k) ∈ Pi

Contrary to the continuous time case the Lyapunov function can be discontinuous

across cell boundaries for discrete case.

For the second part we know that E(1/γ) is an invariant set, but a larger invariant

set is E , that is a union of convex sets. From LMIs (37)-(32) the controller satisfies the

input constraints. The output constraints are satisfied due to LMIs (38)-(33). Asymp-

totic stability is proved using the same Lyapunov function. In this way we can solve

problem P locally. ♦

3 Model predictive control law

3.1 MPC using an ellipsoidal terminal set

In the previous section we have found a PWA feedback controller u(x) = F x̄ that

solves problem P with a positive invariant set E = E(ρ). In general this set is small

in comparison with Emax defined as the largest domain of attraction achievable by a

control law solving problem P. In this section we show the benefits of MPC applied to

solve problem P.

If at sample time k we want to minimize the infinite-horizon quadratic cost (11),

this is very difficult because our system is nonlinear, and therefore we will have an

infinite dimensional optimization problem. Therefore we apply a quasi-infinite method

(see [16, 19]) to cope with this drawback. We consider a prediction horizon N , we
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assume that at sample time k the state x(k) is available (i.e. can be measured or esti-

mated) and we split the infinite-horizon cost into two parts:

J∞(x(k),u)=

k+N−1
∑

j=k

xT (k)Qx(j) + uT (j)Ru(j)+

∞
∑

j=k+N

xT (j)Qx(j) + uT (j)Ru(j)

= JN (x(k)) + J∞(x(k +N)).

From Section 2 we have available P i,Ki, Pi, i ∈ I and moreover we have obtained

an upper and lower bound for J∞(x(k +N)):

inf
Pi,Ki,Uij

x̄(k +N)TPi0 x̄(k +N)≥J∞(x(k +N))≥ sup
P i,Uij

x̄(k +N)TP i0 x̄(k +N)

for any x(k +N) ∈ Pi0 .

The quasi-infinite method replaces the second infinite term with its upper bound

[19]. Then at each sample step k we have to solve the following optimization problem

which will be called QI(N ):

J∗(k) = min
uk

k+N−1
∑

j=k

xT (j)Qx(j) + uT (j)Ru(j) + x̄(k +N)TP (k +N)x̄(k +N)

subject to


















uk = (u(k), ..., u(k +N − 1) ∈ UN
c )

equation (1)

(y(k + 1), ..., y(k +N)) ∈ XN
c

hard constraint: x(k +N) ∈ E(ρ).
where P (k +N) = Pi if x(k +N) ∈ Pi.

In the above formulation we can detect the standard ingredients for a stable MPC

scheme: a terminal cost and constraint set (see [21]). According to the authors of

[21], ideally, the terminal cost should be the infinite-horizon value cost (in this way is

constructed a stable MPC for linear systems), but due to the nonlinearity of the system,

this cannot be computed explicitly (as in linear case), therefore we replace it with its

upper bound that we have derived in Section 2. MPC schemes using the upper bound

of the infinite-horizon cost as a terminal cost has been employed also in [16, 19] in the

context of MPC for LPV systems with polytopic uncertainty.

We apply a receding horizon principle, therefore after we solve the optimization

problem at step k with optimal solution u∗
k we apply only the first sample u(k) =

u∗
k(0) = FRH,N(x(k)) and at next step k + 1 we update the state and repeat the whole

procedure.

In order to prove that receding horizon controller solves problem P, we introduce

first some definitions.

Definition 3.1 Let F(N,x0) be the set of all feasible inputs corresponding to QI(N )

and let ERH(N) be the set of initial states x0 such that F(N,x0) is non-empty.

Definition 3.2 Consider the closed loop system given by receding horizon control:

ΣRH

{

x(k + 1) = Ãix(k) + B̃iF
RH,N (x(k)) + ãi,

y(k) = C̃ix(k) + c̃i, if x(k) ∈ Pi

13



Proposition 3.3 We assume that we obtained Fi, Pi, E(ρ) applying one of the methods

from Section 2. Then we have:

(i) ERH(N) is a positive invariant set for ΣRH and

E(ρ) ⊆ ERH(N), ∀ N > 0 (40)

(ii) the quasi-infinite program QI(N ) asymptotically stabilizes the system (2) with

u(k) = u∗
k(0) = FRH,N (x(k)). Therefore this quasi-infinite receding horizon control

solves problem P.

