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Abstract

This paper presents a methodological approach for validation of advanced driver assistance systems.

The methodology relies on the use of randomized algorithms that are more efficient than conventional

validation using simulations and field tests, especially with increasing complexity of the system. The

methodology consists of first specifying the perturbation space and performance criteria. Then a mini-

mum number of samples and a relevant sampling space is selected. Next an iterative randomized simu-

lation is executed, followed by validation of the simulation model by hardware tests, in order to increase

the reliability of the estimated performance. The proof of concept is illustrated with some examples of a

case study involving an adaptive cruise control system. The case study also points out some character-

istic properties of randomized algorithms regarding the necessary sample complexity, and the sensitivity

to model uncertainty. Solutions for these issues are proposed as well as corresponding recommendations

for future research.
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1 INTRODUCTION

1.1 State-of-the-Art of Advanced Driver Assistance Systems

The increasing demand for safer passenger vehicles has stimulated the research and development of ad-

vanced driver assistance systems (ADASs) over the past decade. An ADAS typically consists of environ-

ment sensors (e.g. radar, laser, and vision sensors) and controllers to improve driving comfort and traffic

safety by warning the driver, or even autonomous control of actuators. State-of-the-art examples of ADASs

that have already been introduced by the automotive industry are adaptive cruise control (ACC) (1) (2),

collision warning systems (3), and pre-crash systems (4).

1.2 Challenges in Design and Validation of ADASs

The demand for safety and reliability naturally increases with this increasing automation of the vehicle’s

driving task, since the driver must fully rely on a flawless operation of the ADAS. For instance, autonomous

braking in an ACC should be executed only if the distance to the preceding vehicle will otherwise become

unacceptably small, or even results in a collision. In order to handle a large variety of complex traffic

scenarios and disturbances, redundancy and fault-tolerance measures are often implemented. In practice, it

is however difficult to choose the right control measures and to validate their effectiveness. Manufacturers

thus face an increasing effort in the design and validation of ADASs in contrast to a desired shorter time-to-

market.

Currently, an iterative process of simulations and prototype test drives on a test track is used for

validation purposes. The simulation effort can however be inefficient, since a large number of simulations

are necessary. Instead, a worst-case analysis is often used, which leads to a conservative control system de-

sign, thus limiting the functional performance of the ADAS. On the other hand, test drives are more reliable,

but can never cover the entire set of operating conditions, due to time and cost constraints. Furthermore,

test results can be difficult to analyze for controller validation and benchmarking, because traffic scenarios

cannot be exactly reproduced during a test drive. It may therefore become impossible to evaluate an ADAS

with guaranteed measures for the level of performance, safety, and reliability.

1.3 Need for New Tools and Methods

The objective of this paper is therefore to present a methodological approach to provide an efficient test

program in order to cover the entire set of operating conditions. Here we define efficiency in terms of a

minimum number of experiments to be performed, in order to reduce the costs for validation. A simplified

case study will be used as an illustration of this methodology for reasons of transparency. Note that the

emphasis of this paper is therefore on the validation process, and not on control system design.

One validation tool in this methodology is the software tool PRESCAN, which is used in a proba-

bilistic simulation strategy with the operating conditions chosen to be representative for the ‘real’ conditions.

The simulation models can subsequently be validated with another tool: the VEhicle-Hardware-In-the-Loop

(VEHIL) facility, TNO’s tailor-made laboratory for testing ADASs. In VEHIL a real ADAS equipped ve-

hicle is tested in a hardware-in-the-loop simulation, as shown by the working principle in Figure 1. With

VEHIL the development process and more specifically the validation phase of ADASs can be carried out

safer, cheaper, more manageable, and more reliable. However, before VEHIL testing takes place, the simula-

tion phase should be able to provide a reliable estimate of the performance. Both VEHIL and PRESCAN are

fully described in (5), and in this paper we restrict the discussion to the underlying validation methodology,

as outlined below.
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1.4 Outline of this Paper

In Section 2 a simplified model of an ACC system is presented, together with its performance measures and

the perturbations acting on the system. Section 3 treats the background theory of a randomized algorithm

(RA) that is subsequently applied to the ACC case study in a number of examples. These examples illustrate

the advantages of using RAs, but also highlight some points for improvement, especially regarding the

required number of samples. Section 4 discusses some possibilities for addressing this issue. Subsequently,

Section 5 presents an improved methodological approach for the validation of ADASs. Finally, Section 6

summarizes the validation approach, and discusses ongoing research activities.
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2 A CASE STUDY: ADAPTIVE CRUISE CONTROL

2.1 A Simplified Model for Adaptive Cruise Control

The ACC longitudinal control problem consists of two vehicles, as shown in Figure 2. This figure also

indicates the position x and the velocity v, where the subscripts ‘l’ and ‘f’ denote leader and follower

respectively. Further defined are the distance between the two vehicles (the headway) xr = xl − xf , the

relative velocity vr = vl − vf , the desired distance xd, and the headway separation error ex = xd − xr.
ACC tries to maintain a pre-defined velocity set-point vcc, unless a slower vehicle is detected ahead.

