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Abstract: We present a methodological approach for validation of advanced driver
assistance systems, based on randomized algorithms. The new methodology is
more efficient than conventional validation by simulations and field tests, especially
with increasing system complexity. The methodology consists of first specifying the
perturbation set and performance criteria. Then a minimum required number of
samples and a relevant sampling space is selected. Next an iterative randomized
simulation is executed, followed by validation with hardware tests. The concept is
illustrated with a simple adaptive cruise control problem.

Keywords: adaptive cruise control, control system analysis, randomized
algorithms

1. INTRODUCTION

1.1 State-of-the-art

The increasing demand for safer passenger vehi-
cles has stimulated the research and development
of advanced driver assistance systems (ADASs).
An ADAS typically consists of environment sen-
sors (e.g. radar, laser, and vision sensors) and con-
trol systems to improve driving comfort and traffic
safety by warning the driver, or even autonomous
control of actuators. A state-of-the-art example of
an ADAS is adaptive cruise control (ACC).

Figure 1 illustrates an ACC-equipped vehicle fol-
lowing a leading vehicle, with their position x and
velocity v, where the subscripts ‘l’ and ‘f’ denote
leader and follower respectively. Further defined
are the headway xr = xl−xf , the relative velocity
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Fig. 1. Two vehicles in ACC mode.

vr = vl−vf , and the desired distance xd. ACC tries
to maintain a pre-defined velocity set-point, unless
a slower vehicle is detected ahead. In that case
vehicle ‘f’ is controlled to follow vehicle ’l’ with
equal velocity vl = vf at a desired distance xd.
Since the ACC objective is to control the motion
of a vehicle relative to a preceding vehicle, the

vehicle state is chosen as x =
[

xr vr
]T

with initial

condition x(0) =
[

xr, 0 vr, 0
]T

. We can then write
the state space representation of the system as

ẋ =

[

0 1
0 0

]

x+

[

0
−1

]

af +

[

0
1

]

al, (1)

where the acceleration of the following vehicle af
is the input, and the acceleration of the leading
vehicle al forms the disturbance to the system.



For distance control of the following vehicle, a
control law can be used to produce a desired
acceleration ad that has to be achieved by lower-
level actuator control, resulting in af . Assuming a
given control law, the performance and stability
of this controller should always be validated for
a wide set of operating conditions (both from the
viewpoint of system design and certification).

1.2 Validation of ADAS control systems

An iterative process of simulations and prototype
test drives on a test track is often used for vali-
dation purposes. Test drives give realistic results,
but can never cover the entire set of operating
conditions, due to time and cost constraints. Test
results can also be difficult to analyze, because
traffic scenarios cannot be exactly reproduced.
On the other hand, simulations have their lim-
itations as well. For a low-order system as in
Eq. (1), controller validation is still possible in
a deterministic way or by using iterative algo-
rithms. However, with a realistic nonlinear model
and multiple traffic disturbances, the problem will
become more difficult to solve, and eventually
become intractable (Vidyasagar, 1998).

In order to make the simulation phase more ef-
ficient, a controller can be validated with a grid

search over the operating range of all parameters
(Fielding et al., 2002). This is however inefficient,
since an exhaustive grid search requires a very
large number of experiments, perhaps even too
large to be feasible. Alternatively, a worst-case
analysis can be performed, but this may result in
a conservative controller. Another possibility is a
Monte Carlo strategy, where the system is simu-
lated for a representative, but still very large, set
of operating conditions (Stengel and Ray, 1991).

In practice the validation of an ADAS controller
therefore requires much effort. In order to improve
the transition from simulations to test drives,
TNO has developed the VEhicle-Hardware-In-
the-Loop (VEHIL) facility, a laboratory for test-
ing ADASs. In VEHIL a real ADAS-equipped
vehicle is tested in a hardware-in-the-loop simula-
tion, providing accurate and repeatable tests, as is
explained in detail in (Gietelink et al., 2004). With
VEHIL the validation of ADASs can be carried
out safer, cheaper, more manageable, and more re-
liable. However, before VEHIL testing takes place,
the simulation phase should be able to provide a
reliable estimate of the performance.

1.3 Objectives of this paper

The objective of this paper is to present a method-
ological approach based on randomized algorithms

(RAs) to provide an efficient test program in or-
der to cover the entire set of operating conditions
with a minimum number of samples. A simplified
case study will be used as an illustration of this
methodology for reasons of transparency.