(iii) ERH(N) ⊂ ERH(N + 1) and

limN→∞ ERH(N) = ∪∞
N=1ERH(N) = Emax, where Emax denotes the largest do-

main of attraction achievable by a control law solving problem P. Moreover, if there

exists an N∗ such that

ERH(N∗) = ERH(N∗ + 1)

then Emax = ERH(N∗).
Proof: (i) Let x0 ∈ ERH(N) ∩ Pi, then the optimization problem QI(N ) has an

optimal solution

u∗
0 = (u(0)∗, ..., u(N − 1)∗) ∈ UN

c , (y(1)∗, ..., y(N)∗) ∈ XN
c .

At the next step we have

(u(1)∗, ..., u(N−1)∗, Fjx(N)∗) ∈ F(N, Ãix0+ B̃iF
RH,N (x0)+ ãi) if x(N)∗ ∈

E(ρ)∩Pj with j ∈ I0, because according to LMIs (37)-(38) or (32)-(33): F̃jx(N)∗ ∈
Uc and y(N + 1) = C̃j(Ãj + B̃jF̃j)x(N)∗ ∈ Xc.

In conclusion x1 = Ãix0 + B̃iF
RH,N (x0) + ãi ∈ ERH(N), therefore (applying

induction) we can prove that ERH(N) is a positive invariant set for ΣRH.

Moreover, for any x0 ∈ E(ρ) there exists a feasible input sequence for QI(N ),

namely (F (0)x0, ..., F (N−1)x(N−1)), where F (·) ∈ {Fi, i ∈ I} ⇒ x0 ∈ ERH(N),
so that E(ρ) ⊆ ERH(N), ∀ N > 0.

(ii) At sample step k = 0 the optimization problem QI(N ) has an optimal solution

u∗
0 = (u(0)∗, ..., u(N − 1)∗ ∈ UN

c ), (y(1)∗, ..., y(N)∗) ∈ XN
c , x(N)∗ ∈ E(ρ∗).

Then at step k = 1 we have a feasible solution:

u1 = (u(1)∗, ..., u(N − 1)∗, F̃jx(N)∗ if x(N)∗ ∈ E(ρ∗) ∩ Pj)

Indeed by applying u1 we have F̃jx(N)∗ ∈ Uc, x(N + 1) = (Ãj + B̃jF̃j)x(N)∗ ∈
E(ρ) therefore (y(2)∗, ..., y(N)∗, C̃j(Ãj + B̃jF̃j)x(N)∗)] ∈ XN

c .

Moreover,

J∗(1)≤J(u1)=J∗(0)−l(x(0)∗, u(0)∗)−x(N)∗TPix(N)∗+l(x(N)∗, F̃ix(N)∗)+

x(N)∗T (Ãi + B̃iF̃i)
TPj(Ãi + B̃iF̃i)x(N)∗ ≤ J∗(0)− l(x(0)∗, u(0)∗)

where we used in the last inequality the formula (19). Therefore

J∗(1)− J∗(0) ≤ −l(x(0)∗, u(0)∗) ≤ −‖x(0)∗‖2Q

By induction we can prove that:

J∗(k + 1)− J∗(k) ≤ −‖x(k)∗‖2Q
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i.e. the optimal quasi-infinite cost J∗(k) is a Lyapunov function for the closed-loop

system, and due to the previous inequality we have asymptotic stability. Therefore, in

this way we can solve the problem P with the feedback controller u(k) = FRH,N(x(k))
and the positive invariant set ERH(N) .

(iii) Let x0 ∈ ERH(N) then there exists (u(0), ..., u(N−1)) ∈ F(N,x0), therefore

(u(0), ..., u(N − 1), F (N)x∗(N) ∈ F(N + 1, x0)), so that x0 ∈ ERH(N + 1) i.e.

ERH(N) ⊆ ERH(N + 1)

As N → ∞ the problem QI(N ) becomes an infinite-horizon model predictive control

problem implying that limN→∞ ERH(N) = Emax.

