
Delft University of Technology
Delft Center for Systems and Control

Technical report 04-021

Learning-based model predictive control
for Markov decision processes∗

R.R. Negenborn, B. De Schutter, M.A. Wiering, and H. Hellendoorn

If you want to cite this report, please use the following reference instead:
R.R. Negenborn, B. De Schutter, M.A. Wiering, and H. Hellendoorn, “Learning-
based model predictive control for Markov decision processes,” Proceedings of the
16th IFAC World Congress, Prague, Czech Republic, pp. 354–359, July 2005. doi:10.
3182/20050703-6-CZ-1902.00280

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/04_021.html

https://doi.org/10.3182/20050703-6-CZ-1902.00280
https://doi.org/10.3182/20050703-6-CZ-1902.00280
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/04_021.html


LEARNING-BASED MODEL PREDICTIVE CONTROL

FOR MARKOV DECISION PROCESSES

Rudy R. Negenborn ∗,1 Bart De Schutter ∗

Marco A. Wiering ∗∗ Hans Hellendoorn ∗

∗ Delft Center for Systems and Control

Delft University of Technology, Delft, The Netherlands
∗∗ Institute of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

Abstract: We propose the use of Model Predictive Control (MPC) for controlling systems

described by Markov decision processes. First, we consider a straightforward MPC

algorithm for Markov decision processes. Then, we propose value functions, a means

to deal with issues arising in conventional MPC, e.g., computational requirements and

sub-optimality of actions. We use reinforcement learning to let an MPC agent learn a

value function incrementally. The agent incorporates experience from the interaction with

the system in its decision making. Our approach initially relies on pure MPC. Over time,

as experience increases, the learned value function is taken more and more into account.

This speeds up the decision making, allows decisions to be made over an infinite instead

of a finite horizon, and provides adequate control actions, even if the system and desired

performance slowly vary over time.

Keywords: Markov decision processes, predictive control, learning.

1. INTRODUCTION

Over the last decades Model Predictive Control (MPC)

has become an important technology for finding con-

trol policies for complex, dynamic systems, as found

in, e.g., the process industry (Camacho and Bordons,

1995; Morari and Lee, 1999). As the name suggests,

MPC is based on models that describe the behavior

of a system. Typically, these models are systems of

difference or differential equations. In this paper we

consider the application of MPC to systems that can

be modeled by Markov decision processes, a sub-

class of discrete-event models. Moreover, we propose

a learning-based extension for reducing the on-line

computational cost of the MPC algorithm, using re-

inforcement learning to learn expectations of perfor-

mance on-line. The approach allows for system mod-

els to change gradually over time, results in fewer

1 Corresponding author, e-mail: r.negenborn@dcsc.tudelft.nl

computations than conventional MPC, and improves

decision quality by making decisions over an infinite

horizon.

We consider an agent controlling a dynamic system

at discrete decision steps. At each decision step, the

agent observes the state of the system and determines

the next action to take based on the observation and

a policy. A policy maps states to actions and it is

the agent’s task to determine a policy that makes the

system behave in an optimal way.

This paper is organized as follows. We introduce con-

ventional MPC in Section 2. Then we propose MPC

for systems that can be modeled by Markov decision

processes in Section 3. We consider the use of value

functions in MPC in Section 4. To improve computa-

tional and decision making performance we improve

the method with reinforcement learning in Section 5.



2. MODEL PREDICTIVE CONTROL

MPC (Camacho and Bordons, 1995; Morari and Lee,

1999; Maciejowski, 2002) is a model-based control

approach that has found successful application, e.g.,

in the process industry. In MPC, a control agent uses

a system model to predict the behavior of a system

under various actions. The control agent finds a se-

quence of actions that bring the system in a desired

state, while minimizing negative effects of the actions,

and taking constraints into account. In order to find the

sequence of appropriate actions, the control agent uses

a performance function. This performance function

evaluates the preferability of being in a certain state

and performing a certain action by giving rewards.

Let us denote by rk the reward given by the perfor-

mance function at decision step k, by a0, . . . , a∞ the

actions to be determined by the agent, and by E the

expectancy operator taking the system uncertainty into

account. We may then write the task of the agent as

solving the optimization problem:

max
a0,...,a∞

E
{

∞
∑

k=0

rk

}

, (1)

subject to the system model, the performance func-

tion, and the constraints.

