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Abstract.

We consider optimally coordinated freeway traffic control for networks containing bottlenecks with capacity

drop and hysteresis behavior. Due to the multitude of traffic jams, and the spatial and temporal relationships

between control actions and traffic behavior, this problem is not as straightforward as for local control. The

order in which the measures are applied may be relevant, or it may be possible that not all jams can be

resolved. In that case the best possible locations of jams should be determined. We develop an approach

that addresses these problems, where we use a generalized representation of flow-limiting control measures

and bottlenecks. We determine whether a certain set of control measures is sufficient to improve the net-

work performance. The approach also supplies the necessary sequence of control actions and the necessary

relocation of traffic jams to achieve the network state corresponding to the best achievable performance.
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1 INTRODUCTION

1.1 Traffic control in networks

In the past dynamic traffic control measures (such as ramp metering, route guidance, and dynamic speed

limits) have been applied mainly locally to resolve traffic jams. However, due to the high traffic demands

the spatial and temporal relationships in traffic networks have become stronger: a control measure applied at

a certain place and time may also influence (positively or negatively) the traffic later and/or at more distant

parts of the network. Therefore, it is necessary to take the network-wide effects of the control measures

into account, which implies coordination between the measures. By network-wide coordinated control (as

opposed to local control) we mean the coordination of the control measures such that the resulting traffic

behavior is taken into account for the whole route of all drivers (from their origins to their destinations), not

for a limited part of their route only.

Even though a network-wide coordinated approach may result in more effective traffic control, it is

not guaranteed at all that it can improve the network performance for all possible congested traffic scenarios.

While for a local control measure it is straightforward to determine whether it is effective (e.g., by flow

measurements), for network-wide control the effects may not be so straightforward, e.g., an improved traffic

flow at one location may worsen a traffic jam at another location, or even trigger a new jam.

Another difficulty in network-wide traffic control is that it may not be possible to solve all traffic

jams in the network or it may be necessary to create temporarily a traffic jam somewhere else in the network

in order to solve a given jam (similarly to ramp metering which locally creates a queue to solve a freeway

jam). With the approach presented in this paper an answer is given to which jams need to be solved (or

created) in order to achieve the highest outflow of the network.

Furthermore, there may be limitations on the traffic control measure signals, such as minimum and

maximum metering rates, bounds on dynamic speed limits, or the limited rerouting effects of route guidance

messages, so that these measures may not limit the flow sufficiently to solve a jam individually. However,

the combination with other measures (available or to be installed) may result in a more effective control that

can solve the jam. The selection of the appropriate measures will also be addressed in this paper.

1.2 Capacity drop

There are several possible causes why freeway networks do not always perform optimally. By non-optimal

we mean either that while there is sufficient demand at some freeway links, they do not carry flows equal

to their capacity, or that the drivers take certain routes while there is another, shorter or faster route that has

enough capacity to accommodate them. The main reasons for freeway links carrying a sub-capacity flow

are the capacity drop and blocking (or insufficient demand). The capacity drop (also called the two-capacity

phenomenon) is the phenomenon that the outflow of a jam at a bottleneck (the so-called queue discharge

rate) is lower than the capacity of the bottleneck in free-flow (the so-called pre-queue capacity). As long as

the jam remains existent, the performance of a jammed freeway link will be sub-optimal. Blocking occurs

when the tail of a traffic jam propagates back to a bifurcation where it blocks the traffic that has a route that

does not go via the bottleneck location that caused the jam.

In this paper we focus on the capacity drop and develop an approach to determine whether the

network performance can by improved by dynamic traffic control measures. For the sake of simplicity we

will assume that the queues that occur at bottlenecks and control measures do not become so long that they

reach bifurcations or other bottlenecks. If this assumption does not hold, a more complex model should be

used.

The capacity drop may occur at several types of bottlenecks, such as on-ramps, upstream propa-

gating jams (shock waves), off-ramps, curves, grades, tunnels and bridges. The value of the capacity drop
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has been estimated for some of these bottlenecks: for on-ramps (1–3) it was found to be in the range of

0–15%, and for upstream propagating jams (1, 4) around 30%. There is no consensus about the reason of

the capacity drop; it may be related to traffic friction upstream the bottleneck, or to the lower acceleration

of vehicles in high-density areas (the so-called slow-to-start behavior (5)).

