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MPC FOR MAX-PLUS-LINEAR SYSTEMS

WITH GUARANTEED STABILITY

T.J.J. van den Boom and B. De Schutter

Delft Center for Systems and Control
Delft University of Technology

Mekelweg 2, 2628 CD Delft, The Netherlands
email: {t.j.j.vandenboom,b.deschutter}@dcsc.tudelft.nl

Abstract: Model predictive control (MPC) is a popular controller design technique
in the process industry. Conventional MPC uses linear or nonlinear discrete-time
models. Previously, we have extended MPC to a class of discrete event systems
that can be described by a model that is “linear” in the max-plus algebra. In this
paper we consider the stability of MPC for these max-plus linear (MPL) systems,
and we derive an MPL-MPC equivalent of the conventional end-point constraint.
We show that with this end-point constraint the optimized cost function can be
seen as a Lyapunov function for the system and can thus be used to prove stability.

Keywords: discrete event systems, model predictive control, max-plus-linear
systems, Lyapunov stability.

1. INTRODUCTION

Model predictive control (MPC) (Garcia et al.
1989, Maciejowski 2002) is a proven technology
for the control of multivariable systems in the
presence of input, output and state constraints
and is capable of tracking pre-scheduled refer-
ence signals. These attractive features make MPC
widely accepted in the process industry. Usually
MPC uses linear or nonlinear discrete-time mod-
els. However, the attractive features mentioned
above have led us to extend MPC to discrete
event systems. Typical examples of discrete event
systems (DES) are flexible manufacturing sys-
tems, telecommunication networks, parallel pro-
cessing systems, traffic control systems, and lo-
gistic systems. In this paper we consider the
class of DES with synchronization but no concur-
rency. Such DES can be described by models that
are “linear” in the max-plus algebra (Baccelli et
al. 1992, Cuninghame-Green 1979), and therefore
they are called max-plus-linear (MPL) DES.
In (De Schutter and van den Boom 2001) we
have extended MPC to MPL systems. In (van
den Boom and De Schutter 2002) we have studied

stability and tuning of MPC controllers for MPL
systems and observed that for MPL systems, sta-
bility is not an intrinsic feature of the system, but
it also depends on the input and the due dates
(i.e., the reference signal) of the system. Some
guidelines for an initial tuning of the MPL-MPC
controller were derived, but still no stability could
be guaranteed. In this paper we will derive a max-
plus equivalent of the conventional end-point con-
straint (which is only appropriate for time-driven
systems, (Rawlings and Muske 1993)), which in
our case will be an inequality constraint.

2. MAX-PLUS ALGEBRA AND
MAX-PLUS-LINEAR SYSTEMS

In this section we give the basic definition of the
max-plus algebra and we present some results on
a class of max-plus functions.

Define ε = −∞ and Rε = R ∪ {ε}. The max-
plus-algebraic addition (⊕) and multiplication
(⊗) are defined as follows (Baccelli et al. 1992,
Cuninghame-Green 1979): x⊕ y = max(x, y), x⊗
y = x+ y for numbers x, y ∈ Rε, and



[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The

matrix En is the n×n max-plus-algebraic identity
matrix: (En)ii = 0 for all i and (En)ij = ε for all
i, j with i 6= j. The matrix εm×n is them×nmax-
plus-algebraic zero matrix: (εm×n)ij = ε for all
i, j. Finally, the max-plus-algebraic matrix power

of A ∈ R
n×n
ε is defined as follows: A⊗

0
= En and

A⊗
k
= A⊗A⊗

k−1
for k = 1, 2, . . . .

In (De Schutter and van den Boom 2001, De
Schutter and van den Boom June, 2000, van den
Boom and De Schutter 2002) we have studied
MPC for DES in which there is synchronization
but no concurrency. It has been shown (Baccelli
et al. 1992) that these systems can be described
by a model of the form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

y(k) = C ⊗ x(k) . (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n. DES that

can be described by this model will be called max-
plus-linear (MPL). The index k is called the event
counter. The state x(k) typically contains the time
instants at which the internal events occur for the
kth time, the input u(k) contains the time instants
at which the input events occur for the kth time,
and the output y(k) contains the time instants at
which the output events occur for the kth time.

