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Robustly stabilizing MPC for perturbed PWL

systems: Extended Report

I. Necoara, B. De Schutter, T.J.J. van den Boom, J. Hellendoorn

Abstract— In this paper we derive two robustly stable model
predictive control (MPC) schemes for the class of piecewise
linear (PWL) and hybrid systems. We assume that the plant
model is subject to unknown but bounded disturbances and
the states of the system can be measured or estimated.
We derive a piecewise feedback controller based on linear
matrix inequalities (LMI) that stabilizes the nominal system.
Further we develop an algorithm for constructing a convex
robustly positively invariant (RPI) set for the system. Using
this convex RPI set as a terminal set we propose first a min-
max feedback MPC scheme with known mode based on a dual-
mode approach that stabilizes the system. The second robustly
stable MPC scheme is based on a semi-feedback controller, but
this time the mode of the system is unknown. Extension of the
results from this paper to hybrid systems is also discussed.

I. INTRODUCTION

A. Overview

In recent years, the study of hybrid systems has received

a growing attention in control theory. Model predictive

control (MPC) is applied to hybrid systems due to its

ability to handle hard input, state, and/or output constraints.

MPC is a control scheme in which the current input is

computed by solving, at each sample step, a optimal control

problem; the optimization of the performance function over

the prediction period yields an optimal input sequence and

the current control action is chosen to be the first input in

this sequence according to the receding horizon principle.

The theory of the MPC for linear systems and in par-

ticular for linear systems with disturbances is quite mature

(see [1], [15], [16], [25] and the references therein), but

its extension to hybrid systems is still an active area of

research. Recently, research has been focused on develop-

ing stabilizing MPC schemes for hybrid systems and in

particular for piecewise linear (PWL) and piecewise affine

(PWA) systems [2], [13], [17], [21]–[23]. PWL systems are

defined by partitioning the state space of the system in a

finite number of polytopes and associating to each polytope

a different linear dynamic.

This report is an extended version of the paper “Robustly stabilizing
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Since disturbances are always present, it is important that

the MPC controller be robust. In order to guarantee con-

straint fulfillment for every possible disturbance realization

within a certain set, it is clear that the control action has to

be chosen safe enough to cope with the effect of the worst

disturbance realization. This effect is typically evaluated by

predicting the open-loop trajectory of the system driven by

such a worst-case disturbance. As investigated in [18], [25],

this inevitably leads to a conservative scheme, and therefore,

those authors suggest to use closed-loop predictions.

Some of the contributions in the literature on optimal con-

trol for perturbed hybrid systems include optimal control of

continuous piecewise affine (PWA) systems with bounded

disturbances [7], [13], [23]. In [7] the stability and l2 gain

analysis for the class of PWA systems is discussed. In [13]

robust control for the class of continuous PWA systems is

considered in the min-max framework, the optimal problem

being solved using dynamic programming. In [23] a min-

max MPC scheme for the same class of systems is em-

ployed and the optimal problem is recast as a set of linear

programming (LP) problems using the equivalent max-min

canonical representation of a continuous PWA system.

In this paper we consider the class of PWL systems

with additive disturbance. In Section II we derive a local

controller for the nominal system based on linear matrix

inequality (LMI) framework. We give a complete discus-

sion for the solution of the LMIs. Different levels of

conservatism from applying the S-procedure are discussed.

In Section III we construct a convex robustly positively

invariant set for the system. Conditions when this set is a

polytope are also derived. We propose two MPC algorithms

for stabilizing a perturbed PWL system. In first algorithm

we assume the mode to be known. Under this assumption

we derive a stable min-max feedback MPC scheme based on

a dual-mode approach. The notion that feedback is present

in the receding-horizon implementation of the scheme leads

to improve the performance and also the feasibility difficul-

ties that arise with open loop min-max MPC techniques.

This MPC scheme is based on solving at each step a

mixed-integer linear programming problem (MILP). The

second MPC scheme assumes unknown mode. We use

the so-called closed-loop paradigm [24] by considering

a semi-feedback control which combines a local control

law with an open-loop correction in order to guarantee

the input-state constraints. This scheme therefore renounces

some degrees of freedom which in principle are available

within a general min-max formulation. On the other hand,
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it allows to well balance increased computational burden

and reduction of conservativeness. This scheme consists in

solving at each sample k a quadratic optimization problem.

From computational point of view, the second scheme is less

demanding (quadratic programming) that the first scheme

(mixed-integer linear programming). Finally, in Section VI

we discuss the possible extensions of these two MPC

schemes to PWA and hybrid systems.

B. Definitions

We use the following notations: a PWA system with

additive disturbance is defined as

x(k+1) = Aix(k)+Biu(k)+ai+w(k), if x(k) ∈ Pi (1)

x, u and w denote, respectively, the state, input and distur-

bance; {Pi}i∈I is a finite partition of R
n into a number

of polyhedral cells (n is the number of states). The closure

cl(Pi) is given by cl(Pi) = {x : Eix ≥ ei}. When ai = 0,

ei = 0, ∀ i ∈ I, we get a piecewise linear (PWL) system:

x(k + 1) = Aix(k) +Biu(k) + w(k), if x(k) ∈ Pi (2)

It is assumed that the disturbance belongs to a bounded

polyhedron w ∈ W , and that the control and state are

required to satisfy the constraints u ∈ Uc and x ∈ Xc;

where Xc, Uc and W are all polytopes, with 0 ∈ Uc,W
and 0 ∈ int(Xc).