A phenomenon related to the capacity drop is the hysteresis effect, which in this context means

that in order to achieve a transition from congested to free flow, the inflow of an active bottleneck needs to

be considerably lower than it can be in free flow without causing a breakdown. Hysteresis is observed at

on-ramps (6), but may also occur at other types of bottlenecks. Another related concept is metastability,

which means that under the same traffic demands both the congested and the free flow scenarios can remain

existent for a long time. E.g., there may be demands possible on a main-stream freeway and on-ramp that

result in a stable free-flow or in a stable jam (at the on-ramp), depending on the initial condition.

Related to this approach is the approach presented by Papageorgiou (7) where the modeled traffic

network also results in linear equations and linear inequality constraints. The difference between the two

approaches is that in this paper the capacity drop is explicitly modeled, and the resulting optimal control

signal will take into account the hysteresis behavior of the bottlenecks. Other approaches, such as (8) do take

into account the capacity drop via nonlinear traffic flow modeling, however the approach presented here is

computationally more efficient, is guaranteed to be optimal, and provides insight in the reasons why certain

traffic jams can or cannot be solved. This insight may be relevant to traffic operators in convincing them to

apply certain control strategies, or to traffic infrastructure planners in the decisions about the placement of

certain traffic control measures.

1.3 Optimality: outflow and Total Time Spent

The network optimality mentioned above is often defined mathematically as the total time that vehicles

spend in the network (TTS), (see, e.g., (8,9)). It is not difficult to show that if the traffic demand is given for

a certain traffic network then the TTS is directly related to the outflow of the network. We derive a formula

to compute the TTS using the inflow and the outflow of the network (see Section 3.1).

The core of the problem discussed in this paper is that if a bottleneck is active (jammed) then the

inflow of the bottleneck has to be limited to a value below its outflow in order to solve the jam and return

to free flow, where higher flows can be achieved than the queue discharge rate. Obviously, there must be

sufficient flow-limiting control measures upstream to limit the inflow of the bottleneck. Furthermore, the

applied control measure should not result in a too large flow reduction elsewhere in the network since that

would adversely affect the overall flow improvement.

2 PROBLEM DESCRIPTION

2.1 Network elements

We model a traffic network by a directed graph that contains problem-specific elements. Each network

consists of the following elements (see also Figure 1 and Table 1 for the symbols of the elements and the

related variables):

• Origins. Origin o is an element of the set of all origins {O1,O2, . . . }, and provides a constant inflow

to the network of qo (veh/h).

• Destinations. Destinations are the sinks of traffic. The flow at destination d ∈ {D1,D2 . . . } is

denoted by qd (veh/h).
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• Nodes with route guidance. At nodes traffic from several incoming links may be joined and redis-

tributed over one or two outgoing links1. The flows of the incoming links of node n ∈ {N1,N2, . . . }
are denoted by qn,in,i (with i ∈ In, where In denotes the set of indexes of the incoming links of node

n), and the outgoing links are denoted by qn,out,j (with j ∈ {1, 2}). The in and outflows are related

by:

qn,out,j = βn,j qn ,

where qn =
∑

i∈In

qn,in,i, and βn,j is the fraction of traffic that leaves node n through link j. Of course,

βn ≥ 0 and
∑

j∈On
βn,j = 1, where On is the set of indices of leaving links of node n.

If there is no route guidance, a fixed turning rate βn,j is assumed. If there is route guidance at the

node, we will consider qn,ctrl = qn,out,1 (= βn,1 qn) as the control variable.

There may be bounds on the route guidance signal qn,out,1, which are expressed by qn,out,1,min and

qn,out,1,max (which also implies corresponding bounds on qn,out,2). This leads to the following rela-

tions:

qn,out,2 = qn − qn,out,1,

qn,out,1,min ≤ qn,out,1 ≤ qn,out,1,max.

• Flow-limiting control measures. Traffic control measures, such as ramp metering, main-stream me-

tering, and dynamic speed limits can be represented by a generalized control measure u∈{U1, U2, . . .}
that describes the corresponding flow limitation2.

A flow limitation can be active or inactive. The relation between the inflow, outflow, and the control

input of a flow limitation is represented in Figure 2(a) and will be detailed here. If the flow limitation

is active, it limits the flow and the following relations hold:

qu,out = qu,ctrl ,

qu,ctrl ≤ qu,in ,

where qu,ctrl is the control input of the measure, qu,in is the inflow and qu,out the outflow at the measure

u. In addition there may be bounds on the control input

qu,min,ctrl ≤ qu,ctrl ≤ qu,max,ctrl .