Basing actions on the model predictions introduces

issues with robustness due to the fact that models are

inherently inaccurate and thus predictions further in

the future are more and more uncertain. To deal with

this, MPC uses a rolling or receding horizon, which in-

volves reformulating the optimization problem at each

decision step using the latest observation of the system

state. However, the rolling horizon increases compu-

tational costs, since at each decision step a sequence

of actions has to be determined to make sure no

constraints are violated. In practice this is intractable

for many applications. To reduce computational costs,

MPC uses a control horizon, a prediction horizon, and

a performance-to-go. The control horizon determines

the number of actions to find. The prediction hori-

zon determines how far the behavior of the system

is predicted. The performance-to-go gives the sum of

the reward obtained from the state at the end of the

prediction horizon until infinity under a certain policy.

With these principles (1) can be rewritten as:

max
ak0

,...,ak0+Nc

[

E
{

k0+Nc
∑

k=k0

rk

}

+ E
{

k0+Np
∑

k=k0+Nc+1

rk

}

+

V
(

xk0+Np+1

)

]

, (2)

where V is the performance-to-go function, indicating

the expected sum of future rewards when in a cer-

tain state. In general the performance-to-go function

is not known in advance; it may be assumed zero,

approximated with a Lyapunov function (Jadbabaie et

al., 1999), or be learned from experience, as we shall

discuss in Section 5.

future

k

control horizon
prediction horizon

k +1 +k Nc +k Np

computed control inputs u

predicted outputs y

past set point y*

Fig. 1. Example of conventional MPC. The control

problem is to find actions uk to uk+Nc
, such that

after Np steps the system behavior y approaches

the desired behavior y∗. In this example, y indeed

reaches the desired set point y∗.

Implementation details of (2) depend on the structure

of the system model and performance function. In

general, MPC methods have the following scheme

(see Figure 1):

(1) The horizon is moved to the current decision step

k0 by observing the state of the true system and

reformulating the optimization problem of (2)

using the observed state as initial state xk0
.

(2) The formulated optimization problem is solved,

often using general solution techniques (e.g.,

quadratic programming, sequential quadratic pro-

gramming, ...). The optimization problem is

solved taking into account constraints on actions

and states.

(3) Actions found in the optimization procedure are

executed until the next decision step. Typically

only one action is performed.

Advantages of MPC lie in the explicit integration of

input and state constraints. Due to the rolling horizon

MPC adapts easily to new contexts and can be used

without intervention for long periods. Moreover, only

few parameters need to be tuned, i.e., the prediction

and control horizon. However, the optimization prob-

lem may still require too many computations, e.g.,

when the control horizon becomes large. Resources

required for computation and memory may be high,

increasing more when the prediction horizon or sys-

tem complexity increases. Besides that, solutions to

the finite horizon problems do not guarantee solutions

to the problem over the infinite horizon.

Research in the past has addressed these issues for

conventional MPC, typically using models that are

systems of difference or differential equations. In

the following sections we propose MPC for sys-

tems modeled by Markov decision processes and con-

sider improving speed and decision quality using the

performance-to-go function and experience.



3. MPC FOR MARKOV DECISION PROCESSES

3.1 Markov Decision Processes

Markov decision processes (Puterman, 1994) are ap-

plicable in fields characterized by uncertain state tran-

sitions and a necessity for sequential decision making,

e.g., robot control, manufacturing, and traffic signal

control (Wiering, 2000). Markov decision processes

satisfy the Markov property, stating that state transi-

tions are conditionally independent from actions and

states encountered before the current decision step. An

agent can therefore rely on a policy that directly maps

states to actions to determine the next action. After

execution of an action, the system is assumed to stay

in the new state until the next action, i.e., the system

has no autonomous behavior. Figure 2 shows the graph

representation of some Markov decision process.

x1

x2

x3

x4

x5 x6

P (x1|x3, a4)

P (x3|x2, a3)

P (x4|x2, a5)

P (x5|x1, a2)

P (x4|x5, a6)

P (x6|x5, a6)

P (x2|x1, a1)

r(x3, a4, x1)

r(x1, a2, x5)

r(x1, a1, x2)

r(x2, a3, x3)

r(x2, a5, x4)

r(x5, a6, x4)

r(x5, a6, x6)

Fig. 2. Example of a Markov decision process. A node

represents a state. An arc represents a transition

from one state to another under a certain action.