3. THE MPC PROBLEM FOR
MAX-PLUS-LINEAR SYSTEMS

In (De Schutter and van den Boom 2001) we have
shown that prediction of future values of y(k)
for the system (1)–(2) can be done by successive
substitution, leading to the expression

ỹ(k) = C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k) (3)

where C̃ and D̃ are given by

C̃ =









C ⊗A

C ⊗A⊗
2

...

C ⊗A⊗
Np









,

D̃=








C ⊗B ε . . . ε

C ⊗A⊗B C ⊗B . . . ε

...
...

. . .
...

C⊗A⊗
Np−1

⊗B C⊗A⊗
Np−2

⊗B . . . C⊗B







,

and ũ(k), ỹ(k) are defined as:

ỹ(k)=








ŷ(k|k)
ŷ(k+1|k)

...
ŷ(k+Np−1|k)







, ũ(k)=








u(k|k)
u(k+1|k)

...
u(k+Np−1|k)








where ŷ(k+j|k) denotes the prediction of y(k+j)
based on knowledge at event step k, u(k+ j|k)
denotes the future input sequence based on knowl-
edge at event step k, and Np is the prediction
horizon.

The MPC problem for MPL systems is formulated
as follows (De Schutter and van den Boom 2001):

min
ũ(k),ỹ(k)

J(ũ(k), ỹ(k)) =

= min
ũ(k),ỹ(k)

Jout(ỹ(k)) + βJin(ũ(k)) (4)

subject to (3) and

∆u(k + j) > 0 for j = 0, . . . , Np−1 (5)

where Jout is the output cost criterion, Jin the
input cost criterion and β is a trade-off variable
with 0 < β < 1. Equation (5) guarantees a non-
decreasing input signal 1 . The above problem will
be called the MPL-MPC problem.

MPC uses a receding horizon strategy. So af-
ter computation of the optimal control sequence
u(k|k), . . . , u(k+Np−1|k), only the first control
sample u(k) = u(k|k) will be implemented, subse-
quently the horizon is shifted and the model and
the initial state estimate can be updated if new
measurements are available, then the new MPC
problem is solved, etc.

In the remainder of this paper we consider the
following output and input objective functions:

Jout(ỹ(k)) =

Np−1
∑

j=0

m∑

i=1

max(ŷi(k + j|k)−

ri(k + j), 0) (6)

Jin(ũ(k)) =

Np−1
∑

j=0

l∑

i=1

max(µi(k + j)−

ui(k + j|k), 0) (7)

where the signal µ(k) is related to the steady-
state behavior, and will be defined in Section 4.
The criteria can be interpreted as follows: Jout
measures the tracking error or tardiness of the
system, which is equal to the delay between the
output date ŷi(k + j|k) and due date ri(k + j) if
ŷi(k+ j|k)− ri(k+ j) > 0, and zero otherwise; Jin
intends to maximizes the input dates ui(k + j|k).

If we replace (3) by the following (convex) inequal-
ity:

ỹ(k) ≥ C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k) (8)

we obtain the relaxed MPL-MPC problem, which
is defined by the optimization of (4) subject to
(5), and (8).

1 Note that the input sequences correspond to occurrence
times of consecutive events, and so u(k) should be nonde-
creasing.



Proposition 1. (De Schutter and van den Boom
2001) Let (ũ∗, ỹ∗) be an optimal solution of the
relaxed MPL-MPC problem. If we define ỹ♯ = C̃⊗
x(k − 1) ⊕ D̃ ⊗ ũ∗ then (ũ∗, ỹ♯) is an optimal
solution of the original MPL-MPC problem.

So the MPL-MPC problem can be recast as a
convex problem. Moreover, by introducing some
additional dummy variables the problem can even
be reduced to a linear programming problem (De
Schutter and van den Boom 2001).