In the sequel we will use also the following definitions:

given two sets Y,Z ⊂ R
n, the Minkowski sum of Y and

Z is defined as Y ⊕ Z = {y + z : y ∈ Y, z ∈ Z} and the

Pontryagin difference as Y ⊖ Z = {y ∈ R
n : y ⊕ Z ⊆ Y }.

Let M⊥ denote the orthogonal complement of a matrix

M (M⊥ exists only if M has linear dependent rows). We

have then MTM⊥ = 0 and [M M⊥] is nonsingular. We

use also the following lemma:

Lemma 1.1: (Finsler’s lemma [4]) Let Q be a symmetric

matrix and a matrix M of appropriate dimension. The

following two relation are equivalent:

(i) M⊥TQM⊥ < 0

(ii) Q < σMMT , for some σ ∈ R.

The objective of this paper is to design a state feedback

uk = µ(xk), via predictive control, which steers the state of

system (2) as close as possible to the origin while satisfying

the state and input constraints for all admissible distur-

bances. Clearly, the presence of an additive disturbance

acting on the system (2) means that it is not possible to

guarantee asymptotic stability (i.e. limk→∞ xk = 0), but

rather we try to steer the initial state x0 to a neighborhood

of the origin O.

We assume for simplicity of the presentation that from a

certain mode i ∈ I all the transitions to any other mode are

possible (the case when only some transitions are possible

from a certain mode can be implemented straightforwardly).

II. DERIVATION OF THE NOMINAL CONTROLLER

We consider the nominal system associated to the per-

turbed PWL system (2):

xk+1 = Aixk +Biuk, if xk ∈ Pi (3)

We want to design a stabilizing PWL state feedback con-

troller

uk = Fixk, if xk ∈ Pi (4)

so as to provide a satisfactory, or even optimal in some

sense (e.g. LQ, H∞), control performance to system (3). For

instance, we want to bound the infinite-horizon quadratic

cost:

J∞(x0,u) =

∞
∑

k=0

xT
kQxk + uT

kRuk (5)

with Q = QT > 0, R = RT > 0 and u = (u0, u1, ...),
using a piecewise quadratic Lyapunov function

V (x) = xTPix, if x ∈ Pi. (6)

Using an approach as in [15] we impose the constraint:

V (xk+1)− V (xk) ≤ −l(xk, uk), ∀ k ≥ 0 (7)

where l(x, u) = xTQx+uTRu. Relation (7) can be written

xT
k (Ai +BiFi)

TPj(Ai +BiFi)xk − xT
k Pixk

≤ −xT
kQxk − xT

k F
T
i RFixk, ∀ xk ∈ Pi. (8)

Moreover. we can require that given ǫ > 0

xTPix > ǫxTx, only for x ∈ Pi. (9)

Because we need (8)–(9) to be valid only for x ∈ Pi, we

can use S-procedure [4] in order to reduce conservatism

when we solve (8). We can relax the matrix inequalities

(8)–(9) to: find Pi, Fi, Uij , Vi i, j ∈ I, such that Uij , Vi has

all entries non-negative that satisfies the following matrix

inequalities:











xT (Ai +BiFi)
TPj(Ai +BiFi)x− xTPix

≤ −xTQx− xTFT
i RFix− xTET

i UijEix,

xTPix > xTET
i ViEix, ∀ x ∈ R

n, ∀ i, j ∈ I.

In conclusion, we obtain the following matrix inequalities

in Pi, Fi, Uij , Vi (with all entries of Uij , Vi non-negative):

(Ai+BiFi)
TPj(Ai+BiFi)−Pi+Q+FT

i RFi

+ET
i UijEi≤0, ∀ i, j ∈ I (10)

Pi > ET
i ViEi, ∀ i ∈ I. (11)

In the sequel the symbol * is used to induce a symmetric

structure in an LMI. The following proposition give a

solution to (10)–(11):
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Theorem 2.1: The matrix inequalities (10)–(11) have a

solution if and only if the following matrix inequalities have

a solution
[

BT
i PjBi+θR−I BT

i PjAi + Fi

∗ AT
i PjAi−Pi +ET

i UijEi+θQ−FT
i Fi

]

<0

Pi > ET
i ViEi (12)

where Uij , Vi have all entries non-negative and θ is a scalar

such that θ > 0 .

Proof: It is easy to see that (10) can be written as

[

Fi

I

]T[
BT

i PjBi+R BT
i PjAi

∗ AT
i PjAi−Pi+Q+ET

i UijEi

][

Fi

I

]

<0

We have the relation

[

−I
FT
i

]⊥

=

[

Fi

I

]T

since

[

Fi

I

]

is a basis of ker(

[

−I
FT
i

]

) (where ker(A) denotes the kernel

of the matrix A). Therefore, the previous formula can be

written
[

−I
FT
i

]⊥

Qij

[

−I
FT
i

]⊥T

<0 (13)

where Qij=

[

BT
i PjBi +R BT

i PjAi

∗ AT
i PjAi − Pi + ET

i UijEi +Q

]

.