Moreover, from the equality

ERH(N∗) = ERH(N∗ + 1)

it follows that there does not exist a state x0 6∈ ERH(N∗) such that with a feasible input

u the state x1 ∈ ERH(N∗). Therefore Emax = ERH(N). ♦

Remark 3.4

• Point (i) is essential in order to ensure that it is worth replacing the auxiliary

controller F with the receding horizon controller FRH,N .

• Point (iii) shows that at the cost of an increasing of the computational effort as-

sociated with the optimization problem QI(N ), the domain of attraction can be

enlarged toward the maximum achievable one. Therefore N is a tuning parame-

ter that realizes a trade-off between complexity/performance.

• When N = 1 we have to solve at each step k a convex optimization problem.

If N > 1, QI(N ) is a nonlinear optimization problem: the objective function is

convex subject to linear and convex inequality constraints and nonlinear equality

constraints.

3.2 Enlargement of the ellipsoidal terminal set

We have derived a stable MPC scheme that solved problem P. Stability is guaranteed

by using a terminal set and a terminal cost. We derived a piecewise quadratic terminal

cost together with a convex terminal set . The optimization problem that we have

to solve on-line at each sample step k is nonlinear, non-convex, the computational

time increasing with the prediction horizon N . If the terminal set is small, then we

need a long prediction horizon in order to have feasibility for QI(N ). Therefore, the

optimization problem will be computationally intensive. A larger terminal set is E =
∪i∈I0

({x : xTPix ≤ ρ} ∩ Pi), but this is not a convex set (it is a union of convex

sets). In the sequel we develop a method to enlarge the terminal set based on backward

procedure that can be done off-line, and thus we can efficiently implement on-line the

stable MPC scheme derived before using a shorter prediction horizon. We consider the

PWL dynamics of the system:

{

x(k + 1) = Aix(k) +Biu(k), if x(k) ∈ Pi

y(k) = Cix(k),
(41)

where {Pi}i∈I is a partition of Rn into a number of polyhedral cells, with the closure

of Pi given by cl(Pi) = {x ∈ R
n : Eix

T ≥ 0}. Moreover we assume the constraints
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(4)-(5) on input and output. Similar with Proposition 2.9 we derive an initial terminal

region and cost based on LMIs.

Step 1 Solve the following convex optimization problem:

min
G,Yi,Si

−
∑

i∈I

log detSi

subject to








G+GT − Si ∗ ∗ ∗
AiG+BiYi Sj ∗ ∗

Q1/2G 0 Id ∗
R1/2Yi 0 0 Id









> 0 (42)

[

Λ Yi

∗ G+GT − Si

]

≥ 0,

[

Γ Ci(AiG+BiYi)
∗ G+GT − Si

]

≥ 0, (43)

with Λjj ≤ u2
j,max, Γjj ≤ y2j,max and define

Fi,1 = YiG
−1, Pi,1 = S−1

i , E1 = {x ∈ R
n : xTPi,1x ≤ 1, i ∈ I}.

According to Proposition 2.9 for any x ∈ E1, the controller u = Fi,1x satisfies the

constraints on input and output and maintains the trajectory of the closed-loop system

inside E1 but converging asymptotically to origin.

Step 2 Using the previous terminal set Eprev = {x ∈ R
n : xTPi,prevx ≤ 1, i ∈

I}, we construct a new larger terminal set Enew based on a controller Fi,new, that steers

the system from Enew but not within Eprev to the last terminal set Eprev.

min
G,Yi,Si

−
∑

i∈I

log detSi

subject to

[

G+GT − Si ∗
AiG+BiYi P−1

j,prev

]

> 0, Si ≥ τiP
−1
i,prev, τi ≥ 1 (44)

and LMIs (43) for any i, j ∈ I.