In that case vehicle ‘f’ is controlled to follow vehicle ’l’ with equal velocity vf = vl at a desired distance

xd. Since the ACC objective is to control the motion of a vehicle relative to a preceding vehicle, the vehicle

state is chosen as x =
[

xr vr

]T
. The initial condition of x is defined as x(0) =

[

xr, 0 vr, 0

]T
, i.e.

every time that the sensor detects a new lead vehicle that ACC should follow. We can then write the state

space representation as

ẋ =

[

0 1
0 0

] [

xr
vr

]

+

[

0
−1

]

af +

[

0
1

]

al, (1)

where the acceleration of the following vehicle af is the control input, and the acceleration of the leading

vehicle al forms the disturbance to the system.

2.2 Constant Spacing Control Law

In velocity control mode, the ACC operates as a conventional cruise control, where the desired acceleration

ad is given by a simple proportional controller

ad = kcc(vcc − vf), kcc > 0. (2)

In distance control mode, ad is given by proportional feedback control of the distance separation error

ex = xd − xr and its derivative ev = ėx = vd − vr

ad = −k2ev − k1ex, k1, k2 > 0. (3)

The distance xd and the feedback gains ki can be a function of a number of state variables (usually xr, vf ,
and vr), tuned in order to achieve a natural following behavior. However, here we use a constant spacing

control law, where xd is equal to a constant value s0 = 40m, k1 = 1.2, and k2 = 1.7. Since the desired

relative velocity is obviously equal to zero, Eq. (3) can be rewritten as

ad = k2vr + k1(xr − s0). (4)

Although control law Eq. (4) is not used for ACC systems because of string stability issues (6)

and unnatural following behavior, we will use it in this paper for reasons of simplicity. The control law is

however proven to be asymptotically stable, such that both ex and ev are always regulated to zero, provided

k1, k2 > 0 (6).

In this paper we also neglect sensor processing delay and vehicle dynamics by assuming that the

desired acceleration is realized at the input of the controlled system without any time lag, such that af = ad.

However, we do introduce an actuator saturation, since ACC systems usually restrict the minimum and

maximum control input for safety reasons. In this case study we use the restriction that af is bounded

between −2.5 and 2.5 m/s2.
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2.3 Performance Criteria for ACC

The performance of an ACC can be quantified in a number of measures ρi, e.g. overshoot, tracking error,

time response, control effort, ride comfort, and string stability. Here we restrict the controller validation to

the measure of safety, expressed as the probability p that no collision will occur for a whole range of traffic

situations. The safety measure for a single experiment is denoted by ρs ∈ {0, 1}, where ρs = 1 means

that the ACC system manages to follow the preceding vehicle at a safe distance, and ρs = 0 means that

the traffic scenario would require a brake intervention by the driver to prevent a collision1. Depending on

the resulting value for p, the feedback gains k1 and k2 can be optimized. In practice, it is not desirable to

achieve p = 1 for all traffic scenarios, since this would necessitate a very conservative controller with high

autonomous braking capacity. ACC field test results suggest that p = 0.95 is more or less appropriate for

highway cruising (7)2.

2.4 Perturbation Space

The value of ρs for a particular traffic scenario obviously depends on the perturbations imposed by that

scenario. The disturbance to the ACC system is formed by the motion of other vehicles that are detected by

the environment sensors (which form the interface between the environment and the system). Apart from

the acceleration of the preceding vehicle al, also the initial conditions x(0) determine the probability of a

collision. These scenario parameters, together with measurement noise, process noise, unmodeled dynamics

and various types of faults construct an n-dimensional perturbation space ∆. It is then of interest to evaluate

the function ρ∆ that reflects the dependency of ρ on the structure of ∆. In this paper we first consider the

situation where ∆ is limited to the subset S = {al, xr, 0, vr, 0} of uncertain traffic scenario parameters and

where the resulting safety measure ρs is non-decreasing.

2.5 The Control System Validation Problem

Designing a simple stable controller that meets the ACC performance requirements is not difficult. How-

ever, validation of this controller with respect to these requirements and subsequent tuning requires a lot of

effort. For low-order systems, controller validation can still be solved in a deterministic way or by using

iterative algorithms. But when the dimension of ∆ increases and ρ∆ becomes non-convex, the problem will

eventually become more difficult to solve, i.e. it becomes intractable, as shown by the tutorial paper (8).