Using now the Finsler’s lemma we obtain that (13) is

equivalent with

Qij < σi,j

[

−I
FT
i

]

[

−I Fi

]

(14)

with σij ∈ R. Of course (14) has a solution if and only if

Qij < σ

[

−I
FT
i

]

[

−I Fi

]

(15)

with σ > 0 has a solution (Take σ > maxi,j{0, σij} for

the implication “(14) ⇒ (15)”. The other implication is

obvious). Now if we divide (15) with σ > 0 and denote with

Pi → 1/σPi, Uij → 1/σUij , Vi → 1/σVi and θ → 1/σ
we obtain (12). ♦

The matrix inequalities (12) are not LMIs due to the term

FT
i Fi. Therefore we have to use standard algorithms for

solving bilinear matrix inequalities (BMI) such as the path-

following algorithm [8].

Now we discuss some possible relaxations for (10)–(11).

First relaxation is to replace the constraint (11) with Pi > 0.

In this case we can apply the Schur complement to (10).

Theorem 2.2: With the relaxation Pi > 0 the matrix

inequalities (10) have a solution if and only if the following

matrix inequalities have a solution





Pi −Q− ET
i UijEi ∗ ∗

Ai +BiFi Sj 0
Fi 0 R−1



 > 0 (16)

0 < Pj ≤ S−1
j , ∀i, j ∈ I. (17)

Proof: Note that (10) is equivalent with

(Ai+BiFi)
TS−1

j (Ai +BiFi)−Pi+Q+FT
i RFi

+ ET
i UijEi<0, ∀ i, j ∈ I (18)

0 < Pj ≤ S−1
j , ∀ j ∈ I (19)

In this way we take into account also the case Sj = P−1
j .

Indeed, it is clear that if (10) has a solution then there exists

an ǫ > 0 such that

(Ai +BiFi)
TPj(Ai +BiFi)− Pi +Q+ FT

i RFi

+ ET
i UijEi < −ǫ(Ai +BiFi)

T (Ai +BiFi).

Then, we can take S−1
j = Pj + ǫI > Pj and thus we obtain

(18)–(19). The other implication is obvious.

Now, using the Schur complement (see [4]), the matrix

inequalities (18)–(19) are equivalent with (16)–(17). ♦
We give here an algorithm for finding a feasible solution

of matrix inequalities (16)–(17), using an approach as

in [10]. We want to solve the feasibility problem: find

{Pi, Si, Fi}i∈I that satisfy the following matrix inequalities

LMI(Si, Pi, Fi) < 0 (20)

0 < Pi ≤ S−1
i , for all i ∈ I, (21)

where LMI(Si, Pi, Fi) < 0 are LMIs as in (16). It is clear

that 0 < Pi ≤ S−1
i is equivalent with 0 < Si ≤ P−1

i or

λmax(PS) ≤ 1 (λmax denotes the maximum eigenvalue).

We take 0 < θ < 1. The algorithm consist in three steps.

Step 1

Solve LMI(Si, Pi, Fi) < 0, for all i ∈ I. Therefore

we have available {P 0
i , S

0
i , F

0
i }i∈I . If P 0

i ≤ (S0
i )

−1 then

we stop, because we found a solution. Otherwise, choose

β0
i > λmax(P

0
i S

0
i ).

Step 2

For all k ≥ 0. Fix P k
i . Solve the following LMIs:

LMI(Si, P
k
i , Fi) < 0

0 < Si < βk
i (P

k
i )

−1, for all i ∈ I,

We obtain {Sk+1
i }i∈I and we define αk

i = (1 −
θ)λmax(S

k+1
i P k

i ) + θβk
i .

Step 3

Fix Sk+1
i . Solve the following LMIs:

LMI(Sk+1
i , Pi, Fi) < 0

0 < Pi < αk
i (S

k+1
i )−1, for all i ∈ I,

We obtain {P k+1
i , F k+1

i }i∈I and we define βk+1
i = (1 −

θ)λmax(P
k+1
i Sk+1

i ) + θαk
i .

Properties of the algorithm:

1) If Step 1 is feasible then Step 2 and 3 are feasible for

all k ≥ 0.

2) If there exists k such that αk
i ≤ 1 in Step 2 or βk

i ≤ 1
in Step 3 for all i ∈ I, then we stop the algorithm.

We found a solution.

3) 0 < βk+1
i < αk

i < βk
i for all i ∈ I. Therefore there

exists β∗
i = limk→∞ βk

i for all i ∈ I. If β∗
i < 1 for

all i ∈ I, then the algorithm gives us a solution.
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We propose now a second relaxation. If we do not apply

the S-procedure for (8)–(9), i.e. we replace the condition

“x ∈ Pi“, with x ∈ R
n, then (8) becomes:

(Ai+BiFi)
TPj(Ai+BiFi)−Pi+Q+FT

i RFi≤0 (22)

for all i, j ∈ I and Pi > 0. When we do not take the

piecewise linear structure of the system into account, then

we can see such a system as a linear system with polytopic

uncertainty. There are two well-known linearization meth-

ods in the literature for (22): one uses the linearizing change

of variables by introducing: Si = P−1
i , Fi = YiSi (see [4],

[15], [17], [21]) and the second one is Pi = S−1
i , Fi =

YiG
−1 (see [6], [22]).

Proposition 2.3: If the following LMIs in G,Yi, Si









G+GT − Si ∗ ∗ ∗
AiG+BiYi Sj ∗ ∗

Q1/2G 0 I ∗
R1/2Yi 0 0 I









> 0 (23)

for all i, j ∈ I have a solution then Fi = YiG
−1, Pi = S−1

i

are solutions of (22).