2. RANDOMIZED ALGORITHMS

2.1 Motivation for a probabilistic approach

An alternative approach for solving a complex
problem exactly, is to solve it approximately by
using an RA. An RA is an algorithm that makes
random choices during its execution (Motwani,
1995). The use of an RA can turn an intractable
problem into a tractable one, but at the cost that
the algorithm may fail to give a correct solution.
The probability δ that the RA fails can be made
arbitrarily close to zero, but never exactly equal
to zero. This probability δ mainly depends on the
sample complexity, i.e. the number of simulations
performed, but also on the specification of the
problem to be solved.

2.2 Problem specification

In this paper the controller validation is restricted
to the measure of safety, expressed as the prob-
ability p that no collision will occur for a whole
range of traffic situations. The safety measure for
a single experiment is ρs ∈ {0, 1}, where ρs = 1
means that the ACC manages to follow the pre-
ceding vehicle at a safe distance, and ρs = 0 means
that the traffic scenario would require a brake
intervention by the driver to prevent a collision.

The value of ρs for a particular traffic scenario
depends on the perturbations imposed by that
scenario. The disturbance to the ACC system
is formed by the motion of other vehicles that
are detected by the environment sensors. Apart
from the acceleration of the preceding vehicle
al, also the initial conditions x(0) determine the
collision probability. These scenario parameters,
together with measurement noise, unmodelled dy-
namics and various types of faults construct an
n-dimensional perturbation set ∆. It is then of
interest to evaluate the function ρ∆ : ∆ → R,
as shown by the example in Figure 2.

2.3 Formulation of an RA

Based on the problem specification the use of
a randomized approach for controller validation
can be illustrated as follows (for more details
see (Tempo et al., 2004)). Consider an arbitrary
process with only two possible outcomes: ‘failure’
(ρ = 0) and ‘success’ (ρ = 1). Suppose that we



wish to determine the probability p for a successful
outcome of this process. If N denotes the number
of experiments with this process and NS the num-
ber of experiments with successful results, then
the ratio NS/N is called the empirical probability

p̂N for a successful result of the process.

Suppose that the closed-loop system (in our case
the ACC system) must be verified for a certain
performance level ρ. It is then the goal to estimate
the probability p that this performance ρ lies
above a pre-specified threshold value γ. In order
to compute p̂N (γ) we can then use Algorithm 1.

Algorithm 1. Probabilistic performance verifi-
cation (Tempo et al., 2004).

Given a desired accuracy ǫ > 0, δ ∈ (0, 1)
and a threshold γ ≥ 0, this RA returns with a
probability of at least 1− δ an estimate p̂N (γ)
for p(γ), such that |p(γ)− p̂N (γ)| ≤ ǫ.
(1) Determine the necessary sample size

N with the additive Chernoff bound

(Chernoff, 1952):

N = Nch ≥ 1/2ǫ2 ln 2/δ (2)

(2) Draw N independent identically dis-
tributed (iid) samples ∆1,∆2, . . . ,∆N in
the perturbation set ∆ according to its
probability density function (pdf) f∆.

(3) Return the empirical probability

p̂N (γ) =
1

N

∑N

i=1
J (∆i) , (3)

where J (·) is the indicator function of the
set B = {∆ : ρ (∆) ≥ γ}, defined as

J(∆i) =

{

0, if ρ < γ
1, if ρ ≥ γ

(4)

3. REDUCTION OF SAMPLE COMPLEXITY

3.1 Chernoff bound conservatism

Eq. (2) in Algorithm 1 gives the sufficient sample
complexity N to estimate p for some values of ǫ
and δ. Since p̂N has a confidence interval, N is
called a soft bound, as opposed to hard bounds
given by a deterministic algorithm. As we will
illustrate in Section 5, this soft bound is very
conservative. Reduction of N for ADAS validation
is therefore an important challenge.

The necessary sample size N can be reduced by
reformulating the problem and using another test
objective. Indeed, p̂N does not say anything about
the minimum or maximum level of performance
that can be expected; e.g. a control system can
have a good average performance, but also a poor
worst-case performance. Fortunately, the neces-
sary sample complexity for estimating worst-case

performance is lower than for Eq. (2), as shown in
(Tempo et al., 2004). Still, N needs to be reduced.

In addition, the sampling space ∆ can be reduced
by neglecting certain subsets that are impossible
to occur. Obviously, a collision is more likely with
lower values for xr, 0, vr, 0, and al, such that the
collision occurrences are clustered in a specific
subset ∆F. This means that there is structure
in the perturbation set ∆ and in the function
ρ∆ that can be used to reduce the sampling
space by disregarding specific subsets of ∆, of
which the outcome is a priori known. An example
is the subset ∆S with combinations of positive
acceleration and positive relative velocity that will
never result in a potential collision.