Note that by using the upper bounds we can represent traffic control measures that have a maximal

throughput that is lower than the capacity of the road when they are switched on.

If the flow limitation is inactive, then the (out)flow is not limited by the control measure, and the

following relations hold:

qu,out = qu,in ,

qu,ctrl ≥ qu,in .

The activity status of u is denoted by χu, which has a value 1 if the control measure is active and 0 if

it is inactive.

1For simplicity we assume that there are at most two outgoing links. The extension to more outgoing links is straightforward.
2Note that for variable speed limits, the speed limit value must be lower than the critical speed in order to limit the flow. See (10)

for more information.
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• Bottlenecks. A generalized bottleneck b ∈ {B1,B2, . . . } may represent several kinds of bottlenecks,

such as on-ramps, bridges, tunnels, curves, grades, shock waves3, merges, and bifurcations. The

common factor in these bottlenecks is that they have a limited capacity qb,cap, and that there may be

a capacity drop if the bottleneck is jammed. The queue discharge rate is denoted by qb,dch(≤ qb,cap),
where equality holds if there is no capacity drop, but only a limited capacity.

Similarly to flow-limiting control measures a bottleneck can also be active or inactive, and the relation

between the inflow and outflow depends on the activity status. This relation is depicted in Figure 2(b)

and described here. The basic idea for the bottleneck modeling is that if the inflow exceeds the

capacity then the bottleneck will become active (congested) and the outflow will drop to the queue

discharge rate. In order to resolve the jam at the bottleneck the inflow must be limited to a value

lower than the outflow (the queue discharge rate). When the jam is resolved, the bottleneck becomes

inactive and the outflow may increase up to the capacity again. This switching between the active and

the inactive state is equivalent to the hysteresis discussed in Section 1.2.

Since we do not consider queuing here, we assume that both transitions occur immediately if the

conditions are satisfied4.

If the bottleneck is active the following relationships hold:

qb,out = qb,dch ,

qb,in ≥ qb,dch .

If the bottleneck is inactive the following relationships hold:

qb,out = qb,in ,

qb,in ≤ qb,cap .

The activity status of b is denoted by χb, which has a value 1 if the bottleneck is active and 0 if it is

inactive.

• Links. Links provide the connection between two any other elements. A link connects the outflow of

the upstream element with the inflow of the downstream element. The capacity of a link is assumed

to be unlimited. So, if a freeway link with limited capacity is modeled, a bottleneck element should

be included.

Now we can build networks with the elements from Section 2.1 (see Figure 3 for an example).

2.2 Network properties

In this section we give some definitions that are necessary for the problem statement which will be given in

Section 2.3.

• Network activity state. We define the network activity state S as the vector of the activity status of

all bottlenecks and control measures

S = [χB1
, χB2

, . . . , χU1
, χU2

, . . . ]T .

3The representation of moving shock waves is valid in our framework as long as the shock wave does not propagate upstream

to other network elements.
4In a dynamic setting the transition from active to inactive would only occur when the queue is resolved, which takes some time

depending on the net inflow and the queue length.
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When the appropriate control actions are determined, the current network activity state is acquired

from speed, flow and density measurements at the bottlenecks and control measures. The bottleneck

activity states cannot be controlled directly, only through the available control measures, which may

change the inflow of a bottleneck such that an activity state change is triggered.

• Feasibility. We call a network state S feasible for given demands qo (o ∈ O, where O is the set

of all origins) if there exists a set of flows (inflows and outflows) for all nodes, control measures,

bottlenecks, and destinations and a set of control inputs qu,ctrl (u ∈ U , where U is the set of all flow-

limiting control measures) and qn,ctrl (n ∈ N , where N is the set of all controlled nodes) that satisfy

the relations given in Section 2.1.

It is not difficult to show that for a given set of demands there exists always at least one feasible

activity state. The proof is given by assuming any control input, and computing the flows from the

origins to the destinations and assuming activity states that satisfy the inequalities corresponding to

the inflow of the bottleneck or control measure. Since for any inflow value of a bottleneck or control

measure there exists at least one valid activity state, there exist a network activity state that is feasible.

Furthermore, since for certain inflows two (both active and inactive) activity states may satisfy the

related equalities and inequalities, for a certain set of demands and control inputs more than one

activity state may be feasible. E.g., a bottleneck may be both active or inactive if the inflow is between

the capacity and the queue discharge rate. By this property metastability is be represented in networks.