Currently, controller validation is therefore often performed by a grid search, where all parameters

are varied through their operating range, as applied in the clearance of flight control laws (9). However,

an exhaustive grid search may require an inefficient large number of experiments, perhaps even too large

to be feasible. Alternatively, a worst-case analysis can be performed by lumping together a combination of

disturbances, each with the direction and magnitude that has the worst impact on the system performance

ρ. However, a worst-case control system analysis is often not realistic, since it may result in a conservative

controller that is tuned to a specific non-reachable combination of operating conditions. In the next sections

we therefore discuss and further extend an approach to address this problem, using a simple case study for

proof of concept.

1Please note the difference between the performance level ρ for a particular experiment and its probability p for a whole range

of experiments.
2This means that in 5 % of the scenarios the driver has to intervene, which is a reasonable value for ACC. Note that ACC is

designed as a comfort system, not as a collision avoidance system.
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3 A RANDOMIZED ALGORITHM FOR CONTROL SYSTEM VALIDATION

3.1 Motivation for a Probabilistic Approach

An alternative approach for solving a complex problem exactly, is to solve it approximately by using a

randomized algorithm (RA). An RA is an algorithm that makes random choices during its execution, and

covers both Monte Carlo, sequential and other probabilistic algorithms (10).

The use of an RA can turn an intractable problem into a tractable one, but at the cost that the

algorithm may fail to give a correct solution (without the user knowing). The probability that the RA fails

can be made arbitrarily close to zero, but never exactly equal to zero. A popular example is a Monte Carlo

simulation strategy, where this probability depends on the sample complexity, i.e. the number of simulations

performed.

An important issue is therefore the necessary sample complexity that guarantees a certain level of

confidence for the simulation outcome. In this section we show that this sample complexity is bounded,

depending on the desired level of accuracy and reliability, but also that these bounds are rather conservative.

3.2 Bounded Sample Complexity for RAs

The use of a randomized approach for controller validation can be illustrated as follows. Consider an ar-

bitrary process with only two possible outcomes: ‘failure’ (ρ = 0) and ‘success’ (ρ = 1). Suppose that

we wish to determine the probability p for a successful outcome of this process. If N denotes the number

of experiments with this process and NS the number of experiments with successful results, then the ratio

NS/N is called the empirical probability or empirical mean p̂N for a successful result of the process.

However, p̂N is unlikely to be exactly equal to the real probability p, although it is reasonable to

expect that p̂N will approach p, as N → ∞, and as long as the samples are chosen to be representative of

the set ∆. The question thus arises in what sense p̂N converges to p, and how many experiments N have to

be performed to give a reasonable estimate of p. An estimate p̂N can be called reasonable if it differs from

the real (unknown) value p by no more than ǫ > 0, such that

|p− p̂N | ≤ ǫ, (5)

where ǫ is called the accuracy of the estimate.

Since p̂N is a random variable depending on the particular realization of the N samples, the outcome

of the inequality Eq. (5) is a random variable as well with a certain probability of realization. Therefore,

we cannot always guarantee that |p − p̂N | ≤ ǫ, even with a large number of experiments. This means that

if the experiments are performed another N times, the estimate p̂N will probably have another value. The

probability that |p− p̂Nj
| > ǫ for a particular set of simulations Nj is then the unreliability δ of the estimate

p̂N . We would therefore like to know the level of accuracy ǫ, and reliability 1 − δ, that can be obtained

with one particular set of N simulations. In practice, often the reverse problem is considered: how many

experiments N are necessary to achieve a desired level of confidence, in terms of ǫ and δ?

To answer this question, first define the desired accuracy for determining the unknown quantity p
by some number ǫ > 0. Then, in order to know the reliability of our set of experiments, it is necessary to

determine the probability that performing N experiments will generate an estimate p̂N for which |p− p̂N | >
ǫ. A popular measure available is the Chernoff bound (11), which states that this probability, defined as

δ > 0, is no larger than 2e−2Nǫ2 . This means that, after performing the experiment N times, we can state

with a confidence of at least 1− 2e−2Nǫ2 that the empirical probability p̂N is no more than ǫ different from

the true but unknown probability p. Therefore, in order to estimate the unknown quantity p to an accuracy

of ǫ and with a confidence of 1− δ, the number of experiments N should be chosen such that

2e−2Nǫ2 ≤ δ. (6)
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Eq. (6) can also be written as

Nch ≥
1

2ǫ2
ln

2

δ
, (7)

which is known as the additive Chernoff bound. Table 1 presents the necessary sample complexity to

calculate p̂N for some values of ǫ and δ. Since p̂N has a confidence interval, the upper bound for N is called

a soft bound, as opposed to hard bounds given by a deterministic algorithm.

3.3 Formulation of an RA

The Chernoff bound forms the basis for the application of Monte Carlo methods, used widely in engineering

for design and analysis of control system performance. Several references give a clear tutorial introduction

to the use of RAs (12, 13, 14, 8). Here we summarize the main steps to be taken in control system analysis

using RAs.