3.2 Importance sampling

As stated above, it makes sense to give more
attention to operating conditions that are more
likely to cause a collision than others. Another
possibility for using a priori knowledge on inter-
esting samples is importance sampling, which is a
technique to increase the number of occurrences
of the event of which the probability p should be
estimated (Madras, 2002).

Suppose that we want to estimate a probability p,
given a perturbation ∆. If f∆ is a uniform pdf on
the interval S = [0, 1], denoted as f∆ ∈ U [0, 1],
our goal is then to estimate

p =

∫

S

J(∆)f∆(∆)d∆ = E[J(∆)], (5)

where we sample ∆ from f∆, denoted as ∆ ∼ f∆.
In order to highlight the interesting subset ∆F it
thus makes sense not to sample from the original
pdf f∆, but instead use an artificial pdf, reflecting
the ‘importance’ of the events, and then reweigh-
ing the observations to get an unbiased estimate.

We can now define an importance sampling pdf ϕ
that is strictly positive on S. We can then write

p =

∫

S

(

J(∆)f∆(∆)

ϕ(∆)

)

ϕ(∆)d∆=E

[

J(Φ)f∆(Φ)

ϕ(Φ)

]

(6)

where Φ ∼ ϕ. The importance sampling estimator
based on ϕ is

p̂[ϕ]N =
1

N

∑N

i=1

J(Φi)f∆(Φi)

ϕ(Φi)
(7)

where Φ1 . . .ΦN are iid with pdf ϕ. Its variance is

var (p̂ [ϕ]N ) =
1

N

[
∫

S

J(∆)2f∆(∆)2

ϕ(∆)
d∆− p2

]

(8)

An efficient estimator p̂[ϕ]N is obtained by choos-
ing ϕ proportional to the importance of the
individual samples, with importance defined as
|J(∆)f∆(∆)|. A rare but dangerous event can thus
be equally important as a frequent but less critical
event. An RA can then be formulated as follows.



Algorithm 2. Importance sampling.

Given ǫ, δ ∈ (0, 1), γ, and the true distribution
function f∆, this RA returns with probability
at least 1−δ an estimate p̂N for the probability
p, such that |p− p̂N | < ǫ.
(1) Determine a strictly positive importance

sampling pdf ϕ that emphasizes the inter-
esting events;

(2) Select an initial number of samples Nis;
(3) Draw Nis samples Φi according to ϕ;
(4) Return the empirical probability

p̂[ϕ]N = 1
Nis

∑Nis

i=1
J(Φi)f(Φi)

ϕ(Φi)

(5) Determine the importance sampling vari-

ance σ2
is =

1
M−1

∑M
j=1 (p̂[ϕ]Nis,j

− p̂M )2

(6) Determine the importance sampling re-
duction factor λis = σ2

is/σ
2
ss, where σ2

ss is
the simple sampling variance;

(7) Check if Nis ≥ λisNch; IF yes, THEN end
algorithm; IF no, THEN increase Nis and
return to step 3;

4. METHODOLOGICAL APPROACH

In this section we propose a generic methodolog-
ical approach for validation of ADASs, consisting
of the following steps: (1) specification; (2) simu-
lation; (3) model validation; and (4) optimization
of the performance estimate.

4.1 Specification

Firstly, define performance measures ρ, the corre-
sponding evaluation criterion γ, and the desired
δ and ǫ. Correspondingly, select the test objective
in order to determine the type of bound for N :

• Probability of performance satisfaction: for
the desired δ and ǫ, check whether ρ is below
threshold γ with a certain probability level p
for the whole perturbation set ∆.

• Worst-case performance: check if the worst-
case performance ρmax is within ǫ of ρ̂N with
a certain probability 1− δ.

Then, identify ∆ and its pdf f∆ by using prelim-
inary field test results. Using knowledge on the
structure of ∆ or ρ∆, determine subsets of which
the outcome (failure or success) is a priori known.

4.2 Simulation

Execute Algorithm 2 to cover the important part
of ∆ to estimate the performance p̂N . In general,
ρ is a continuous value, although we will use a
discrete value in our example.

γ

ρ∆

∆i∆min ∆ρsim
∆max

ρ∆,max

ρ∆,VEHIL

ρ∆,sim

ρ∆,min

Fig. 2. Illustration of the dependency between the
performance characteristic ρ∆ and ∆.