Proof: We denote with Pi,new = S−1
i , Fi,new = YiG

−1. The second LMI in (44)

is equivalent with:

Eprev ⊆ Enew = {x ∈ R
n : xTPi,newx ≤ 1, i ∈ I}

The first LMI in (44) after applying the Schur complement, expresses the fact that:

Pi,new = S−1
i ≥ (Ai +BiFi,new)Pj,prev(∗)T

i.e. if x0 ∈ (Enew ∩ Pi) − Eprev and applying the feedback controller u0 = Fi,newx0

then x1 = (Ai + BiFi,new)x0 ∈ Eprev. The LMIs (43) guarantee that the controller

u = Fi,newx satisfies the input and output constraints. Step 2 is an iterative procedure,

i.e. we repeat it as long as we want, let us say L times (e.g. we stop when there is no

more increase in the volume of the set Enew).

Therefore we have available a sequence of controllers u = Fi,lx, if x ∈ (El −
El−1) ∩ Pi, i ∈ I, l ∈ {1, · · · , L} where by definition E0 is the empty set.
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Remark 3.5 The steps 1 and 2 can be seen as an off-line multi-parametric LMI version

of the MPC using multi-parametric quadratic programming (see also [11]).

In order to reduce the conservatism in Step 1 we can solve the optimization prob-

lem subject to LMI+BMI from Proposition 2.6 (therefore Step 1 will be a non-convex

optimization problem). Similarly, we can proceed in Step 2, namely we can solve the

optimization problem :

min
Fi,Pi,Uij

∑

i∈I

log detPi

subject to
[

Pi − ET
i UijEi ∗

Ai +BiFi P−1
j,prev

]

> 0 (45)

Uij having all entries non-negative and

Pi ≤ τiPi,prev, 0 ≤ τi ≤ 1 (46)

and LMIs (43) for any i, j ∈ I. But in this case the objective function is concave,

subject to convex constraints (therefore again we have a non-convex optimization prob-

lem).

Step 3 At this stage we want to find a piecewise quadratic terminal cost P (x) =
xTPix if x ∈ Pi such that stability is guaranteed when we apply the MPC scheme

QI(N ) with the terminal set EL. The sequence {Pi}i∈I is determined solving the

following LMIs:

(Ai +BiFi,l)
TPj(Ai +BiFi,l)− Pi +Q+ FT

i,lRFi,l + ET
i Ui,jEi ≤ 0, (47)

for any i, j ∈ I, l ∈ {1, · · · , L} (see the proof for (ii) of Proposition 3.3 where the

condition J∗(k + 1)− J∗(k) ≤ −l(x(k), u(k)) is implied by the LMIs (47)).

Corollary 3.6 (i) The controller

u = Fi,lx, if x ∈ (El − El−1) ∩ Pi

solves problem P associated to PWL system (41).

(ii) EL is a positive invariant set for the closed-loop system

{

x(k + 1) = (Ai +BiFi,l)x(k), if x(k) ∈ (El − El−1) ∩ Pi

y(k) = Cix(k),
(48)

(iii) Using EL as a terminal set and the terminal cost P (x) = xTPix if x ∈ Pi,

with Pi given by (47), Proposition 3.3 still holds.

Proof: It is obvious that this controller stabilizes the PWL system (41), because for

any x0 ∈ EL in at most L steps x(L) ∈ E1 and then according to Corollary 2.10 x(L)
will converge asymptotically towards zero. Moreover this controller fulfills the input

and output constraints.

For the last part, we observe that if x0 ∈ El ⊆ EL then applying this feedback

controller we have (Ai + BiFi,l)x0 ∈ El−1 ⊆ EL, therefore EL is a positive invariant

set for the closed-loop system, and the relation (47) guarantee stability for the MPC

scheme QI(N ). ♦

Remark 3.7 It is well-known the following fact:
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Lemma 3.8 [4] Let E = ∪i∈I0
Ei be a union of polyhedral sets, such that Ei∩Ej = ⊘

(empty set) for any i 6= j ∈ I0, then the condition x ∈ E can be expressed as mixed-

integer linear inequalities.

In Section 3.2 we have presented an algorithm to construct a big enough convex

terminal set. For this type of terminal sets the optimal problem QI(N ) is non-convex

(except N = 1), therefore difficult to solve on-line. If we construct a polyhedral

terminal set, the optimal problem becomes a mixed-integer quadratic programming

(also very demanding computationally), but using branch-and-bound methods is more

tractable that the non-convex problem.