Suppose that the closed-loop system (in our case the ACC equipped vehicle and its controller) must

be verified for a certain performance level ρ. It is then the goal to estimate the probability p that this

performance ρ lies above a pre-specified threshold value γ. In order to compute p̂N (γ), we generate N
independent identically distributed (iid) samples 3

∆1,∆2, . . . ,∆N

in the perturbation space ∆ according to its probability density function (pdf) f∆. The outcome of every

i-th experiment is represented by an indicator function J , given by

J(∆i) =

{

0, if ρ < γ
1, if ρ ≥ γ

(8)

The empirical probability p̂N can then be estimated as

p̂N =
1

N

N
∑

i=1

J(∆i), (9)

which is known as the simple sampling estimator.

Since the outcome of the inequality |p − p̂N | ≤ ǫ is a random variable, it has a certain probability

of realization. By introducing a confidence degree 1− δ, this probability is defined as

Pr{|p(γ)− p̂N (γ)| ≤ ǫ} ≥ 1− δ, ∀ γ ≥ 0, δ ∈ (0, 1), ǫ ∈ (0, 1) (10)

The sample complexity N that is required for Eq. (10) to hold, can then be calculated from Eq. (7). This

method for probabilistic control system analysis is formalized as follows.

3In the following we will also use p̂N instead of p̂N (γ) for reasons of clarity.
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Algorithm 3.1 (Probabilistic performance verification (14))

Given ǫ > 0, δ ∈ (0, 1) and γ ≥ 0, this RA returns with probability at least 1− δ an

estimate p̂N (γ) for the probability p(γ), such that |p(γ)− p̂N (γ)| ≤ ǫ.

1. Determine the necessary sample size

N = Nch ≥ 1
2ǫ2

ln 2
δ
;

2. Draw N samples ∆1, . . . ,∆N according to f∆;

3. Return the empirical probability

p̂N (γ) = 1
N

∑N
i=1 J

(

∆(i)
)

where J (·) is the indicator function of the set B = {∆ : ρ (∆) ≥ γ}.

3.4 Examples of Application of an RA

In this section we will apply Algorithm 3.1 to the simplified ACC case study, of which the ‘true’ outcome is

exactly known. If we are interested in knowing the number of traffic situations that would become danger-

ous, given a stochastic distribution of traffic scenarios, we can use Algorithm 3.1 to give an estimate p̂N of

this probability p with an accuracy level ǫ and a confidence level δ, based on N simulations.

3.4.1 Example 1: Uniformly Distributed Disturbance

Scenario Definition In this first example we choose a highway cruising scenario where the lead vehicle

approaches a traffic jam and brakes to a full stop. The initial conditions are xr, 0 = xd = 40m, and

vl(0) = vf(0) = 30m/s. We assume that the deceleration of the preceding vehicle is the only disturbance

with a uniform distribution between −10 and 0m/s2, denoted as fU(al) ∼ U [−10, 0]. We also restrict the

analysis to the measure of safety ρs.
In situations when the lead vehicle brakes hard, the ACC vehicle cannot obtain the necessary decel-

eration ad, since the actuator saturates at -2.5 m/s2. Now, for fine-tuning the controller parameters, we would

like to know the percentage of brake situations for which ρs meets a pre-defined threshold. The threshold γ
is simply set at 1 in this case (no collision).

The safety of the system obviously decreases with a stronger deceleration al, such that the function

ρs(al) is non-decreasing. Therefore, the boundary value ∆γ , for which only just a collision is prevented,

can easily be calculated using an iterative algorithm as −3.015m/s2. Below this value (the scenario will

always result in a collision, above this value the ACC vehicle will be able to stop autonomously and prevent

a collision. Since al is uniformly distributed on the interval [−10, 0], the real value for p is thus equal

to (3.015/10) = 0.3015. The probability that the estimated value p̂N differs from this real value by an

accuracy smaller than ǫ is then larger than 1− δ, as defined by Eq. (10).

Randomization of the Problem Although for this example it is feasible to formulate a deterministic

algorithm, in practice it can be difficult or even impossible to determine p in a deterministic way, when the

dimension of ∆ increases and the relation ρ∆ becomes non-convex. So instead of calculating p explicitly

in deterministic sense, the function is randomized in such a way that it takes a random input ∆i from its

distribution function fU(al), according to Algorithm 3.1.

In order to verify the performance of Algorithm 3.1, we execute it 500 times (each with N = 100).

So every j-th simulation set, for j = 1, . . . , 500, gives us an estimate p̂Nj
. The distribution of the estimate is
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shown in the histogram in Figure 3(a). With this example, the accuracy and reliability for a single simulation

set (each consisting of 100 simulations), can be estimated as ǫ̂ and δ̂ respectively.