The performance of Algorithm 2 depends heavily
on the reliability of the models and the pdf’s used
in the simulation phase. The robustness of p̂N to
model uncertainty should therefore be considered
when validating an ADAS in a randomized ap-
proach. The experimental relation between ρ and
∆ from the simulations is then bounded between
ρmax and ρmin, as illustrated in Figure 2. This
means that the estimated boundary value lies
within the interval [∆min, ∆max], provided that
ρ∆ is a non-decreasing relation. For the sake of
simplicity of the explanation we assume from now
on that ∆ is a 1-dimensional set (note however
that the approach can easily be extended to n-
dimensional perturbation sets).

4.3 Model validation

The most interesting samples ∆i are chosen to
be reproduced in the VEHIL facility, also in
a randomized approach to efficiently cover ∆.
These particular ∆i are selected in the interval
[∆min, ∆max]. In VEHIL disturbances are intro-
duced very accurately, thereby achieving a more
reliable estimate than ρ∆,sim. In this way model
uncertainty is reduced, because of the replacement
of a vehicle and sensor model by real hardware.

In addition, the test results can also be used for
model validation. The estimate p̂N may indicate
necessary improvements in the system design re-
garding fine-tuning of the controller parameters.
The simulation model can then be improved using
the VEHIL test results until the simulation model
proves to provide adequate performance, conver-
gence in p̂N and sufficient samples N .

4.4 Performance measure

In an iterative process the simulation results in
step 2 and thus the estimate p̂N can be improved.
Subsequently, the VEHIL test program in step 3
can be better optimized by choosing a smaller
interval [∆min, ∆max]. From the combination of
simulation and VEHIL results the performance
p̂N of the ADAS can then be estimated with a



high level of reliability, and the controller design
can be improved. Finally, determine ρVEHIL with
Eq. (7), correcting it for the higher occurrence rate
in the interval [∆min, ∆max].

5. EXAMPLES OF APPLICATION OF AN RA

In this section we will apply step 1 and 2 of the
methodology to an illustrative case study, of which
the ‘true’ outcome is exactly known. We will
therefore use the system of Eq. (1) in combination
with a simple linear controller.

5.1 Distance control law

Referring to Figure 1, the desired acceleration ad
is given by proportional feedback control of the
distance separation error ex = xd − xr and its
derivative ev = ėx = vd − vr

ad = −k2ev − k1ex = k2vr + k1(xr − s0). (9)

The distance xd and the feedback gains ki can
be tuned in order to achieve a natural following
behavior. We will use xd equal to a constant value
s0 = 40m, vd = 0, k1 = 1.2 s−2, and k2 = 1.7 s−1.
This control law regulates both ex en ev to zero,
provided that k1, k2 > 0.

In this paper we also neglect sensor processing
delay and vehicle dynamics by assuming that the
desired acceleration is realized at the input of the
controlled system without any time lag, such that
u = ad. However, we do introduce an actuator
saturation, since ACC systems usually restrict the
minimum and maximum control input u for safety
reasons. In this case study we use the restriction
that af is bounded between −2.5 and 2.5m/s2.

5.2 Example 1: Gaussian distributed disturbance

Scenario definition We choose a highway sce-
nario where the leading vehicle approaches a traf-
fic jam and brakes to a full stop. The initial con-
ditions are xr, 0 = xd = 40m, and vl(0) = vf(0) =
30m/s. We assume that the deceleration of the
preceding vehicle is the only disturbance. Typical
measurements during ACC field testing (Fancher
et al., 1998) suggest that the acceleration profile
can be roughly described as a random signal with
a Gaussian pdf fN with mean µ = 0 and standard
deviation σ = 1.5, denoted asN (0, 1.5), truncated
on the interval [−10, 10] m/s2. We also restrict the
analysis to the measure of safety ρs.

When the leading vehicle brakes hard, the ACC
vehicle cannot obtain the necessary deceleration
ad, since the actuator saturates at -2.5m/s2.
Now, for fine-tuning the controller parameters,

we would like to know the percentage of brake
situations (p)for which ρs meets a pre-defined
threshold. The threshold γ is simply set at 1 in this
case (i.e. no collision). The safety of the system
obviously decreases with a stronger deceleration
al, such that the function ρs(al) is non-decreasing.
Therefore, the boundary value ∆γ , for which only
just a collision is prevented, can easily be calcu-
lated numerically using an iterative algorithm as
−3.015m/s2. Below this value the scenario will
always result in a collision, above this value the
ACC vehicle will be able to stop autonomously
and prevent a collision.