• Reachability. If the network is in a feasible activity state, then other activity states may be reached

by varying the control inputs. If the control inputs are changed, then the activity status of a control

measure or a bottleneck may change. We say that activity state S2 is reachable from activity state S1

if one or more inequality conditions related to the activity state S1 can be violated by changing the

control inputs such that the conditions related to state S2 and the control input bounds are satisfied,

under the same demands. Furthermore, if state S3 is reachable from activity state S2 and state S2

from state S1 then state S3 is also said to be reachable from state S1, i.e., the reachability property is

transitive. If state S2 is reachable from state S1 without intermediate activity states, we say that S2 is

directly reachable from S1.

Note that it is necessary to require that at least one inequality condition is violated since only in that

case the transition will be triggered. It may be possible that both states S1 and S2 are feasible, but the

control measures are not powerful enough to trigger a transition. E.g., a traffic jam at a bridge that has

capacity drop: when the demand is between the queue discharge rate and the capacity both activity

states (jammed and free flow) are feasible. If there is no control measure upstream the bridge, the

transition obviously cannot be made and none of the activity states is reachable from the other one.

Furthermore, reachability is not a symmetric relation, since due to the hysteresis it may be possible

that the available control measures can trigger a bottleneck to become active, but that they are not

powerful enough to resolve the jam at the bottleneck. It may also be possible that the control measures

can solve a jam, but due to the low demands the jam cannot be recreated.

The outflow of a network is uniquely defined for any control input and corresponding network activity state .

The purpose of the control measures is to maximize the network outflow. This can be achieved by changing

the control inputs which may lead to another network activity state, or may lead to different outflow within

the actual activity state. The goal of the control is to reach the activity state and find the control inputs within

that activity state that leads to the highest possible total outflow of the network.
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2.3 Problem statement

The control problem can now be formulated as follows:

Given constant traffic demands qo, o ∈ O at the origins, the control inputs qu,ctrl, u ∈ U and qn,ctrl, n ∈ N ,

and given a corresponding feasible network state S

• find the state S∗ that is reachable from state S and control inputs q∗u,ctrl and q∗n,ctrl that maximize the

network outflow
∑

d∈D

qd, and therefore minimize the TTS,

• find all the possible activity state sequences and corresponding control inputs that lead from state S
and control inputs qu,ctrl and qn,ctrl to state S∗ and q∗u,ctrl and q∗n,ctrl.

3 APPROACH

In this section we present an approach to solve the stated problem. First, we show that in our case max-

imizing the outflow is equivalent to minimizing the TTS. Next, we discuss the procedure for finding the

control inputs that maximize the outflow for a given activity state. Furthermore, we discuss the algorithms

for finding all reachable activity states, and for finding all possible activity state sequences that lead to the

optimal state. We illustrate the approach with an example.

3.1 Relation between inflow, outflow and TTS

It is well-known that there is a direct relationship between the TTS and the inflow and outflow of a traffic

network ( see, e.g., (11)). Here we give the relationship for static inflows and outflows for the case the

inflow of the network exceeds the outflow. Denote the number of vehicles in a network by the discrete time

variable n(k), where k is the time index. The total time tTTS that all vehicles spend in the network over a

period 0, . . . ,K − 1 is given by

tTTS = T

k=K−1
∑

k=0

n(k) , (1)

where T is the sampling time. If the total inflow of the network is denoted by qin and the total outflow by

qout then the evolution of the number of vehicles in the network over time is given by

n(k) = n(k − 1) + T (qin − qout) ,

or in a more useful form,

n(k) = n(0) + Tk(qin − qout) . (2)

For these equations we assume that the network does not become completely empty, i.e., n(k) > 0. Com-

bining 1 with 2 gives

tTTS = TKn(0) + T 2
K(K − 1)

2
(qin − qout) .

This expression can be used to determine the (relative) improvement of the TTS when the outflow of a

network is increased by means of control measures.

From this relationship it is clear that if the outflow is increased then the TTS will decrease given the

same initial condition and traffic demand. So, there is a one to one relation between the outflow and the TTS.

In the rest of the paper we will focus on outflow maximization instead of the equivalent TTS minimization,

since this makes the solution of the control problem easier.