An arc is labeled with a transition probability and

a reward obtainable under the transition.

We use k as counter that indicates the decision step.

At each step the system is in one out of a finite set

of states X = {x1, x2, . . . , xN}. In each state x ∈
X there is a finite set of actions Ax that the agent

can perform (Ax = {a1, a2, . . . , aMx}). The system

evolves according to system model Σ : P (x′|x, a),
where P (x′|x, a) is the probability of transitioning

from state x to state x′ after action a is performed. The

performance function is given by r, where r(x, a, x′)
is the reward obtained with the transition from state x

to state x′ under action a.

Constraints can be included explicitly by restricting

actions and reachable states, or implicitly by imposing

a highly negative reward for certain transitions; as we

will see, the agent will try to avoid these transitions.

As an example, in local traffic signal control at an in-

tersection, a state can consist of the number of cars in

front of the traffic signals. Actions in each state consist

of traffic signal configurations. Transition probabili-

ties may depend on the number of cars leaving the

crossroad during a green signal. Rewards may depend

on the average waiting time, with lower waiting time

indicating higher reward. Constraints on actions con-

sist of admissible, safe, traffic signal configurations.

3.2 Straightforward MPC Approach

Let us consider the straightforward application of

MPC to Markov decision processes. Similar to al-

ternative approaches, the rolling horizon principle is

easily included by letting the agent synchronize at

each decision step its current estimate of the system

state with a new observation of the system state. The

control horizon should equal the prediction horizon,

since the systems we consider have no autonomous

behavior and the set of possible actions can change per

state. Therefore, as is usually assumed in conventional

MPC, assuming constant actions between the end of

the control horizon and the prediction horizon is not

reasonable in our case.

The agent uses the Markov decision process to find

a sequence of Nc actions that gives the best perfor-

mance over the control horizon. From the graphical

viewpoint of Markov decision processes this comes

down to finding the path of Nc steps that has the

highest expected accumulated reward. This yields the

following straightforward MPC algorithm for Markov

decision processes:

(1) Roll the horizon to the current step by observing

the state of the system. Define the optimization

problem of finding the actions over the control

horizon that maximize the sum of the rewards

starting from the observed state.

(2) Find all paths of length Nc and accumulate the

rewards. Determine the sequence of actions that

leads to the path with the highest accumulated

reward.

(3) Implement the first action of this sequence and

move on to the next decision step.

The proposed MPC algorithm can suffer from the dis-

advantages discussed earlier for general MPC tech-

niques. The amount of computational resources re-

quired to consider all paths over a length of the control

horizon depends on Nc and the number of actions

possible from each encountered state. In particular

when there is a very large number of actions from each

state, it may be intractable to consider all paths. Also

whether or not the system model or the performance

model are deterministic or stochastic has influence on

the speed at which the paths can be evaluated. Fur-

thermore, because of the limited horizon over which

actions are considered, the resulting policy may be

suboptimal. This is in particular the case since we ig-

nored the performance-to-go V , as is commonly done

in conventional MPC.

As a solution we can take a small control horizon.

However, this may result in increased sub-optimal

decision making, in particular when we keep ignoring

the performance-to-go. In the following we will not

ignore this performance indicator. We will from now

on refer to the performance-to-go as value function,

and use the information from this value function to

improve the computations required at each step.



4. MPC WITH VALUE FUNCTIONS

4.1 Value Functions

A value function V gives the expected accumulated

future reward for each state x and a policy π. The

optimal value function V ∗ gives the highest possible

expected accumulated future reward for each state.

This highest possible future reward is obtained by

following the actions that an optimal policy π∗ pre-

scribes 2 . Whereas in previous sections we considered

a deterministic policy, from now on we consider a

probabilistic policy. The optimal value function V ∗ is

then obtained by solving for each xk0
:

V ∗
(

xk0

)

= max
π

E
{

∞
∑

k=k0

r(xk, π(xk), xk+1)
}

.