From Section 3.2 we obtained a convex terminal set EL. According to Lemma 3.8

we can use also polyhedral or union of polyhedral sets: ∪i∈I0
E(i) with E(i) = {x ∈

R
n : Hix ≤ hi} ⊆ Pi as a positive invariant terminal set. One way of obtaining such

a union of polyhedral sets is:

{x : xTPi,L−1x ≤ 1} ∩ Pi ⊆ E(i) ⊆ {x : xTPi,Lx ≤ 1} ∩ Pi

and then use ∪i∈I0
E(i) as a terminal set, and as terminal cost P (x) = xTPi,Lx if

x ∈ Pi, where Pi,L are given by the LMIs (47). Finding such a set E(i) is an LMI

problem. Proposition 3.3 still holds, but this time the optimal problem is a mixed-

integer quadratic programming.

Another way to construct a terminal convex set is presented in [8, 17]. Moreover,

in [8] sufficient conditions are given for this set to be a polytope. ♦

Example 1: We consider the PWL system (41) with system matrices given by:

A1 =

[

0.35 −0.6062
0.6062 0.35

]

, A2 =

[

0.35 0.6062
−0.6062 0.35

]

,

B1 = B2 =

[

0
1

]

, |x1| ≤ 5, |x2| ≤ 5, |u| ≤ 1,

E1 = [1 0], E2 = [−1 0], Q = I, R = 0.1.

taken from [1].

For this system the LMIs from Step 1 has a solution for a common P:

P1,1 = P2,1 = P1 =

[

1.3593 0
0 1.967

]

,

F1,1 = [−0.4646 − 0.1423], F2,1 = [0.4646 − 0.1423].

Iterating Step 2 for L = 3 we obtain the following terminal set (positive invariant set):

E3 = {x ∈ R
2 : xT

[

0.0441 0
0 0.0627

]

x ≤ 1}

and applying then Step 3 we obtain the following quadratic terminal cost:

P (x) = xT

[

6.7534 0
0 9.2863

]

x.

If we apply the MPC scheme QI(N ) for the terminal ellipsoidal set given by P1 we

need at least N = 4 in order to have feasibility of the optimization problem for any x ∈
[−5 5]×[−5 5]. Therefore we have to solve on-line a non-convex optimization problem
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Figure 1: Enlargement of ellipsoidal terminal set and the trajectory corresponding to

MPC scheme QI(1).

(computationally very demanding), but using the terminal set and cost given by this

algorithm for N = 1 the optimization problem is feasible for any x ∈ [−5 5]× [−5 5].
Therefore, at each step we have to solve a convex optimization (which actually is a

optimization problem with quadratic objective function subject to linear and quadratic

constraints), see also Figure 1.

4 Appendix

Fact 1

Let Q be a (n + 1) × (n + 1) symmetric matrix. Then Q ≥ 0 if and only if
[

x
1

]T

Q

[

x
1

]

≥ 0, for any x ∈ R
n.

Fact 2 (Finsler’s lemma) Let Q be a symmetric matrix and a matrix B of appropri-

ate dimension. The following two relation are equivalent:

(i) B⊥TQB⊥ < 0
(ii) Q < σBTB, for some σ ∈ R.

Fact 3 (Proof Proposition 2.6) The first case i, j ∈ I1 was already proved. For

each of the three remaining cases we will give the corresponding LMIs and BMIs.

Afterward, we apply the same steps as in the proof for the first case.

Recall that we have defined:

Pi =

[

P̃i 0
0 0

]

, if i ∈ I0;Pi =

[

P̃i pi
pTi pii

]

, if i ∈ I1.

We also define:

S̃i, F̃i if i ∈ I0;Si =

[

S̃i si
sTi sii

]

, Fi = [F̃i fi] if i ∈ I1.
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Case 2: i, j ∈ I0. Then (8)–(9) become:





P̃i −Q− ẼT
i UijẼi ∗ ∗

Ãi + B̃iF̃i S̃j 0

F̃i 0 R−1



 ≥ 0, S̃iP̃i + P̃iS̃i ≤ 2I.