The empirical mean p̂M of the probability of a collision-free scenario is 0.30714, based on all

M ·N = 50 000 simulations, which is very close to p = 0.3015, as could be expected. The variance of each

individual estimate p̂Nj
can be found by the unbiased estimator for the variance

σ2
Nj−1 =

1

Nj − 1

Nj
∑

j=1

(p̂Nj
− p̂M )2, (11)

which gives σ2
Nj−1 = 0.0021042.

Analysis of the Simulation Results Suppose we desire that δ = 0.10 and ǫ = 0.10. Eq. (7) then

gives Nch = 150 as an upper bound on the sample complexity. The desired values for δ and ǫ imply that

the empirical mean p̂Nj
for the j-th set of simulations should lie in the interval [0.2015, 0.4015] for every

9 out of 10 simulation sets. However, from Figure 3(a) it can be observed that in total only 15 out of

the 500 simulation sets result in p̂Nj
/∈ [0.2015, 0.4015]. This means that δ is empirically determined at

δ̂ = 15/500 = 0.03, which is smaller than the desired δ. The estimate p̂Nj
for any simulation set j is thus

more reliable than desired, and we only used 100 experiments, whereas Eq. (7) requires Nch = 150.

This example shows that a certain value for δ and ǫ can be achieved with a lower number of samples

than deemed necessary by the Chernoff bound. Correspondingly, by choosing N = Nch, a higher level of

accuracy and reliability can be obtained. Although the degree of conservatism for this example is rather

limited, it can be shown that this conservatism increases with smaller values for δ and ǫ (8).

3.4.2 Example 2: Gaussian Distributed Disturbance

In the previous example, fU(al) may not be representative for the entire operating range, whereas p̂N greatly

depends on the correctness of the underlying pdf. Let us therefore assume a more general acceleration

profile for highway cruising. Typical vehicle measurements during ACC field testing (7) suggest that the

acceleration profile can be roughly described as a random signal with a Gaussian distribution fN with mean

µ = 0 and standard deviation σ = 1.5, denoted as N (0, 1.5), truncated on the interval [−10, 10] m/s2.

We now execute Algorithm 3.1 again with al ∼ N (0, 1.5). The resulting histogram with the esti-

mated collision probability p̂Nj
for every simulation set is shown in Figure 3(b). The empirical mean p̂M is

now 0.97752, with a variance of σ2
Nj−1 = 0.00020506. This variance is much smaller than in Example 1,

due to the lower occurrence rate of dangerous situations.

Suppose that δ = 0.02 and ǫ = 0.03 are desired, Eq. (7) then gives Nch = 2559. From Figure 3(b)

can be seen that only 10 out of 500 estimates p̂Nj
fall outside the interval [p− ǫ, p+ ǫ], which indicates an

estimated reliability δ̂ = 0.02. So the same level of accuracy and reliability has been achieved with only

N = 100 instead of Nch = 2559 samples.

3.4.3 Example 3: Multi-Dimensional Disturbance

In the previous two examples al was considered the only disturbance. However, in practice p depends also

on the initial distance and velocities of both vehicles at the moment of first detection by the sensor. Consider

for instance a cut-in situation at close distance xr, which is more dangerous than a vehicle cutting-in at larger

distance (with identical al and vr). The crash probability thus depends on the entire set S = {vl, vf , xr, al}
that defines the longitudinal scenario, as discussed in Section 2.4. In this example we assume Gaussian

distributions for both the velocities (with µ = 30m/s and σ = 5m/s), and distance xr (with µ = 60m,

σ = 20m, and truncated on [10, 150]m).
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Figure 3(c) shows the resulting histogram after execution of Algorithm 3.1 with p̂M = 0.86848
and σ2

Nj−1 = 0.0010378. Compared to Example 2 it can be seen that the variance is much larger, since

the outcome of the experiment now depends on four independent pdf’s. The sample complexity N is again

conservative, since Figure 3(c) shows that only one estimate falls outside the interval [p−ǫ, p+ǫ], indicating

δ̂ = 0.002. So the same level of accuracy and reliability has been achieved with only N = 100 instead of

Nch = 346 samples.

3.5 Characteristics Properties of RAs

The examples and key references (8, 12, 13, 14) point out the following characteristic properties:

• A limited number of test runs is necessary as compared to deterministic algorithms. However, the

sample complexity to achieve a reasonable ǫ and δ, as given by the Chernoff bound, is quite conser-

vative.

• An RA is very simple, since the Chernoff bound is completely independent of the nature of the under-

lying process and the perturbation space ∆. However, this also means that no advantage is taken of

any a priori knowledge of the structure of ∆. It is therefore desired to modify the simulation approach

such that knowledge of the system is applied.