4. STABILITY AND STEADY-STATE
BEHAVIOR

Stability in conventional system theory is con-
cerned with boundedness of the states. In MPL
systems however, k is an event counter and xi(k)
refers to the occurrence time of an event. So the
sequence xi(k), xi(k+1), . . . should always be non-
decreasing, and for k → ∞ the event time xi(k)
will usually grow unbounded. We therefore adopt
the notion of stability for DES from (Passino and
Burgess 1998), in which a DES is called stable if
all its buffer levels remain bounded.

Note that in our case we have due dates and
that we assume that finished parts are removed
from the output buffer at the due dates (provided
that the parts are present). This means that there
are delays if the parts are not produced before
the due date. These delays should also remain
bounded. Therefore, we add as an additional con-
dition for stability that all delays between due
dates and actual output dates remain bounded
as well. If there are no internal buffers that are
not (indirectly) coupled to the output of the sys-
tem (observability), and if the system cannot be
partitioned in independent subsystems (i.e. the
system is strongly connected 2 ), then it is easy
to verify that all the buffer levels are bounded if
the dwelling times of the parts or batches in the
system remain bounded. This implies that for an
observable strongly connected DES with due date
r(k) closed-loop stability is achieved if there exist
finite constants Myr, Mry and Myu such that

yi(k)− ri(k) ≤ Myr, ∀i (9)

ri(k)− yi(k) ≤ Mry, ∀i (10)

yi(k)− uj(k) ≤ Myu, ∀i, j . (11)

Condition (9) means that the delay between the
actual output date y(k) and the due date r(k)
remains bounded. Condition (10) implies that
the number of parts in the output buffer will
remain bounded. Finally, condition (11) means

2 This means that the precedence graph of the system is
strongly connected (Baccelli et al. 1992), or equivalently,
the system matrix A is irreducible.

that the time between the starting date u(k) and
the output date y(k) (i.e., the throughput time)
is bounded.

An important observation is that stability is not
an intrinsic feature of the system, but it also
depends on the input and the due dates (i.e., the
reference signal) of the system. More precisely, it
depends on the asymptotic slope of the input and
due date sequence.

In (van den Boom and De Schutter 2002) we al-
ready observed that the max-plus-algebraic eigen-
value of the system matrix A plays a crucial role
in stability 3 . We assume A is irreducible. This
eigenvalue λ gives a minimum for the average
duration of a system cycle. If the asymptotic slope
of the due date signal r(k) is smaller than λ, the
system cannot complete tasks in time and y(k)−
r(k) will grow unbounded in time. So assume

r(k) = ρ k + d(k), where |d(k)| ≤ dmax (12)

then a necessary condition for stability is that

λ < ρ

With due date signal (12) we can study steady-
state behavior. Because of stability conditions
(9),(10),(11) there have to exist finite values vmax,
zmax, wmax, such that

u(k) = ρ k + v(k), where |v(k)| ≤ vmax

x(k) = ρ k + z(k), where |z(k)| ≤ zmax

y(k) = ρ k + w(k), where |w(k)| ≤ wmax

To every ρ we can associate a shifted system

z(k) = Ā⊗ z(k − 1) ⊕ B ⊗ v(k)

w(k) = C ⊗ z(k)

where [Ā]ij = [A]ij − ρ. Stability means that all
signals in this system should remain bounded.
We now consider the steady-state behavior of this
shifted system. First note that the steady-state
in MPL systems shows a cyclic behavior, and
there exist sequences vss(j), zss(j) and wss(j),
j = 1, . . . , c such that

zss(j+1)= Ā⊗ zss(j) ⊕ B ⊗ vss(j)

for j = 1, . . . , c−1

zss(1)= Ā⊗ zss(c) ⊕ B ⊗ vss(c)

wss(j)= C ⊗ zss(j) for j = 1, . . . , c

where c is called the steady-state cycle length.
We denote the steady-state by the quadruple
(vss, zss, wss, c) (Note that in general there exist
several steady-states).