Case 3: i ∈ I0, j ∈ I1. We define:

Ai(1) =

[

Ãi + B̃iF̃i 0
0 1

]

, Fi = [F̃i 0] if i ∈ I0,

then (8) becomes:





Pi − Q̄− ET
i UijEi ∗ ∗

Ai(1) Sj 0
Fi 0 R−1



 ≥ 0.

Case 4: i ∈ I1, j ∈ I0. We define:

Ai(2) = [Ãi ãi] + B̃i[F̃i fi],

then (8) becomes:





Pi − Q̄− ET
i UijEi ∗ ∗

Ai(2) S̃j 0
Fi 0 R−1



 ≥ 0.

Fact 4 (Proof Proposition 2.9)

We have considered the general PW quadratic Lyapunov function:

V (x) =























[

x

1

]T [

P̃i 0

0 0

][

x

1

]

if i ∈ I0

[

x

1

]T

Pi

[

x

1

]

if i ∈ I1

But from LMIs (35) S−1
i = Pi, therefore to get P̃i, i ∈ I0 we should declare

Si =

[

S̃i 0
0 1

]

, i ∈ I0

and then P̃i = S̃−1
i , ∀ i ∈ I0.

Due to degree of freedom introduced by G, when we have a PWA system we should

proceed as follows: take

G =

[

G̃ 0
0 g̃

]

, Yi = [Ỹi ỹi]

with ỹi = 0 if i ∈ I0, therefore

Fi = [ỸiG̃
−1 ỹig̃

−1], i ∈ I1, Fi = [ỸiG̃
−1 0], i ∈ I0

In this case the feedback controller has the general form:

u = ỸiG̃
−1x+ ỹig̃

−1, x ∈ Pi, i ∈ I1, u = ỸiG̃
−1x, x ∈ Pi, i ∈ I0
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We have to discuss the other three cases as we did in Fact 2.

Fact 5 (Algorithm for computing 0 < P ≤ S−1) We want to solve the feasibility

problem: find {Pi, Si, Fi}i∈I that satisfy the following matrix inequalities

LMI(Si, Pi, Fi) < 0 (49)

0 < Pi ≤ S−1
i , for all i ∈ I, (50)

where LMI(Si, Pi, Fi) < 0 are LMIs as in (27). It is clear that 0 < Pi ≤ S−1
i

is equivalent with 0 < Si ≤ P−1
i or λmax(PS) ≤ 1 (λmax denotes the maximum

eigenvalue). We take 0 < θ < 1. The algorithm consist in three steps (see also [13]).

Step 1

Solve LMI(Si, Pi, Fi) < 0, for all i ∈ I. Therefore we have available {P 0
i , S

0
i , F

0
i }i∈I .

If P 0
i ≤ (S0

i )
−1 then we stop, because we found a solution. Otherwise, choose

β0
i > λmax(P

0
i S

0
i ).

Step 2

For all k ≥ 0. Fix P k
i . Solve the following LMIs:

LMI(Si, P
k
i , Fi) < 0 (51)

0 < Si < βk
i (P

k
i )

−1, for all i ∈ I, (52)

We obtain {Sk+1
i }i∈I and we define αk

i = (1− θ)λmax(S
k+1
i P k

i ) + θβk
i .

Step 3

Fix Sk+1
i . Solve the following LMIs:

LMI(Sk+1
i , Pi, Fi) < 0 (53)

0 < Pi < αk
i (S

k+1
i )−1, for all i ∈ I, (54)

We obtain {P k+1
i , F k+1

i }i∈I and we define βk+1
i = (1− θ)λmax(P

k+1
i Sk+1

i ) + θαk
i .

Properties of the algorithm:

1. If Step 1 is feasible then Step 2 and 3 are feasible for all k ≥ 0.

2. If there exists k such that αk
i ≤ 1 in Step 2 or βk

i ≤ 1 in Step 3 for all i ∈ I,

then we stop the algorithm. We found a solution.

3. 0 < βk+1
i < αk

i < βk
i for all i ∈ I. Therefore there exists β∗

i = limk→∞ βk
i for

all i ∈ I. If β∗
i < 1 for all i ∈ I, then the algorithm gives us a solution.