Proof: From (23) using the Schur complement, we ob-

serve first that G is a nonsingular matrix because

G+GT > Si

and also

0 < Si ⇒ (Si −G)TS−1
i (Si −G) ≥ 0

therefore we get the following relation:

G+GT − Si ≤ GTS−1
i G

and

0 <G+GT − Si − (AiG+BiYi)
TS−1

j (∗)−GTQG

− Y T
i RYi ≤ GTS−1

i G− (AiG+BiYi)
TS−1

j (∗)

−GTQG− Y T
i RYi

= GT (S−1
i − (Ai +BiYiG

−1)TS−1
j (∗)

−Q−G−TY T
i RYiG

−1)G

Taking Fi = YiG
−1, Pi = S−1

i we obtain from the last

relation the matrix inequalities (22). ♦
If we are interested only in stability and we do not apply

the S-procedure we must solve the following LMIs:

(Ai +BiFi)
TPj(Ai +BiFi)− Pi < 0 (24)

for all i, j ∈ I.

Proposition 2.4: The following LMIs in Gi, Yi, Si

[

Gi +GT
i − Si ∗

AiGi +BiYi Sj

]

> 0 (25)

for all i, j ∈ I have a solution if and only if Fi =
YiG

−1
i , Pi = S−1

i are solutions of (24).

Proof: We prove the sufficiency first. From (25) using

Schur complement arguments, we observe first that Gi is a

nonsingular matrix because Gi +GT
i > Si and also

(Si −Gi)
TS−1

i (Si −Gi) ≥ 0 since Si > 0.

Therefore, we get the following relation:

Gi +GT
i − Si ≤ GT

i S
−1
i Gi.

Now using Schur complement formula in (25), we get:

0 < Gi +GT
i − Si − (AiGi +BiYi)

TS−1
j (∗)

≤ GT
i S

−1
i Gi − (AiGi +BiYi)

TS−1
j (∗)

= GT
i (S

−1
i − (Ai +BiYiG

−1
i )TS−1

j (∗)

GT
i (S

−1
i − (Ai +BiYiG

−1
i )TS−1

j (∗))Gi

Taking Fi = YiG
−1
i , Pi = S−1

i , and using the fact that Gi

is invertible, we obtain from the last relation the LMIs (24):

(Ai +BiFi)
TPj(Ai +BiFi)− Pi < 0, for any i, j ∈ I.

We can prove that the converse is also true by taking Si =
P−1
i , Gi = P−1

i + giI with gi > 0 a positive scalar and

Yi = FiGi. Using again Schur complement arguments and

taking gi small enough, we can prove that if the LMIs (24)

have a solution, then with the above notations, Si, Gi, Yi is

also a solution of (25) (see also [6]). ♦
Now let us assume that we have found Pi, Fi, i ∈ I

with one of the methods proposed before. In that case the

nominal system (3) in closed-loop with the controller u =
Fix if x ∈ Pi is asymptotically stable, having V (x) as a

Lyapunov function (due to (7)). For any initial state x0 ∈
Pi, applying the input sequence uk = F (k)xk = Fjxk if

xk ∈ Pj we have that V (x∞) = 0. Then, summing up the

relation (7)) from k = 0, ...,∞, we obtain the following

bound on the infinite-horizon quadratic cost:

J∞(x0, F (·)x) ≤ xT
0 Pix0.

The control law uk = Fixk if xk ∈ Pi does not depend

on the initial state and is regarded as fixed a-priori and

referred to as the nominal feedback.

III. CONVEX ROBUSTLY POSITIVELY INVARIANT SET

In the sequel we assume that we have determined a

state feedback controller u(k) = Fix(k) if x(k) ∈ Pi that

stabilizes the nominal system (3) as we discussed in Section

II. We denote with AFi
= Ai + BiFi for all i ∈ I. Then

the PWL system with additive disturbance (2) becomes:

x(k + 1) = AFi
x(k) + w(k), if x(k) ∈ Pi. (26)

We define the following set:

XF = ∪i∈I{x ∈ Pi : x ∈ Xc, Fix ∈ Uc}

Definition 3.1 ( [3], [14]): (i) Given a perturbed system

x(k + 1) = f(x(k), w(k)), with w(k) ∈ W . The set Ω is

a robustly positively invariant (RPI) set for this system if

f(x,w) ∈ Ω for any x ∈ Ω and w ∈ W .
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(ii) A set Ω ⊆ XF is an RPI set for system (26) if for

any x ∈ Ω∩Pi with i ∈ I, we have AFi
x+w ∈ Ω for all

w ∈ W . The maximal (minimal) RPI set for system (26) is

defined as the largest (smallest, non-empty) with respect to

inclusion, RPI set for (26). ♦
It can be easily seen that both the minimal and the

maximal RPI set associated to system (26) is in general

not a convex set (it is a union of polyhedral sets [11]). Our

aim is to compute a polyhedral RPI set, since we want to

obtain only linear constraints for the MPC schemes that we

propose in the sequel. For system (26) the evolution of the

mode i = i(k) depends on the state x(k). Nevertheless, for

ease of computation of a convex (polyhedral) RPI set for

(26), this relation mode-state will be disregarded and we

will consider that i(k) evolves independently of x(k) (i.e.

any mode i(k) ∈ I can be active at any sample step k)
{

xk+1 = AFi(k)
xk + wk,

i(k + 1) ∈ I
(27)

where i(·) is a switching signal in IN. Note that this

relaxation is considered only in this section, in the next

section where we present the MPC scheme we consider

again the standard PWL system (2). This type of relaxation

was used also in [5], [17] in the context of MPC for

deterministic systems.