8
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3.2 Solving for one activity state

In order to find the optimal control inputs for a given activity state S , we first derive the equations for the

total outflow and for the constraints that contain only the control variables and constants. We distinguish

between constants, control variables, and destination flows. Constants are the independent quantities in

the network that serve as a flow source for the connected downstream variables, such as the origin flows

qo, and the outflows of the active bottlenecks qb,dch. The control variables are the control values qu,ctrl of

flow limitations and the outflow qn,ctrl of nodes with route guidance. Destination flows are the flows of all

destinations.

We denote the constants by the vector qconst = [qo, qb,dch]
T, which includes the origin flows (o ∈

O) and the outflows of active bottlenecks (b ∈ {b|χb = 1}), the control variables by the vector qctrl =
[qu,ctrl, qn,ctrl]

T which includes the outflows of flow limitations (u ∈ U ) and the outflow of nodes n for which

there is route guidance present (n ∈ N ), the destination variables by the vector qdest = [qd]
T.

By inspection, i.e., by tracking all possible paths from all origins, all outputs of active bottlenecks,

and all outputs of active control measures to all destinations, the destination flows can be written as a linear

combination of constants and control variables:

C1qctrl + C2qconst = qdest , (3)

where C1 and C2 are appropriate matrices. Similarly, by tracking all possible paths from all origins, all out-

puts of active bottlenecks, and all outputs of active control measures to all (active and inactive) bottlenecks

and all (active and inactive) control measures, all inequality conditions that are related to the network activ-

ity state can be written in terms of control variables and constants. Furthermore, the constraints regarding

the control input bounds are already in terms of control inputs. Consequently, all constraints can be written

as a linear combination of constants and control variables:

A1qctrl +A2qconst ≥ qbounds , (4)

where A1 and A2 are matrices and the vector qbounds contains appropriate values, such as the control input

bounds, the bottleneck capacities, and queue discharge rates.

Noting that C2qconst and A2qconst are constant vectors, and that we are interested in maximizing the

total outflow of the network, the problem of finding the control inputs that maximize the outflow for the

actual activity state, can be written as

max
qctrl

cqctrl , subject to (5)

Aactivityqctrl ≥ b1 , (6)

Aboundsqctrl ≥ b2 , (7)

where vector c contains the sum of the row of C1, and where the matrix A1 is splitted into the matrix Aactivity

and into the matrix Abounds related to the bounds on the control inputs, i.e., A1 =

[

Aactivity

Abounds

]

, and vector

b = qbounds − A2qconst, which is also splitted accordingly into b1 and b2. This problem is a standard form

of a linear programming (LP) problem, which can be solved by existing standard techniques, such as the

simplex method or the interior point method (see (12–14) for more information on solving LP problems). In

general these kind of LP problems can have three different type of solutions:

1. The problem may be infeasible. In this case the solution set is empty.

2. The solution may tend to infinity.

9
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3. The solution may be (a set of) real-valued points.

In our case:

1. There will always a feasible solution, since we consider only feasible network activity states.

2. The solution will never tend to infinity since the total outflow cannot exceed the total inflow.

3. There will be real-valued solution that we denote by q∗
S,ctrl, where S is the current activity state. If the

solution is a set, we pick an arbitrary element.

3.3 Activity state transitions

Each row in equation (6) represents one of the inequalities presented in Section (2.1) related to the network

activity state (the state of the control measures and the state of the bottlenecks), and equation (7) represents

the bounds on the control inputs. An activity state transition occurs when the control vector is such that one

or more inequalities in equation (6) are violated, but the inequalities of equation (7) are satisfied. In other

words, if changing the greater or equal sign (≥) to a less sign (<) for one or more rows related to bottleneck

states, results in a feasible problem, and if there is a control input such that equality holds for these rows,

then the transition can be made.

Activity state transitions related to the activity state change of control measures can always be made

(as long as the bounds are satisfied) since any control input will result in a feasible activity state.

By testing the feasibility for all possible LP problems that can be obtained by changing the greater

or equal signs, all reachable activity states from the current activity state can be found. However, in practice

often a pre-selection of states can be made based on heuristics and insight into the traffic system. This will

also be illustrated by the example in Section 3.5.

3.4 Finding all reachable activity states and the corresponding paths

Now that we can find all directly reachable activity states from a given activity state, we are ready to formu-

late the algorithm to find all reachable activity states with any number of activity state transitions, without

visiting the same activity state twice.

With the following algorithm we will find new reachable states by examining the states that are

reachable from the currently known reachable states. If a new reachable state is found, the states reachable

from this new state are examined, and so on.