Now consider d(k) to be fixed beyond some point:
d(k + j) = d̄ for j > j0. We are now particularly

3 For a strongly connected max-plus-linear system, the A-
matrix only has one max-plus-algebraic eigenvalue λ and
one max-plus-algebraic eigenvector v, such that A⊗v = v⊗
λ.



interested in the steady-state that maximizes the
input sequence vss(j) without violating the due-
date (wss(j)− d̄ ≤ 0). The steady-state (v̄, z̄, w̄, c̄)
that realizes this is called the maximum steady-
state, and is the solution of the following problem
(with c ∈ {1, 2, 3, . . .}):

(v̄, z̄, c̄) = argmax
v,z,c

1

c

c∑

j=1

m∑

ℓ=1

vℓ(j) (13)

subject to

z(j+1)=Ā⊗ z(j) ⊕ B⊗v(j), j=1, . . . , c−1 (14)

z(1)=Ā⊗ z(c) ⊕ B ⊗ v(c) (15)

d̄≥C ⊗ z(j) , j = 1, . . . , c (16)

Lemma 2. Problem (13)-(16) can be rewritten as
a maximization over an extended linear comple-
mentary problem (ELCP).

Proof : Equations (14)-(15) give:







z(1)
z(2)
...

z(c)








︸ ︷︷ ︸

z̃

=








ǫ · · · ǫ Ā

Ā · · · ǫ ǫ
...

. . .
...

...
ǫ · · · Ā ǫ








︸ ︷︷ ︸

H

⊗








z(1)
z(2)
...

z(c)








︸ ︷︷ ︸

z̃

⊕









B ǫ · · · ǫ

ǫ B
. . .

...
...

. . .
. . . ǫ

ǫ · · · ǫ B









⊗








v(1)
v(2)
...

v(c)








︸ ︷︷ ︸

g

or
z̃ = H ⊗ z̃ ⊕ g (17)

Equation (17) can be rewritten as:

z̃i(j + 1)=max( max
p=1,...,nc

(z̃p(j) +Hip), gi)

for i = 1, . . . , n, j = 1, . . . , nc

or equivalently

z̃i≥(z̃p +Hip), for i = 1, . . . , n, p = 1, . . . , nc
(18)

z̃i≥gi, for i = 1, . . . , n, (19)

with the additional constraint that at least one
inequality should hold with equality (i.e. at least
one residual should be equal to 0):

(z̃i − gi)

nc∏

p=1

(z̃i − z̃p −Hip) = 0 (20)

Equation (16) can be written as a set of linear
inequality constraints:

(zp(j) + Cℓp − d̄ℓ) ≤ 0 (21)

for ℓ = 1, . . . , l, j = 1, . . . , c, p = 1, . . . , n. So
problem (13)-(16) is equivalent of maximizing (13)
subject to (18), (19), (20), and (21), which is a
maximization over an ELCP (De Schutter and De
Moor (De Schutter and De Moor 1999)). ⋄

Now define the signals

µ(k) = ρ k + v̄(⌊k, c̄⌋) (22)

ζ(k) = ρ k + z̄(⌊k, c̄⌋) (23)

where v̄ and z̄ are defined by the maximum
steady-state and where ⌊k, c̄⌋ is a function which
gives a value b = ⌊k, c̄⌋, such that there exists an
integer m such that k = c̄ ·m + b and 1 ≤ b ≤ c̄

(so b = (k−1) mod c̄ + 1). If we substitute the
function µ(k) in criterion function (4) with (6),(7)
we find that if the system is in maximum steady-
state then we have: J(k) = 0.

Lemma 3. Let the state for event step (k − 1) be
in steady state (so x(k−1) = ρ (k−1)+ z̄(⌊k, c̄⌋)),
and let u(k+j|k) = µ(k+j) for j = 0, . . . , Np−1.
Then J(k) = 0.