Assume the optimal value function is known. From

the graphical viewpoint of Markov decision processes,

we can label each node with a value, or expected

accumulated future reward. In that case, the agent has

to consider only the actions a ∈ Ax possible in current

state x and find the action that gives the highest sum of

directly obtainable reward plus expected accumulated

future reward of the resulting state after the action

would have been executed. This sum, called the Q

value for the (x, a)-pair, is used by the agent to find

the action that gives the highest Q value as follows:

ak = arg max
a∈Axk

[

∑

x′

P (x′|xk, a)
(

r(xk, a, x
′) + V ∗(x′)

)

]

.

Thus, when the optimal value function is known,

instead of considering Nc steps, the agent has to

consider only a one-step optimization procedure at

each decision step, i.e., the control horizon becomes

Nc = 1. Moreover, since the value function is optimal

over the infinite horizon, also the chosen actions are

optimal over the infinite horizon.

In general neither optimal policies nor optimal value

functions are known in advance. In our case, value

functions cannot be computed easily in a straightfor-

ward way, since the reward over an infinite horizon

cannot be summed explicitly. Instead, the value func-

tion can be approximated. Dynamic-programming

methods (Bellman, 1957) use one way of approximat-

ing the value function. Dynamic-programming meth-

ods approximate the value function by introducing a

discount factor. This discount factor lets the infinite

sum of rewards converge. Using a discount factor, the

value function is approximated as:

V π(xk0
) = E

{

∞
∑

k=k0

γk−k0r(xk, π(xk), xk+1)
}

,

(3)

2 For the sake of simplicity we assume a unique optimal policy.

Extension to the non-unique case is straightforward by choosing one

of the optimums.

where γ ∈ (0, 1) is the discount factor. The closer γ is

chosen to 1, the more long-term performance expec-

tations are taken into account. The value function (3)

can be written as:

V π(xk0
) =

∑

a∈Axk0

Pπ(a|xk0
) ×

[

r(xk0
, a, x′) + γ

∑

x′

P (x′|xk0
, a)V (x′)

]

,

where Pπ(a|x) is the probability that the policy π

will select action a in state x. This kind of equation

is called a Bellman equation. Dynamic-programming

methods treat the values of the optimal values of the

states as unknowns. In that case a system of Bellman

equations for all states forms a system of equations

whose unique solution is the optimal value function

(Sutton and Barto, 1998).

4.2 Value-Function MPC Approach

Using the value function we can formulate a new MPC

algorithm for Markov decision processes as follows:

(1) Apply the rolling horizon principle, updating the

state estimate with a measurement of the state.

(2) Compute the value function given the latest sys-

tem model.

(3) Formulate the optimization problem over a con-

trol horizon of Nc = 1 of finding the action that

brings the state of the system into the state with

the highest value. Solve the problem.

(4) Implement the found action and move on to the

next decision step.

The advantage of this approach is that the control

horizon is only of length one. Moreover, by using the

most up-to-date system model to compute the value

function at each decision step, actions are adequate,

even in the event of (slowly) changing system and

performance desires.

However, computing the optimal value function at

each decision step can computationally be very expen-

sive. Computing the optimal value function off-line

before the agent starts controlling the system (e.g., as

done in (Bemporad et al., 2002) for linear systems)

reduces on-line computations, but does not allow for

the system to vary over time. Although the rolling

horizon provides some robustness, structural changes

in parameters of the system model are not anticipated.

Instead of recomputing the value function at each de-

cision step, we could update the value function on-

line using experience from the interaction between the

agent and the true system. We propose to combine

MPC for Markov decision processes with learning

the value function on-line using reinforcement learn-

ing. This way, system changes are anticipated on-line

while not computing the value function at every deci-

sion step.



5. MPC WITH REINFORCEMENT LEARNING

5.1 Reinforcement Learning

In reinforcement learning (Sutton and Barto, 1998;

Kaelbling et al., 1996; Wiering, 1999) both the model

of the stochastic system and the desired behavior are

unknown a priori. To determine a policy, the agent

incrementally computes the value function based on

performance indications and interaction with the sys-

tem, which implicitly contains the system model. At

each decision step the value function of the last deci-

sion step is updated with the newly gained experience

consisting of a state-action-state transition and reward.

By obtaining sufficiently many experiences the agent

can accurately estimate the value function.