Let us denote the initial activity state by S1 and define Tdone as the set of activity states for which

directly reachable activity states already have been determined, and the set Ttodo as the set of states for which

directly reachable states not determined yet. Furthermore, we will use the set Thelp as to temporarily store a

set of states, and Shelp to temporarily store a state.

begin

1. Initialize Tdone = ∅, Ttodo = ∅, Thelp = ∅
2. Add S1 to Ttodo.

3. Stop if Ttodo is empty, otherwise set S equal to any element in Ttodo, and compose the

corresponding LP problem.

4. Find all states that are directly reachable from S as described in Section 3.3. Store

these states in Thelp.

5. For all elements Shelp in Thelp do:

5.1 If Shelp ∈ Tdone discard this element, otherwise add it to Ttodo.

6. Go to step 3.

end

10
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Following this algorithm Tdone will contain all reachable activity states, and all possible state transi-

tions within these states will be explored. Once we know all reachable activity states we can determine the

maximum outflow by solving the LP problems corresponding to these states. By comparison the activity

state S∗ and the control inputs q∗u,ctrl and q∗NN ,ctrl that result in the overall maximum outflow can be found,

and the first item of the problem statement is solved.

To answer the second item we used the following rule: all paths that lead from S1 to S2 can be

enumerated by combining all paths from states S1 to states that are directly reachable from S1 with all paths

that go from the directly reachable states to state S2. By applying this rule recursively, all paths from S1 to

S∗ can be found.

What rests, is the selection of a state sequence that is favorable to achieve the state transition from

S1 to S∗. The most reasonable choice would be to select the state sequence that leads to the least delay for

the traffic. This question will be addressed in future research, since this delay cannot be determined without

the explicit representation of queues, because the queue dynamics will determine how long it takes before a

congested bottleneck can change state to uncongested.

The main conclusion here is that we developed an approach to determine and reach the activity state

and control inputs that result in the highest network outflow, given the current state of the traffic network,

the demands, the available control measures and the network topology.

3.5 Example

In this section we give a simple example to clarify the approach presented in the previous section. The

example network is a freeway stretch with a controlled on-ramp. We will show that ramp metering may not

be able to resolve a jam occurring on the freeway at the on-ramp, and that the combination of dynamic speed

limits and ramp metering may be more effective in these situations.

The network for this example is shown in Figure 3. This example is also related to the publica-

tions (4, 15) where we show by numerical optimization that dynamic speed limits can complement ramp

metering. Here we show the same by the approach developed in the previous sections.

In the network of Figure 3 O1 and D1 are connected by a 2-lane freeway, and the link from O2

represents a single-lane on-ramp. The bottleneck B1 represents the bottleneck on the freeway caused by

the on-ramp. The on-ramp is metered by U2 and there is a dynamic speed limit U1 on the freeway. The

parameters of this problem are chosen as:

qO1
= 3500 veh/h,

qO2
= 600 veh/h,

qU1,max,ctrl = 4200 veh/h,

qU1,min,ctrl = 3300 veh/h,

qU2,max,ctrl = 2000 veh/h,

qU2,min,ctrl = 300 veh/h,

qB1,cap = 4200 veh/h,

qB1,dch = 3800 veh/h.

We assume that in the initial activity state the bottleneck and the ramp metering are active and the speed

limit is inactive, i.e., S1 = [χB1
, χU1

, χU2
]T = [1, 0, 1]T.

Solution

The corresponding LP problem written in the form of equations (3) and (4) reads:

max
qctrl

qD1
, subject to

11
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[

0 0
]

[

qU1,ctrl

qU2,ctrl

]

+
[

0 0 1
]





qO1

qO2

qB1,dch



 =
[

qD1

]

, (8)





0 1
0 −1
1 0





[

qU1,ctrl

qU2,ctrl

]

+





1 0 0
0 0 0
0 0 0









qO1

qO2

qB1,dch



 ≥





qB1,dch

−qO2

qO1



 , (9)









1 0
−1 0
0 1
0 −1









[

qU1,ctrl

qU2,ctrl

]

+









0 0 0
0 0 0
0 0 0
0 0 0













qO1

qO2

qB1,dch



 ≥









qU1,min

−qU1,max

qU2,min

−qU2,max









, (10)

where the first row of the system of inequalities (9) is related to the active state of the bottleneck, the second

row to the active state of the ramp metering, the third row to the inactive state of the speed limit, and the

system of inequalities (10) to the bounds on the control values.