Definition 3.2: A set Ω is an RPI set for system (27) if

for any x ∈ Ω we have that AFi
x+w ∈ Ω, for any possible

switching i ∈ I and any admissible disturbance w ∈ W . ♦
In the sequel we construct the maximal RPI set for system

(27). Let XFi
denote the set of states that satisfy the state-

input constraints:

XFi
={x ∈ R

n : x ∈ Xc, Fix ∈ Uc}. Then
⋂

i∈I

XFi
⊆XF .

We define the following set recursion:

Oi
0 = XFi

,

Oi
t = {x ∈ XFi

: AFi
x⊕W ⊆ ∩j∈IO

j
t−1} (28)

for any i ∈ I and t = 1, 2, ....
The set Oi

t represents the set of initial states x(0), for

which under the closed-loop dynamics (27) the state-input

constraints are satisfied up to sample step t assuming that

initially i(0) = i. It is clear from the definition (28) that

Oi
t+1 ⊆ Oi

t, and therefore Oi
t converges to Oi

∞. We define:

Oi
∞ = lim

t→∞
Oi

t = ∩t≥0O
i
t,

O∞ = ∩i∈IO
i
∞. (29)

Theorem 3.3: (i) The maximal RPI set included in

∩i∈IXFi
for the system (27) is the convex set O∞.

(ii) Any RPI set for the system (27) is also an RPI set

for the PWL system (26). In particular O∞ is an RPI set

for the PWL system (26).

Proof: (i) It is easy to observe that since the sets X,U,
and W are polytopes (described by linear inequalities),

all the sets Oi
t are described by a finite number of linear

inequalities. Therefore, all Oi
t are convex sets for all i ∈ I

and t ≥ 0. Since O∞ is the intersection of convex sets, O∞

is also convex.

For any x ∈ O∞ we have x ∈ Oi
t+1 for all i ∈ I and

t ≥ 0. According to (28) we have AFi
x ⊕ W ⊆ ∩j∈IO

j
t

for all i ∈ I and t ≥ 0. Hence AFi
x ⊕ W ⊆ O∞ for all

i ∈ I. Therefore O∞ is an RPI set for system (27).

It is well-known [3], [14] that the maximal RPI set for a

system is the set of all initial states in ∩i∈IXFi
for which

the evolution of the system remain in ∩i∈IXFi
. Due to the

recursion (28) it is clear that O∞ is the maximal RPI set for

system (27) included in ∩i∈IXFi
. Indeed, let T ⊆ ∩i∈IXFi

be an RPI set for the system (27) and let x ∈ T . Then

from the definition of an RPI set for the system (27) (see

Definition 3.1) we have AFi
x ⊕ W ⊆ T ⊆ ∩i∈IXFi

=
∩i∈IO0 for all i ∈ I. This implies that x ∈ Oi

1 for all

i ∈ I (according to the recursion (28)). Therefore, T ⊆ Oi
1

for all i ∈ I. By iterating this procedure we obtain that

T ⊆ Oi
t for all t ≥ 0 and i ∈ I. In conclusion T ⊆ O∞,

i.e. O∞ is maximal.

(ii) First we have that O∞ ⊆ ∩i∈IXFi
⊆ XF . If x ∈

O∞∩Pi then AFj
x⊕W ⊆ O∞ for all j ∈ I. In particular

for j = i we have AFi
x ⊕ W ⊆ O∞. Therefore, O∞ is

an RPI set for the system (26). For a general RPI set the

reasoning is similar. ♦

Remark 3.4 A larger RPI set for system (26) is the set

∪i∈I(O
i
∞∩Pi), but it is not convex (it is a union of convex

sets). However since the additional uncertainty is inherently

introduced in the extended dynamics (27) with respect to

(26), this set is not the maximal RPI set for (26). ♦

Because the sets Oi
t are described by a finite number

of linear inequalities, it is important to know whether

the set O∞ can be finitely determined, i.e. whether there

exists a finite t∗ such that Oi
t∗ = Oi

t∗+1 for all i ∈ I
(therefore O∞ = ∩i∈IO

i
t∗ is a polyhedral set). In the

sequel we give necessary conditions for finite determination.

Using the recursion (28) and the commutativity property of

intersection, we have:

O0 = ∩i∈IO
i
0, Ot = ∩i∈IO

i
t for all t ≥ 1 ⇒

Ot+1 ⊆ Ot, and therefore, O∞ = ∩t≥0Ot.

Now, Ot can be written in terms of Pontryagin differences:

Y0 = ∩i∈IXFi
, O0 = Y0;

Y1 = Y0 ⊖W, O1 = ∩i∈I{x ∈ O0 : AFi
x ∈ Y1};

Yt = ∩(i1,...it−1)∈I×...×I(Yt−1 ⊖AFi1
...AFit−1

W ), (30)

Ot = ∩(i1,...it)∈I×...×I{x ∈ Ot−1 : AFi1
...AFit

x ∈ Yt}.