In Temporal-Difference (λ) learning (TD(λ)) (Sutton,

1988) the difference between value estimates of suc-

cessive decision steps is minimized, explicitly using

value estimates of successive states. The parameter

λ ∈ [0, 1] weighs reward and value estimates further

away in the future exponentially less. With probability

1 value estimates can be guaranteed to converge to the

true values for all λ (Sutton, 1988).

TD(λ) learning uses eligibility traces to incrementally

learn the value function, which we assume initially

contains arbitrary (finite) values. The value of a state

depends on the values of successor states. Therefore,

the value update of a state also depends on the value

updates of successive states. In fact, to compute the

update for a state, all future updates need to be known,

which is impossible for the infinite-horizon case. In-

stead, values can be updated incrementally as new up-

dates become available using eligibility traces (Barto

et al., 1983). These traces indicate the amount a state

is eligible to learn from new experience. This depends

on λ, the recency of the state appearance, and the

frequency of the state appearance. The update ∆V l(x)
of the learned value of a state using a reward received

in the future can be shown to be:

∆V l(x) = α(x)eklk(x)

where α(x) is a suitable learning rate, which can guar-

antee convergence; error ek = rk + γV l(xk+1) −
V l(xk) indicates for a state the difference between

the previously learned value V l(xk) and the sampled

value based on the obtained reward rk and the previ-

ously learned value V l(xk+1) for the successor state;

lk(x) represents the accumulating eligibility trace for

x, which is initially zero and can recursively be up-

dated as:

lk+1(x)← λγlk(x) if xk 6= x

lk+1(x)← λγlk(x) + 1 if xk = x.

The uncertainty in the update can be computed using

the error ek. For the case λ = 0 the uncertainty (or

variance) in the update is σ2
k = e2k. More general

results on error bounds for TD learning are reported

in (Kearns and Singh, 2000).

5.2 TD-MPC Approach

We consider a collaborative approach in which MPC

provides basic robustness and decision making over

the relatively short term, while learning provides

robustness, adaptation, and decision making over

the long term. The agent gradually incorporates the

learned value function in its decision making as ex-

perience increases. Initially uncertainty in the value

estimates is high, so it will just use MPC. Samples

generated by the MPC part are predictions about the

behavior of the system and predictions about what

is optimal to do over the control horizon. Learning

uses the samples as idealized experience, incorporat-

ing them in its value function. Over time the uncer-

tainty in the value estimates decreases. When the un-

certainty is below a threshold, the agent uses the value

estimates, thereby decreasing the control horizon over

which MPC computes paths. Since the agent uses a

learned value only when the uncertainty in it is below a

threshold, values can be initialized to any finite value.

We propose the following algorithm:

(1) Roll the horizon to the current step k.

(2) For each path of Nc (x, a, r, x
′) 4-tuples starting

from the current state, consider each state. If the

uncertainty in the value estimate of an encoun-

tered state is below a threshold, use the value plus

reward summed over earlier steps in that path as

indication for the expected accumulated future

reward, and stop considering the path. Else, add

the given reward to the summed reward over ear-

lier steps in the path and move to the next state.

(3) Incorporate the (x, a, r, x′)-samples created by

MPC in the value function as experience using

TD learning and reduce the uncertainty in the

value estimates.

(4) Implement the first action in the sequence deter-

mined and move to the next decision step.

The described algorithm has some attractive features.

Once the value function is computed with high enough

accuracy, the computationally intensive MPC opti-

mizations over the full control horizon using the sys-

tem model and the performance function are reduced

to a one-step optimization using the system model and

the value function. Moreover, using the experience,

the decisions are based on an infinite horizon, since

values of states represent expected accumulated re-

ward over the full future. Constraint violations are thus

anticipated better.

The agent will propose adequate actions, even if the

system and desired performance slowly vary over

time. In particular for systems with a long lifetime this

is an advantage. The system model and performance

function can be updated at each decision step. The

agent will then generate samples using these updated

models, and the learning part will incorporate these

samples and adjust to the new situation.



6. CONCLUSIONS & FUTURE RESEARCH

In this paper we have considered Model Predictive

Control (MPC) for Markov decision processes. We

have first considered a straightforward algorithm for

these kind of models. To deal high computational re-

quirements and sub-optimality issues, we have pro-

posed the use of the performance-to-go or value func-

tion. With optimal value functions the MPC control

horizon becomes length one. Speed is increased, while

decisions are based on infinite-horizon predictions.