Randomization of the problem Although for this
example it is feasible to formulate a determin-
istic algorithm, in practice it can be difficult or
even impossible to determine p in a deterministic
way, when the dimension of ∆ increases and the
function ρ∆ becomes non-convex. So instead of
calculating p explicitly in deterministic sense, the
function is randomized in such a way that it takes
a random input ∆i from its distribution function
fN(al), according to Algorithm 1.

In order to verify the performance of Algorithm 1,
we execute itM = 500 times (each withN = 100).
Each simulation set gives an estimate p̂Nj

for
j = 1, . . . ,M . The distribution of the estimate
is shown in the histogram in Figure 3. The ac-
curacy and reliability for a single simulation set
(each consisting of 100 simulations), can then be

estimated as ǫ̂ and δ̂ respectively as follows.

The empirical mean p̂M of the probability of
a collision-free scenario is 0.97752, based on all
MN = 50 000 simulations. The variance of
each individual estimate p̂Nj

can be found by
the unbiased estimator for the variance σ2

ss =
1

M−1

∑M
j=1 (p̂Nj

− p̂M )2 = 0.00020506.

Analysis of the simulation results Suppose we
desire that δ = 0.02 and ǫ = 0.03. Eq. (2) then
gives Nch = 2559 as an upper bound on the
sample complexity. From Figure 3 we see that
only 10 out of 500 estimates p̂Nj

fall outside the
interval [p− ǫ, p+ ǫ], which indicates an estimated

reliability δ̂ = 0.02. So the same level of accuracy
and reliability has been achieved with only N =
100 instead of Nch = 2559 samples.

This example suggests that a certain value for δ
and ǫ can be achieved with a lower number of
samples than deemed necessary by the Chernoff
bound. Correspondingly, by choosing N = Nch,
a higher level of accuracy and reliability can be
obtained. Although the degree of conservatism for
this example is rather limited, it can be shown
that this conservatism increases with smaller val-
ues for δ and ǫ (Vidyasagar, 1998).
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Fig. 3. Histogram of 500 estimates p̂Nj
, with

N = 100 each, where the acceleration profile
is sampled from a Gaussian pdf N (0, 1.5).
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Fig. 4. Histogram of 500 estimates p̂Nj
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N = 100 each, where the acceleration pro-
file is sampled from an importance sampling
distribution ϕ = −0.005al + 0.05.

5.3 Example 2: Importance sampling

Suppose that we again want to estimate the prob-
ability p for the given perturbation, as specified
by Example 1. The goal is then to estimate p =
∫

S
J(al)f

N(al)dal = E[J(∆)] from Eq. (5), where
∆ ∼ fN. Assuming this Gaussian pdf, a simple
sampling method will yield relatively few samples
in the interval of interest, i.e. [-10, -3.015], as
was observed in Example 2. We therefore define
a more suitable ϕ to sample from. We choose
ϕ(al) = −0.005al + 0.05 with al bounded on the
interval S = [−10, 10].

With Algorithm 2 more ‘important’ samples will
be generated for every j-th simulation set, thus
decreasing the variance of p̂N . This result can be
seen from the histogram in Figure 4, where the
empirical mean p̂M = 0.97751 and the variance
σ2
is = 5.92·10−5, based on 50 000 simulations. Note

that p̂M is approximately equal to the situation
in Example 2. However, the variance of a partic-
ular realization p̂Nj

has decreased with a factor
3.5! The inverse of this factor is the importance
sampling reduction factor λis, which indicates the
reduction in the sample complexity necessary to

achieve the same level of accuracy and reliability
as the Chernoff bound (Stadler, 1993).

However, the performance of the importance sam-
pling method heavily depends on the reliability of
the pdf ϕ to generate random variables, and of
the models used in the simulation. In addition, the
sample complexity cannot be determined a priori,
thus requiring the iterative loop in Algorithm 2
and the need for a suitable stopping criterion.

6. CONCLUSIONS

We have presented a methodological approach for
probabilistic performance validation of advanced
driver assistance systems (ADASs), and applied a
randomized algorithm to a simple adaptive cruise
control problem. This probabilistic approach can-
not prove that the system is safe or reliable. How-
ever, we accept a certain risk of failure (though
small), since any other conventional validation
process (e.g. test drives) are also based on a prob-
abilistic analysis. Furthermore, use can be made
of a priori information on the system, thereby
emphasizing interesting samples.

Ongoing research is focused on extension of this
methodological approach to more complex ADAS
models, with non-convex performance functions,
multiple performance criteria, and to include
model validation with the VEHIL facility.
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