• The reliability of the simulation outcome strongly depends on the reliability of the pre-defined pdf f∆.

In the examples we have used simplified pdf’s, which in practice have to be improved by empirical

data. The outcome of the simulation approach also greatly depends on the modeling effort.

• The empirical mean p̂N does not say anything about the minimum or maximum level of performance

that can be expected. It may well be that a control system has a good average performance, but also a

poor worst-case performance.

In the next section methods used in conventional control system validation will be applied to address these

issues. These methods will be integrated with the RA approach, and illustrated with the ACC case study.

The resulting methodology will be presented in Section 5.
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4 REDUCTION OF THE SAMPLE COMPLEXITY

As mentioned in the previous section, the sample complexity N given by the Chernoff bound is too conser-

vative. Reduction of N for ADAS validation is therefore an important challenge. One way is to reformulate

the problem and use a different test objective. In addition, the sampling space ∆ can be reduced by neglect-

ing certain subsets that are impossible to occur. Subsequently, N can be further reduced by using a priori

knowledge on which samples will be more interesting than others.

4.1 A Reduced Worst-Case Bound

The examples in Section 3 were based on estimation of the mean performance p. Alternatively, we can

estimate the worst-case performance ρmax by

ρ̂N = max
i=1,2,...,N

ρ(∆i). (12)

Tempo (15) proves that the minimum number of samples N which guarantees that

Pr {Pr {ρ (∆) > ρ̂N} ≤ ǫ} ≥ 1− δ (13)

is then given by

N ≥
ln(1/δ)

ln(1/ (1− ǫ))
. (14)

The sample complexity given by Eq. (14) is much lower than for Eq. (7), as shown in Table 1, and is more

suitable in case of a worst-case analysis.

4.2 Reduction of the Sampling Space

Figure 4 shows a scatter plot with the occurrence of collisions in the perturbation space ∆, corresponding

to Example 3. Obviously, a collision is more likely with lower values for xr, 0, vr, 0, and al, such that the

collision occurrences are clustered in a specific subspace ∆F.

This means that there is structure in the perturbation space ∆ and in the function ρ∆ that can be

used to reduce the necessary perturbation space of interest. The sampling space can then be reduced by

disregarding specific subsets of ∆, of which the outcome is a priori known. An example is the subset ∆S

with combinations of positive acceleration and positive relative velocity that will never result in a potential

collision.

When this dependency ρ∆ can be proven to be convex or non-decreasing, the sample complexity

N can be significantly reduced, as illustrated in Figure 5. In case of a convex performance function, an RA

can then iteratively search for the boundary value ρ(∆γ) = γ, and neglect any ∆i larger than ∆γ , since the

outcome of those samples can be predicted in advance.

4.3 Importance Sampling

As stated above, it makes sense to give more attention to operating conditions that are more likely to cause

a collision than others.

4.3.1 A Randomized Algorithm for Importance Sampling

Suppose that we want to estimate a probability p, given a perturbation ∆. If f∆ is a pdf ∼ U [0, 1] on the

interval S = [0, 1], our goal is then to estimate

p =

∫

S

J(∆)f∆(∆)d∆ = E[J(∆)] (15)
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where J is the performance function, and ∆ ∼ f∆. Importance sampling is a sampling technique to

increase the number of occurrences of the event of which the probability p should be estimated (16). This

estimation is corrected by dividing it by the increased probability of the occurrence of the event. In order to

highlight the interesting subset ∆F it thus makes sense not to sample from the original pdf f∆, but instead

use an artificial pdf, reflecting the importance of the events, and then reweighing the observations to get an

unbiased estimate.

We can now define an importance sampling pdf ϕ that is strictly positive on S. We can then write

p =

∫

S

(

J(∆)f∆(∆)

ϕ(∆)

)

ϕ(∆)d∆ = E

[

J(Φ)f∆(Φ)

ϕ(Φ)

]

, (16)

where Φ ∼ ϕ. The importance sampling estimator based on ϕ is

p̂[ϕ]N =
1

N

N
∑

i=1

J(Φi)f∆(Φi)

ϕ(Φi)
(17)

where Φ1, . . . ,ΦN are iid with pdf ϕ. Its variance is

var (p̂ [ϕ]N ) =
1

N

[
∫

S

J(∆)2f∆(∆)2

ϕ(∆)
d∆− p2

]

(18)

An efficient estimator p̂[ϕ]N is obtained by choosing ϕ proportional to the ‘importance’ of the

individual samples, where importance is defined as |J(∆)f∆(∆)|. A rare but dangerous event can thus

be equally important as a more frequent but less dangerous event. A randomized algorithm can then be

formulated as follows.
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Algorithm 4.1 (Importance Sampling)

Given ǫ, δ ∈ (0, 1), γ, and the true distribution function f∆, this RA returns with

probability at least 1−δ an estimate p̂N for the probability p, such that |p− p̂N | < ǫ.