It is clear that Yt+1 ⊆ Yt (because 0 ∈ W ). Therefore, the

limit of this sequence Y∞ = ∩t≥0Yt exists. We have the

following proposition:

Theorem 3.5: If the system (26) is asymptotically stable

and if there exists an index t0 ≥ 0 such that Ot0 is bounded

and 0 ∈ int(Y∞), then O∞ is finitely determined and

therefore also a polyhedral set.
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Proof: Since (26) is asymptotically stable, then for any

(i1, ..., it) ∈ I × ...× I we have










AFi1
...AFit

x → 0,when t → ∞, for all x ∈ R
n

Ot0 bounded

0 ∈ int(Y∞)

implies that there exists a t∗ ≥ t0 such that for all

(i1, ..., it∗+1) ∈ I × ...× I:

AFi1
...AFit∗+1

x ∈ Y∞ ⊆ Yt∗+1, for all x ∈ Ot0

Since Ot∗ ⊆ Ot0 we have :

AFi1
...AFit∗+1

x ∈ Yt∗+1, for all x ∈ Ot∗

Therefore, according to the recursion (30), Ot∗ ⊆ Ot∗+1.

But Ot∗+1 ⊆ Ot∗ . In conclusion we have the equality

Ot∗ = Ot∗+1 and O∞ = Ot∗ . Since Ot∗ is described by

a finite number of linear inequalities, O∞ is a polyhedral

set. ♦

Remark 3.6 The conditions from Proposition 3.5 are

similar with those corresponding to linear case (see [14]).

Also, according to Section II the matrices AFi
will be

asymptotically stable. The algorithm for computing O∞

stops once the following condition is met: there exists an

index t∗ such that Ot∗ = Ot∗+1. ♦

If t∗ is large the algorithm might require too many itera-

tions. We propose an alternative check whether or not a

given polyhedral set is an RPI set for the system (26).

Let Ω = {x ∈ R
n : hT

j x ≤ 1, j = 1, ...,K} ⊆ XF

be a polytope that contains the origin in the interior. Then

according to Definition 3.1, Ω is an RPI set for the system

(26) if for all x ∈ Ω ∩ Pi and for all i ∈ I we have

AFi
x⊕W ⊆ Ω. This condition can be translated in terms

of computing some linear programming (LP) problems.

We denote with hj(W ) = maxw∈W hT
j w (this is an LP

problem, because we assumed that W is a polyhedral set)

for all j = 1, ...,K. For all i ∈ I and j = 1, ...,K we

consider the following LP problem:

σj
i = max

x
hT
j AFi

x+ hj(W )− 1
{

hT
k x ≤ 1, k = 1, ...,K

Eix ≥ 0
(31)

From the above discussion we have the following:

Proposition 3.7: If for all i ∈ I and j = 1, ...,K the

optimal values satisfy σj
i ≤ 0, then Ω is an RPI set for

system (26).

Proof: For a fixed i, the condition σj
i ≤ 0 for all j =

1, ...,K expresses the fact that AFi
x ⊕ W ⊆ Ω for any

x ∈ Ω∩Pi. Therefore, Ω is a RPI set for the system (26). ♦

Remark 3.8 If after a certain number of iterations tmax,

the algorithm does not stop, then we have available the set

Otmax
= {x : Htmax

x ≤ htmax
}. Then, a starting point

in searching for a set Ω in Proposition 3.7 can be to take

the set Ω = {x : Htmax
x ≤ h}, and h should be chosen

appropriately, i.e. σj
i ≤ 0.

While the test for invariance from Proposition 3.7 can be

applied also for PWA systems (i.e. when not all ai are zero),

the computation of O∞ cannot be done straightforwardly

for PWA systems. In the case when we have also affine

dynamics, we can compute O∞ associated to the PWL

dynamics only, using the above set recursions. ♦

IV. FEEDBACK MIN-MAX MPC SCHEME

In the sequel we develop a stable MPC scheme for the

system (2) with additive disturbance, based on feedback

min-max approach. For deterministic systems, almost all

MPC schemes contain two ingredients: a terminal set and

a terminal cost (see also [19] for a survey). If the system is

uncertain, the stability and also the feasibility may be lost.

In order to achieve robustness, the controller must stabilize

the system for all possible realizations of the disturbance

along the prediction horizon. Different robust MPC scheme

have been proposed for linear systems: some of them are

based on a nominal prediction (see [20]), other are based

on the worst case disturbance as in feedback min-max MPC

formulation (see [12], [25]). In this paper we use a dual-

mode MPC formulation. We assume that we have computed

a stabilizing controller for the nominal system u = Fix if

x ∈ Pi, according to Section II and also we have available

a polyhedral RPI set Tset, obtained using the techniques

derived in Section III.

In order to determine a suitable control law, an optimal

control problem VN (.) with horizon N is solved. The

standard feedback min-max MPC is defined as follows [12],

[25] : let w = (w(0), ..., w(N−1)) be a possible realization

of the disturbance over the interval 0 to N − 1. Efficient

control in the presence of the disturbance requires state

feedback [18]; therefore, the decision variable (for a given

initial state x) in the optimal control problem is a control

policy defined as:

π = (u(0), µ1(·), ..., µN−1(·)),

where u(0) ∈ Uc and µk : Xc → Uc, k = 1, ..., N − 1
is a state feedback control law. Let x(k;x, π,w) denote

the solution to (2) at time k. The feedback min-max

optimization problem is defined as:

min
π

max
w∈WN

N−1
∑

k=0

l(xk, uk) (32)











xk = x(k;x, π,w) ∈ Xc, ∀k = 1, ..., N − 1

uk = µk(x(k;x, π,w)) ∈ Uc, ∀k = 0, ..., N − 1

xN = x(N ;x, π,w) ∈ Tset, ∀w ∈ WN ,

where l(x, u) is defined as follows:

l(x, u) =

{

‖Qx‖+ ‖Ru‖, if x 6∈ Tset

0, if x ∈ Tset,
(33)

with the matrices Q ≥ 0, R > 0 and where ‖x‖ represents a

PWA norm (for instance 1-norm or ∞-norm). The constraint
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xN ∈ Tset is the stability condition and is necessary in order

to guarantee stability as we will see in the sequel.