In general however, optimal value functions are not

known a priori. In this paper we have considered

using experience to incrementally learn value func-

tions over time. With reinforcement-learning methods

like temporal-difference learning the agent incorpo-

rates experience built up through interaction with the

system. It can over time get a good estimate of the

value function. Once sufficient experience has been

obtained, the agent uses this to its fullest, requiring

less computations than the non-learning approach.

An additional advantage of the proposed approach lies

in that the agent adapts to changing system and per-

formance characteristics. The performance function or

system under control may slowly change over time.

Since the agent incorporates newly gained experience

at each decision step, it will adapt to these changes and

still produce adequate actions.

We note that in this paper we have considered TD(λ)
learning for finite Markov decision processes. To deal

with high dimensional continuous action and state

spaces we can use actor-critic methods (Sutton and

Barto, 1998). Moreover, in this paper we have silently

assumed an explicit tabular value-function representa-

tion. If an explicit representation is not available, we

may use an implicit representation, e.g., a function ap-

proximator (Sutton and Barto, 1998). MPC may then

still be combined fruitfully with learning.

Future research directions consist of considering alter-

native ways to include the uncertainty in the gained

experience in the decision making. Also, accuracy

bounds and comparisons with alternative adaptive and

learning control approaches can be made. Further-

more, experiments need to be implemented to further

investigate and show the potential of the proposed

learning-based MPC for Markov decision processes.

ACKNOWLEDGMENTS

This research was supported by project “Multi-agent

control of large-scale hybrid systems” (DWV.6188) of

the Dutch Technology Foundation STW, Applied Sci-

ence division of NWO, the Technology Programme of

the Dutch Ministry of Economic Affairs, the TU Delft

spearhead program “Transport Research Centre Delft:

Towards Reliable Mobility”, and the European 6th

Framework Network of Excellence “HYbrid CONtrol:

Taming Heterogeneity and Complexity of Networked

Embedded Systems (HYCON)”.

REFERENCES

Barto, A. G., R. S. Sutton and C. W. Anderson (1983).

Neuronlike adaptive elements that can solve dif-

ficult learning control problems. IEEE Transac-

tions on Systems, Man, and Cybernetics 13, 834–

846.

Bellman, R. (1957). Dynamic Programming. Prince-

ton University Press. Princeton, New Jersey.

Bemporad, A., M. Morari, V. Dua and E.N. Pis-

tikopoulos (2002). The explicit linear quadratic

regulator for constrained systems. Automatica

38(1), 3–20.

Camacho, E.F. and C. Bordons (1995). Model Pre-

dictive Control in the Process Industry. Springer-

Verlag. Berlin, Germany.

Jadbabaie, A., J. Yu and J. Hauser (1999). Stabilizing

receding horizon control of nonlinear systems:

a control Lyapunov function approach. In: Pro-

ceedings of the 1999 American Control Confer-

ence. San Diego, California. pp. 1535–1539.

Kaelbling, L. P., M. L. Littman and A. W. Moore

(1996). Reinforcement learning: A survey. Jour-

nal of Artificial Intelligence Research 4, 237–

285.

Kearns, M. and S. Singh (2000). Bias-variance error

bounds for temporal difference updates. In: Pro-

ceedings of the Thirteenth Annual Conference on

Computational Learning Theory. Stanford, Cali-

fornia. pp. 142–147.

Maciejowski, J. M. (2002). Predictive Control with

Constraints. Prentice Hall. Harlow, England.

Morari, M. and J. H. Lee (1999). Model predictive

control: past, present and future. Computers and

Chemical Engineering 23, 667–682.

Puterman, M. L. (1994). Markov Decision Processes:

Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc.. New York.

Sutton, R. and A. Barto (1998). An Introduction to

Reinforcement Learning. MIT Press. Cambridge,

Massachusetts.

Sutton, R. S. (1988). Learning to predict by the meth-

ods of temporal differences. Machine Learning

3, 9–44.

Wiering, M. (2000). Multi-agent reinforcement learn-

ing for traffic light control. In: Proceedings of

the Seventeenth International Conference on Ma-

chine Learning. Stanford, California. pp. 1151–

1158.

Wiering, M. A. (1999). Explorations in Efficient Re-

inforcement Learning. PhD thesis. University of

Amsterdam. The Netherlands.