If we assume a control vector of qctrl = [qU1,ctrl, qU2,ctrl]
T = [4200, 500]T then the LP is feasible.

Other states may be reached by flipping the ≥ sign for one or more rows of the system of inequal-

ities (9) and checking whether the problem is feasible. If the inequality of the first row is flipped it will

always result in an infeasible problem, since row 1 of inequalities (10) will not be satisfied. So, only the

second or the third inequality may flipped or both, which will result in changing controller U2 from active to

inactive (state S2 = [1, 0, 0]T), changing controller U1 from inactive to active (state S3 = [1, 1, 1]T), or both

(state S4 = [1, 1, 0]T). For all the states S1,S2,S3,S4 the bottleneck is active, so the maximum achievable

outflow will be q∗
S{1,2,3,4},D1

= qB1,dch = 3800 veh/h.

It can be verified that the states S1,S2,S3, and S4 are reachable from each other, and no other states

can be reached from states S1,S2, and S4, only from state S3.

For this reason, we now continue with state S3 = [1, 1, 1]T, where controller U1 is also active. The

corresponding LP reads:

max
qctrl

qD1
, subject to

[

0 0
]

[

qU1,ctrl

qU2,ctrl

]

+
[

0 0 1
]





qO1

qO2

qB1,dch



 =
[

qD1

]

, (11)





1 1
0 −1
−1 0





[

qU1,ctrl

qU2,ctrl

]

+





0 0 0
0 0 0
0 0 0









qO1

qO2

qB1,dch



 ≥





qB1,dch

−qO2

−qO1



 . (12)









1 0
−1 0
0 1
0 −1









[

qU1,ctrl

qU2,ctrl

]

+









0 0 0
0 0 0
0 0 0
0 0 0













qO1

qO2

qB1,dch



 ≥









qU1,min

−qU1,max

qU2,min

−qU2,max









. (13)

The only changes are in the first and the third row of equation (12). These changes are related to the fact

that the inflow of the bottleneck is not determined by qO1
anymore, but by qU1,ctrl (since the measure is

active), and to the fact that the measure U1 is active. Also in this state, the flow qD1
is determined by the

bottleneck queue discharge rate qD1,dch. The reachable states from this state include the already examined

states S1,S2,S4, and include some new activity states, since flipping the inequality of the first now row

results in a feasible LP. It can be verified that the states S5 = [0, 1, 1]T,S6 = [0, 0, 1]T, and S7 = [0, 1, 0] are

reachable. These state correspond to an inactive bottleneck, which means that the combination of a speed

limit and ramp metering can resolve the jam at the bottleneck. These states are not reachable from the states

12
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where only ramp metering is active (S1,S2,S4). So, ramp metering only is not powerful enough to resolve

the jam at bottleneck B1 for the given traffic demand.

We continue here with the optimization of state S5, the other states could be optimized similarly.

The LP for state S5 reads:

max
qctrl

qD1
, subject to

[

1 1
]

[

qU1,ctrl

qU2,ctrl

]

+
[

0 0
]

[

qO1

qO2

]

=
[

qD1

]

, (14)





−1 −1
0 −1
−1 0





[

qU1,ctrl

qU2,ctrl

]

+





0 0
0 0
0 0





[

qO1

qO2

]

≥





−qB1,cap

−qO2

−qO1



 . (15)









1 0
−1 0
0 1
0 −1









[

qU1,ctrl

qU2,ctrl

]

+









0 0
0 0
0 0
0 0









[

qO1

qO2

]

≥









qU1,min

−qU1,max

qU2,min

−qU2,max









. (16)

The changes here are now in equation (14) where the outflow does not depend on the queue discharge rate

of the bottleneck anymore, but on the control vector qctrl, and in the first row of equation (15) which contains

the condition for the inactive bottleneck. Furthermore, the constant qB1,dch has disappeared from qconst since

the bottleneck is not active anymore.

The solution of this LP problem will result in multiple solutions for which the outflow reaches the

capacity of the bottleneck, e.g., qU1,ctrl = 3700 veh/h and qU2,ctrl = 500 veh/h. It is obvious that the other

states (S6 and S7) cannot result in a better performance, where q∗
S{5,6,7},D1

= qB1,cap = 4200 veh/h.