1. Determine a strictly positive importance sampling pdf ϕ that emphasizes the

interesting events;

WHILE Nis < λisNch;

2. Draw Nis = λisNch samples ∆1, . . . ,∆N according to ϕ;

3. Return the empirical probability

p̂[ϕ]N = 1
Nis

Nis
∑

i=1

J(Φi)f(Φi)
ϕ(Φi)

4. Determine the importance sampling variance

σ2
is =

1
Nis−1

Nis
∑

i=1
(p̂[ϕ]N − p̂M )2

5. Determine the importance sampling reduction factor

λis =
σ2

is

σ2
ss

where σ2
ss is the variance for the simple sampling technique;

6. Check if Nis ≥ λisNch;

IF yes, THEN end algorithm;

IF no, THEN increase Nis and return to step 2;

4.4 Example 4: Importance Sampling

Suppose that we again want to estimate the probability p of a collision-free ACC system for the given

perturbation, as specified by Example 2. The goal is then to estimate

p =

∫

S

J(al)f
N(al)dal = E[J(∆)] (19)

where ∆ ∼ fN. Assuming that this Gaussian distribution function fN(al) is correct, then with a simple

sampling method relatively few samples will lie in the interval of interest, i.e. [-10, -3.015], as was observed

in Example 2.

We therefore define a more suitable ϕ to sample from. We therefore choose the linear pdf ϕ(al) =
−0.005al+0.05 with al bounded on the interval S = [−10, 10]. Note that

∫ 10
−10 ϕ(al) = 1, as is the integral

of the Gaussian distribution (neglecting the tails of the distribution), such that the reweighting process gives

an unbiased estimator.

With Algorithm 4.1 more ‘important’ samples will be generated for every j-th simulation set, thus

decreasing the variance of p̂N . This result can be seen from the histogram in Figure 3(d), where the empirical

mean p̂M = 0.97751 and the variance σ2
is = 5.92 · 10−5, based on 50 000 simulations. Note that p̂M is

approximately equal to the situation in Example 2. However, the variance of a particular realization p̂Nj
has

decreased by a factor of 3.5! The inverse of this factor is called the importance sampling reduction factor

λis, which indicates the reduction in the sample complexity necessary to achieve the same level of accuracy

and reliability as the Chernoff bound (17).
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However, the performance of the importance sampling method heavily depends on the reliability of

the pdf ϕ to generate random variables, and of the models used in the simulation. In addition, the sample

complexity cannot be determined a priori, thus requiring an iterative loop in Algorithm 4.1 and the need for

a suitable stopping criterion.
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5 METHODOLOGICAL APPROACH

A major problem with ADAS controller validation is that the system cannot be tested exhaustively for every

disturbance under every operating condition. A validation methodology should therefore provide a suitable

test program in order to sufficiently (but also efficiently) cover the entire perturbation space. To this aim we

propose a generic methodological approach, consisting of the steps described in the following sections.

5.1 Specification

Firstly, define performance measures ρ and corresponding evaluation criterion γ. In addition, the desired δ
and ǫ must be defined. Correspondingly, select the test objective in order to determine the type of bound for

N :

• Probability of performance satisfaction: for a given δ, ǫ, check if the performance measure ρ is below

threshold γ with a certain probability level p for the whole perturbation space ∆.

• Worst-case performance: check if the worst-case performance ρmax is within ǫ of ρ̂N with a certain

probability 1− δ.

Then, identify the perturbation space ∆ and its pdf f∆ by using preliminary field test results. Using

knowledge on the structure of ∆ or the function ρ∆, determine subsets ∆F and ∆S, of which the outcome is

a priori known (either failure or success). Furthermore, a simulation model of the vehicle, its sensor system,

and its control system is designed using the dedicated simulation tool PRESCAN (18).

5.2 Simulation

Then execute Algorithm 4.1 to cover the important part of the perturbation space to estimate the performance

p̂N with respect to the criteria defined earlier. In general ρ can be a continuous value, although we used a

discrete value in the examples.

The performance of Algorithm 4.1 depends heavily on the reliability of the models and the pdf’s

used in the simulation phase. The robustness of p̂N to model uncertainty should therefore be considered

when validating an ADAS in a randomized approach. The experimental relation between ρ and ∆ from the

simulations is then bounded between ρmax and ρmin, as illustrated in Figure 5. This means that the estimated

boundary value lies within the interval [∆min, ∆max], provided that ρ∆ is a non-decreasing relation.