4.1 Example 2

We give now an example where the approach from Proposition 2.9 does not give a solu-

tion, while applying the Proposition 2.6 we obtain a solution for the matrix inequalities

that we have to solve.

x(k + 1) =



















A1x(k) +B1u(k) if E1x(k) ≥ 0

A2x(k) +B2u(k) if E2x(k) ≥ 0

A3x(k) +B3u(k) if E3x(k) ≥ 0

A4x(k) +B4u(k) if E4x(k) ≥ 0
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where the matrices of the system are given by

A1 =

[

0.5 0.61
0.9 1.345

]

, A2 =

[

−0.92 0.644
0.758 −0.71

]

,

A3 = A1, A4 = A2, Bi = [1 0]T for all i ∈ {1, 2, 3, 4}.

The partitioning is given by:

E1 =

[

−1 1
−1 −1

]

, E2 =

[

−1 1
1 1

]

, E3 = −E1, E4 = −E2.

The tuning parameters Q and R are given by: Q = 10−4I2, R = 10−3. We consider

the following constraints: |x1| ≤ 5, |x2| ≤ 5, |u| ≤ 2.

For this example applying the LMIs from Proposition 2.9 we do not get a feasible

solution (using the Matlab LMI toolbox). We obtain conclusive results only if we are

looking for a piecewise quadratic Lyapunov function and only if we apply the relax-

ations (S-procedure) from Proposition 2.6. We obtain as a feasible solution (applying

the algorithm that we have proposed in Fact 5) the piecewise linear controllers u = Fix
if x ∈ Pi, with

F1 = [−0.7162 − 0.9662], F2 = [0.7657 − 0.4762], F3 = F1, F4 = F2,

and the piecewise quadratic Lyapunov function P (x) = xTPix if x ∈ Pi with

P1 =

[

0.1589 0.1235
0.1235 0.1408

]

, P2 =

[

0.0834 −0.0207
−0.0207 0.0815

]

, P3 = P1, P4 = P2,

S1 =

[

19.5829 −17.1677
−17.1677 22.1358

]

, S2 =

[

12.1854 2.9662
2.9662 12.9486

]

, S3 = S1, S4 = S2,

where the matrices Uij obtained by applying the relaxations from Proposition 2.1 are

given by:

U11 =

[

0.0046 0.0265
0.0265 0.0122

]

, U12 =

[

0.0040 0.0301
0.0301 0.0065

]

,

U22 =

[

0.0001 0.0010
0.0010 0.0158

]

, U21 =

[

0.0001 0.0022
0.0022 0.0154

]

.

Using Remark 3.5 for Step 2 we obtain that the terminal set EL = {x ∈ R
2 :

xTPi,Lx ≤ 1, i = 1, 2} is given by:

P1,L =

[

0.1405 0.1125
0.1125 0.1228

]

, P2,L =

[

0.0687 −0.0292
−0.0292 0.0689

]

.

The terminal cost is obtained from Step 3: P (x) = xTPi,fx if x ∈ Pi:

P1,f = P3,f =

[

4.8284 1.5050
1.5050 0.8351

]

, P2,f = P4,f =

[

4.4540 0.4351
0.4351 1.2127

]

.

Applying the MPC for this terminal set and cost we obtain the trajectory from Figure

2.

For solving the LMIs we used the Matlab LMI toolbox.
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Figure 2: The ellipsoidal terminal set and the trajectory corresponding to MPC scheme

QI(1).

5 Conclusions and Future Research

In this paper we have derived stabilization conditions for the class of PWA systems us-

ing the LMI framework. We consider the class of piecewise affine feedback controllers

that guarantee stability of the closed-loop system. These controllers are derived from

imposing that certain piecewise quadratic functions to be Lyapunov functions for the

closed-loop system. Using LMIs arguments we have proved that the infinite-horizon

quadratic cost is bounded if certain LMIs are satisfied. Using the upper bound of the

infinite-horizon quadratic cost as a terminal cost and constructing also a convex ter-

minal set, we show that the quasi-infinite receding horizon control stabilizes the PWA

system. For future research we want to investigate stability of PWA with disturbances

using a similar approach. Due to disturbance we do not have convergence to 0 but

rather to a neighborhood of 0.
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