Proof : First note that because of (14)-(15) we
find that x̂(k + j|k) = ρ (k + j) + z̄(⌊k + j, c̄⌋) for
j = 0, . . . , Np − 1, and with (16) we find:

ŷ(k + j|k) =C ⊗ x̂(k + j|k)

= ρ (k + j) + C ⊗ z̄(⌊k + j, c̄⌋)

≤ ρ (k + j) + C ⊗ d̄ = r(k + j)

for j = 0, . . . , Np − 1. This makes the elements of
Jout equal to max(ŷi(k+j|k)−ri(k+j), 0) = 0 for
j = 0, . . . , Np − 1, i = 1, . . . ,m and the elements
of Jin equal to max(µi(k+ j)−ui(k+ j|k), 0) = 0
for j = 0, . . . , Np − 1, i = 1, . . . , l. Therefore
J(k) = Jout(k) + Jin(k) = 0. ⋄

5. THE MPL-MPC END-POINT
CONSTRAINT

In this section we introduce an end-point con-
straint that will make the closed-loop system
asymptotically stable. The concept is analogous
to the work of Kwon & Pearson (Kwon and
Pearson 1979) for conventional systems. Similar
to (Kwon and Pearson 1979) we will use the
monotonicity of the performance index to prove
stability. The main idea is to force the system
to its steady state at the end of the prediction
interval.

Theorem 4. Consider the MPL system given in
the state space description for a due date signal
(12) with d(k) = d̄. Let µ(k) and ζ(k) be given
by (22),(23), and consider a performance index
by (4) with (6),(7). Now introduce the end-point
constraint

x(k +Np − 1|k) ≤ ζ(k +Np − 1) (24)



Then, the predictive control law, minimizing (4)
subject to (5), (8) and (24) results in a stable
closed loop.

Proof : Define

V (k) = min
ũ(k),ỹ(k)

J(ũ(k), ỹ(k))

=min
ũ(k)

J(ũ(k), C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k))

=min
ũ(k)

J̄(ũ(k)),

and let

ṽ(k)=










v(k|k)
v(k+1|k)

...
v(k+Np−2|k)
v(k+Np−1|k)










= ũ(k)−










ρ · k
ρ · (k+1)

...
ρ · (k+Np−2)
ρ · (k+Np−1)










= ũ(k)− ρ̃(k)

The function V (k) can be rewritten as

V (k) = min
ũ(k)

J̄(ũ(k)) = min
ṽ(k)

J̄(ṽ(k) + ρ̃(k))

= min
ṽ(k)

Np−1
∑

j=0

m∑

i=1

max
(

wi(k + j|k)− d̄i, 0
)

+ β

Np−1
∑

j=0

l∑

i=1

max
(

v̄i(⌊k, c̄⌋)− vi(k+j|k), 0
)

Let ṽ∗(k) = argminṽ(k) J̄(ṽ(k) + ρ̃(k)), then

V (k) = J̄(ṽ∗(k) + ρ̃(k))

=

Np∑

j=0

m∑

i=1

max
(

w∗

i (k + j|k)− d̄i, 0
)

+ β

Np∑

j=0

l∑

i=1

max
(

v̄i(⌊k + j, c̄⌋)− v∗i (k + j|k), 0
)

where w∗(k + j|k) is the output signal for event
k + j when the optimal input sequence ṽ∗(k)
is applied. Now define for event step (k + 1) a
suboptimal vector

ṽsub(k + 1) =








v∗(k + 1|k)
...

v∗(k +Np − 1|k)
v̄(⌊k +Np, c̄⌋)








Applying this input sequence ṽsub(k + 1) to the
system results in an output wsub(k + j|k + 1) =
w∗(k+j|k) for j = 1, . . . , Np−1. Now we compute
the values for j = Np. Note that (24) means that
z(k + Np − 1|k + 1) ≤ z̄(⌊k + Np − 1, c̄⌋) and
therefore:

zsub(k +Np|k + 1)

= Ā⊗ z(k+Np−1|k+1)⊗B ⊗ v̄(⌊k+Np−1, c̄⌋)

≤ Ā⊗ z̄(⌊k+Np−1, c̄⌋)⊗B ⊗ v̄(⌊k+Np−1, c̄⌋)

≤ z̄(⌊k+Np, c̄⌋)

This gives:

wsub(k +Np|k + 1) = C ⊗ zsub(k +Np|k + 1)

≤ C ⊗ z̄(⌊k +Np − 1, c̄⌋)