5.3 Model Validation

Therefore, the most interesting samples of the perturbation space ∆i are chosen to be reproduced in the

VEHIL facility, also in a randomized approach to efficiently cover ∆. These particular ∆i are selected to

lie within the interval [∆min, ∆max]. In VEHIL disturbances can be introduced in a controlled and accurate

way, thereby achieving a more reliable estimate than ρsim(∆). In this way the model uncertainty can be

reduced, because of the replacement of a vehicle and sensor model by real hardware. The corresponding

test program can be formalized as follows
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Algorithm 5.1 (Probabilistic model validation)

1. Choose initial values for ∆min and ∆max in accordance with the uncertainty

size, and a suitable N .

2. Test ρ at ∆min

3. IF ρ ≥ γ, THEN decrease ∆min and GOTO 2.

IF ρ < γ, THEN decrease ∆max and GOTO 4.

4. Test ρ at ∆max

5. IF ρ ≥ γ, THEN increase ∆min and GOTO 2.

IF ρ < γ, THEN increase ∆max and GOTO 4.

6. Return the empirical probability

p̂N = 1
N

∑N
i=1 J

(

∆(i)
)

The sample complexity N for VEHIL is calculated as follows. Suppose that the requirement is that

ρ ≤ γ, where γ is a small number, and we want to determine N in the case that all tests have been successful,

i.e. p̂N = 1. Then we want to check if Pr{|p̂N − p| ≤ ǫ} ≥ 1− δ, where ǫ is set equal to γ. From ǫ and the

desired confidence level δ, the necessary number N can then be derived with the Chernoff bound.

Apart from obtaining ρVEHIL, the test results can also be used for model validation. The estimate

p̂N may indicate necessary improvements in the system design regarding fine-tuning of the controller pa-

rameters. Improve the simulation model using the VEHIL test results until the simulation model proves to

provide adequate performance, convergence in p̂N and sufficient samples N .

5.4 Performance Measure

In an iterative process the simulation results in step 5.2 and thus the estimate p̂N can be improved. Sub-

sequently, the VEHIL test program in step 5.3 can be better optimized by choosing a smaller interval

[∆min, ∆max]. From the combination of simulation and VEHIL results the performance p̂N of the ADAS

can then be estimated with a high level of reliability, and the controller design can be improved. Finally,

determine ρVEHIL with Eq. (17), correcting it for the higher occurrence rate in the interval [∆min, ∆max].
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6 CONCLUSIONS

We have presented a methodological approach for probabilistic performance validation of advanced driver

assistance systems, and applied a randomized algorithm (RA) to a simple adaptive cruise control problem.

This probabilistic approach cannot prove that the system is safe or reliable. However, we accept a certain

risk of failure (though small), since any other conventional validation process (e.g. test drives) is also based

on a probabilistic analysis. Furthermore, use can be made of a priori information on the system, thereby

emphasizing interesting samples.

However, the resulting probabilistic measure p̂N is always associated with a certain level of confi-

dence, depending greatly on the reliability of the simulation models, the perturbation space ∆ and its pdf

f∆. The use of VEHIL hardware tests with the real vehicle and sensor can reduce this model uncertainty

and improve the estimate p̂N in an iterative approach.

Ongoing research is focused on extension of this methodological approach to more complex ADAS

models, with non-convex performance functions ρ∆, a reliable pdf f∆ formed by empirical data, and multi-

ple performance criteria (safety, stability, and driving comfort). Finally, the presented methodology will be

integrated with the use of PRESCAN and VEHIL.
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δ ǫ Nch Nwc

0.10 0.10 150 22

0.05 0.10 185 29

0.03 0.10 210 34

0.02 0.10 231 38

0.01 0.10 265 44

0.002 0.10 346 59

0.05 0.05 738 59

0.02 0.05 922 77

0.01 0.05 1060 90

0.02 0.03 2559 129

0.01 0.01 26492 459

0.001 0.001 3800452 6905

TABLE 1 Values for ǫ, δ, Nch, and Nwc, according to the Chernoff bound Eq. (7) and the worst-case

bound Eq. (14).
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FIGURE 1 VEHIL working principle.
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FIGURE 2 Two vehicles in ACC mode: one leader and one follower.
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(a) Histogram of 500 simulation sets, with N = 100 each,

where al ∼ U(−10, 0).
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(b) Histogram of 500 simulation sets, with N = 100 each,

where the acceleration profile is sampled from a Gaussian

distribution N (0, 1.5).
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(c) Histogram of 500 simulation sets, with N = 100
each, with a multi-dimensional disturbance for S =
{vl, vf , xr, al}.
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where the acceleration profile is sampled from an importance

sampling distribution ϕ = −0.005al + 0.05.

FIGURE 3 Histograms for the estimate p̂Nj
.
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FIGURE 4 Scatter plot with the occurrence of collisions. Furthermore, the subspaces ∆S and ∆F of

which the outcome can be a priori established as success or failures.
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FIGURE 5 Dependency between the performance characteristic ρ and the specific value of ∆.