For linear systems problem (32) can be solved efficiently

[12], [25], using the extreme disturbance realizations. In

our settings, due to the nonlinearities of the system, this

approach cannot be applied directly. To overcome this prob-

lem, we propose to restrict the admissible control policies

π to only those that guarantee that, for every value of the

disturbance, the mode of the system i(k) is unique at each

sample step k:

x(k;x, π,w) ∈ Pi(k), ∀w ∈ WN . (34)

Therefore, we restrict the system to the admissible control

policies only that guarantee the mode of the system is

“certain” at sample step k, but the state is not known.

This extra constraint (34), which expresses the fact that

i(k) is independent of the disturbance realization is not too

restrictive since a cautious action may avoid uncertainty in

the mode (at least in the case where the disturbances are

not too large and the control inputs are not constrained too

much). It can be easily observed that imposing (34) to the

system (2) the state set generated by the disturbance at each

sample step k is a convex set:

x(k;x, π,W k) = x(k;x, π, 0)

+X(k; i(0), ..., i(k − 1),W k) (35)

where first term expresses the nominal trajectory corre-

sponding to the system (3) and the second term represents

a convex uncertainty set associated with the state, which

depends on the switching mode sequence i(0), ..., i(k − 1)
and on the set W k.

In this new settings, i.e. with the extra constraints (34),

where x is a given state, the optimization problem (32)

becomes :

VN (x) = min
π

max
w∈WN

N−1
∑

k=0

l(xk, uk) (36)



















constraint (34), x0 = x

xk ∈ Xc, k = 1, ..., N − 1

uk = µk(xk) ∈ Uc, k = 0, ..., N − 1

xN ∈ Tset, ∀w ∈ WN .

In this form, the optimization problem (36) has infinite

dimension, but in the sequel we will show that (36) can

be reduced to a finite-dimensional optimization problem.

Using the constraint (34) and the fact that W is a bounded

polyhedron with v vertices, let LN
v denote the set of indexes

ℓ such that wℓ = (w(0)ℓ, ..., w(N − 1)ℓ) takes values only

on the vertices of W . It is clear that LN
v is a finite set with

the cardinality VN = vN . Further, let uℓ = (uℓ
0, ..., u

ℓ
N−1)

denote a control sequence associated with the ℓ-th dis-

turbance realization wℓ and let xℓ
k = x(k;x0,uℓ,wℓ) be

the solution of the PWL model (2) with the additional

constraint (34). Therefore, given the current state x, let

u = {u1, ...,uVN }, we want to find the solution of the

following finite-dimensional optimization problem:

VN (x) = min
u,N

max
ℓ∈LN

v

N−1
∑

k=0

l(xℓ
k, u

ℓ
k) (37)































constraint (34), xℓ
0 = x, ∀ℓ ∈ LN

v

xℓ
k ∈ Xc, k = 1, ..., N − 1, ∀ℓ ∈ LN

v

uℓ
k ∈ Uc, k = 0, ..., N − 1, ∀ℓ ∈ LN

v

xℓ
N ∈ Tset, ∀ℓ ∈ LN

v

xℓ1
k = xℓ2

k ⇒ uℓ1
k = uℓ2

k , ∀ℓ1, ℓ2 ∈ LN
v

The last constraint is the well-known causality constraint

[25] and expresses the fact that the control law at sample

step k for the state xℓ
k is independent of the control and

disturbance sequence taken to reach that state. The causality

constraint can be posed in linear terms (see [12], [25]).

The optimization problem to be solved at step k is:

Robust feedback min-max optimization problem:

VNk
(xk) = min

u,Nk

max
ℓ∈L

Nk
v

Nk−1
∑

j=0

l(xℓ
k+j|k, u

ℓ
k+j|k) (38)































constraint (34), xℓ
k|k = xk, ∀ℓ ∈ LNk

v

xℓ
k+j|k ∈ Xc, j = 1, ..., Nk − 1, ∀ℓ ∈ LNk

v

uℓ
k+j|k ∈ Uc, j = 0, ..., Nk − 1, ∀ℓ ∈ LNk

v

xℓ
Nk|k

∈ Tset, ∀ℓ ∈ LNk
v , Nk ∈ {1, · · · , Nmax}

xℓ1
k+j|k = xℓ2

k+j|k⇒uℓ1
k+j|k = uℓ2

k+j|k, ∀ℓ1, ℓ2∈LNk
v

where xℓ
k+j|k is the prediction of the state at step k+j given

by the model (2), corresponding to the ℓ-th disturbance

realization (w(0), ..., w(Nk − 1)) and applying the input

sequence uℓ
k|k, ..., u

ℓ
Nk−1|k. The constraint (34) is imposed

only to the states xℓ
k+j|k with j = 1, ..., Nk − 1 and not to

xℓ
Nk|k

. The only constraint on the state xℓ
Nk|k

is the terminal

constraint: xℓ
Nk|k

∈ Tset.