Note also that state S8 = [0, 0, 0]T is infeasible, since for this state the inflow of the bottleneck

equals 4100 veh/h (sum of all demands) which is higher than its capacity, which would lead to an active

bottleneck, not to an inactive as expressed by the state.

We may conclude that the optimal state S∗ = S5 is found, and also the corresponding control values

and the state sequence (S1 → S3 → S5) is identified.

4 CONCLUSIONS AND FUTURE RESEARCH

We have developed an approach that finds the best achievable network activity state (the best achievable

combination of active and inactive bottlenecks) including the corresponding control signals, and active and

inactive control measures assuming constant origin demands and no blocking in the network. If the optimal

network state is not directly reachable from the initial activity state, the approach also provides all possible

state transition sequences that lead to the optimal state. The physical interpretation of this result is that this

method finds the sequence of necessary control measures that solve all traffic jams – or if that is not possible

– to reach the best possible relocation of traffic jams.

The most important network element in this approach is the bottleneck, with which the capacity

drop, hysteresis effects, and metastability can be reproduced. The main goal of this approach was to mini-

mize the total time spent by the vehicles, – which was shown to be equivalent to maximizing the outflow of

the network,– while to coping with these effects.

Since most traffic control measures can only produce a limited range of flows, upper and lower

bounds were incorporated in the approach. These bounds are useful to determine whether a certain combi-

nation of control measures is powerful enough to solve a certain traffic jam. In this sense this approach is

also suitable to determine whether the addition of an extra control measure has the potential to improve the

network performance.

13
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Most of the topics for future research are related to the relaxation of the above assumptions:

• Inclusion of queues. Explicit modeling of the dynamics of the queues occurring at bottlenecks and

control measures will enable us to compute the TTS corresponding to a certain activity state sequence,

to model blocking effects and to include queue length constraints.

• Representation of upstream propagating shock waves. Similarly to vertical queues, upstream prop-

agating shock waves may also influence the behavior of other network elements (such as control mea-

sures and bottlenecks).

• Extension to dynamic demands. Dynamic demands may also trigger activity state changes which

may interfere with the state transitions triggered by the control measures.

• Investigation of more efficient algorithms. The algorithms presented in this paper for finding the

optimal state are not optimized for efficiency yet. The computation time to solve the LP problems

is not expected to become a problem since its size increases linearly with the number of network

elements. However finding the activity state sequence leading to the optimal activity state may grow

exponentially in complexity, since the number of states increases exponentially with the number of

bottlenecks and control measures. In the future more effective search algorithms could be used to

limit the number of cases for which an LP has to be solved.
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FIGURE 1 The network elements.
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(a) The relations between inflow and outflow of the flow-limiting control mea-
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depend on the activity status of the bottleneck.

FIGURE 2 The relations between inflow and outflow for control measures and bottlenecks.

18



Hegyi, De Schutter, Hellendoorn 19

70

��������������������������������������������������������

��������������������������������������������������������

dynamic speed limit

ramp metering

(a) The physical lay-out of the network. If the flows of the main-

stream and on-ramp are too high, a traffic jam (bottleneck) will be

created on the freeway at the on-ramp.

O1

O2

D1

N1U1

U2

B1

(b) The network in terms of the defined network elements.

FIGURE 3 Example network with ramp metering and dynamic speed limits. Dynamic speed limits

can complement ramp metering when ramp metering alone is insufficient to resolve the on-ramp jam.
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variable description

qo inflow from origin o

qd outflow at origin d

qn,in,i inflow from link i to node n

qn,out,j outflow to link j from node n

qn total flow through node n

βn,j fraction of traffic that leaves node n through link j (uncontrolled node)

qn,ctrl traffic leaving node n (controlled node, qn,out,1 = qn,ctrl)

qn,out,1,min minimal outflow from node n to the first outgoing link

qn,out,1,max maximal outflow from node n to the first outgoing link

qu,in inflow of measure u

qu,out outflow of measure u

qu,ctrl control input at measure u

qu,min,ctrl lower bound of control input at measure u

qu,max,ctrl upper bound of control input at measure u

qb,in inflow at bottleneck b

qb,out outflow at bottleneck b

qb,dch queue discharge rate of bottleneck b (bottleneck active)

qb,cap free-flow capacity of bottleneck b (bottleneck not active)

TABLE 1 Overview of the network variables and constants. All variables and constants have unit

(veh/h) except βn,j which is a fraction (dimensionless).
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