≤ d̄

With this we get J̄(ṽsub(k + 1) + ρ̃(k + 1)):

J̄(ṽsub(k + 1) + ρ̃(k + 1)) =

=

Np−1
∑

j=0

m∑

i=1

max
(

wsub
i (k+1+j|k+1)− d̄i, 0

)

+β

Np−1∑

j=0

l∑

i=1

max
(

v̄i(⌊k+1+j, c̄⌋)

−vsubi (k+j|k+1), 0
)

=

Np−1
∑

j=1

m∑

i=1

max
(

wsub
i (k+j|k+1)− d̄i, 0

)

+β

Np−1
∑

j=1

l∑

i=1

max
(

v̄i(⌊k+j, c̄⌋)

− vsubi (k+j|k+1), 0
)

+

m∑

i=1

max
(

wsub
i (k+Np|k+1)− d̄i, 0

)

+β

l∑

i=1

max
(

v̄i(⌊k+j, c̄⌋)− vsubi (k+Np|k+1), 0
)

=

Np−1
∑

j=1

m∑

i=1

max
(

w∗

i (k+j|k)− d̄i, 0
)

+β

Np−1
∑

j=1

l∑

i=1

max
(

v̄i(⌊k+j, c̄⌋)− v∗i (k+j|k), 0
)

+

m∑

i=1

0 + β

l∑

i=1

0

≤ V (k)

Further, because of the receding horizon strategy,
we do a new optimization

V (k + 1) = min
ṽ(k+1)

J̄(ṽ(k + 1) + ρ̃(k + 1))

≤ J̄(ṽsub(k + 1) + ρ̃(k + 1))

Because V (k) ≥ 0 and V (k + 1) ≤ V (k) we find
that V (k) is a Lyapunov function, which proves
closed-loop stability of the system in the sense of
definition 2 as this implies that y − r and r − u

are bounded. ⋄

Note that (24) can be rewritten in the form

x(k+Np−1) = A⊗
Np

⊗ x(k−1)

⊕

Np−1⊕

i=0

A⊗
i
⊗B ⊗ u(k+Np−1−i|k+1)

≤ ζ(k+Np−1) (25)



In (De Schutter and van den Boom 2001) it was
shown that constraints (25) can be rewritten as a
linear constraint in ũ and by doing so, the MPL-
MPC problem of minimizing (4) subject to (5), (8)
and (24) results in a convex optimization problem
that can be solved using a linear programming
algorithm.

Feasibility
The existence of a solution of the MPL-MPC
problem at event step k problem can be verified
by solving the system of (in)equalities (5), (8)
and (25), which describes the feasible set of the
problem. Infeasibility occurs when solving ũ(k)
from (5), (8) and (25) results in a solution set

that is empty. This will happen when A⊗
Np

⊗x(k−
1) > ζ(k+Np−1). In that case ũ has to be chosen
as small as possible (so u(k + j + 1) = u(k + j)),

such that (x(k +Np − 1) = A⊗
Np

⊗ x(k − 1) and
x will grow with minimum increment λ, where
ζ will grow with increment ρ > λ. There will
always be a finite number of event steps such that

A⊗
Np

⊗x(k−1) ≤ ζ(k+Np−1) and we can switch
to the MPL-MPC problem again.

6. DISCUSSION

Model predictive control (MPC) for max-plus-
linear (MPL) systems is a practical approach to
design optimal input sequences for a specific class
of discrete event systems without concurrency or
choice and in which only synchronization plays
a role. In this paper we have studied stability
of MPL-MPC. A discrete event system is called
stable if all its buffer levels remain bounded. We
therefore considered the steady-state properties
of MPL systems in the case of a due date se-
quence with a constant slope. We derived a MPL-
MPC equivalent of this conventional end-point
constraint (Kwon and Pearson 1979), by which
we now can guarantee closed-loop stability. We
showed that because of the end-point constraint
the optimized cost function is always decreasing.
In this way the cost function can be seen as a Lya-
punov function for the system and we have proven
stability. The final MPC problem with end-point
constraint still results in a linear programming
problem.
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