The feedback min-max MPC controller is based on a

dual-mode approach. For any k ≥ 0, given the current state

xk, the algorithm is formulated as follows:

Algorithm 1

• if xk ∈ Tset ∩ Pi then uRH(xk) = Fixk, ∀i ∈ I

• otherwise, solve (38) and set uRH(xk) to the first

control in the optimal solution computed: uℓ
k|k,

where uRH(x) is the control input applied to the system

according to the receding horizon strategy.

A. Stability

We give first some definitions taken from [12]: a set Tset

is robustly stable if and only if (iff) for all ǫ > 0, there exists

a γ > 0 such that d(x0, Tset) < γ implies d(x(k), Tset) < ǫ
for all k ≥ 0 and all admissible disturbance sequences.

The set Tset is robustly finite-time attractive with domain

of attraction X iff for all x0 ∈ X there exist a finite-time

M such that x(k) ∈ Tset for all k ≥ M . The set Tset

is robustly finite-time stable with the domain of attraction
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X iff it is robustly stable and robustly finite-time attractive

with domain of attraction X . We define also the set:

XN = {x ∈ R
n : for which (37) has solution}

Because X,U, Tset and W are all polyhedral sets and

l(., .) is a convex function, we can prove that:

Theorem 4.1: If the optimization problem VN0
(x0) is

feasible (hence has an optimum), then all subsequent op-

timization problems VNk
(xk) are feasible. Moreover, there

exists finite K such that xK ∈ Tset.

Proof: Denote N0 = N . At step k = 0, with the

initial state x0 = x ∈ Pi0 , let (u∗ℓ
0|0, ..., u

∗ℓ
N−1|0) be

the optimal solution corresponding to the ℓ-th disturbance

realization, satisfying the constraints (34), therefore pro-

ducing the “certain“ switching sequence i0, i1, ..., iN−1.

Let xℓ
0|0, ..., x

ℓ
N−1|0 be the corresponding state trajectories.

From the causality constraints we have: u∗ℓ1
0|0 = u∗ℓ2

0|0 = u∗
0

for any ℓ1 6= ℓ2 ∈ LN
v . Now, according to the receding

horizon principle the input u∗
0 is applied and the disturbance

takes a certain value w0 =
∑

ℓ∈LN
v
µℓw

ℓ
0 ∈ W , where wℓ

0 is

a vertex of W and µℓ are appropriate convex scalar weights.

Therefore,

x1 = Ai0x+Bi0u
∗
0 + w0 =

∑

ℓ∈LN
v

µℓx
ℓ
1,

with xℓ
1 = Ai0x+Bi0u

∗
0+wℓ

0, i.e. x1 lies in the convex hull:

co{xℓ
1 : ℓ ∈ LN

v }. Now, the following prediction horizon

N1 = N − 1 and the control sequence defined as:

∑

ℓ∈LN−1
v

µℓu
∗ℓ
1|0, ...,

∑

ℓ∈LN−1
v

µℓu
∗ℓ
N−1|0 (39)

is feasible and the state predictions at step k = 1 evolve

in convex hull of the predictions at step k = 0: x1+j|1 ∈
co{xℓ

1+j|0, ℓ ∈ LN−1
v }, where x1+j|1 with j = 1, ..., N−1

is the state prediction at step k = 1, applying the input

sequence (39) and an arbitrary disturbance sequence. More-

over, the switching sequence is certain: i1, ..., iN−1 (we

used here that all sets X,U, Tset are convex). In conclusion

the problem VN1
(x1) is feasible and has an optimum. By

induction, we can prove that all subsequent optimization

problems VNk
(xk) are feasible.

Moreover, since Tset is bounded, there exists a µ > 0
such that ‖x‖ ≥ µ for all x ∈ Xc \ Tset. Then

VNk+1
(xk+1)− VNk

(xk) ≤ −‖xk‖ ≤ −µ

if xk 6∈ Tset. Now, assume that for k → ∞, xk 6∈ Tset.

Then, 0 ≤ VNk
(xk) ≤ VN0

(x0)−kµ → −∞ as k → ∞, i.e.

we get a contradiction. Therefore, the state xk enters Tset

in finite time and then it remains there for all subsequent

steps. ♦
Using Theorem 4.1, we can establish the following sta-

bility result:

Theorem 4.2: The feedback min-max MPC law uRH(.)
given by the Algorithm 1 makes Tset robustly finite-time

stable for the system (2) in closed-loop with uRH(x) with

a region of attraction XN .

Proof: From previous theorem it follows that the state

reaches Tset in finite number of steps. Inside Tset we apply

the controller Fix if x ∈ Pi, which keeps the state in this

set Tset, because it is a RPI set, regardless the values of the

disturbance from W . ♦

B. Computational complexity

The mixed logical dynamical framework (MLD) repre-

sents one of the main tools for computing optimal control

for PWA systems [2]. From a computational point of view,

the optimization problem (37) can be recast as a mixed-

integer linear programming problem (MILP), using standard

“tricks” [12]. An alternative formulation of (37) is :

min
u,η

{η :

N−1
∑

k=0

l(xℓ
k, u

ℓ
k) ≤ η, ∀ℓ ∈ LN

v , u ∈ C(x)}

where in C(x) we gathered all the constraints from op-

timization problem (37), and are all described by linear

inequalities. Therefore, we have obtained a feedback min-

max MPC scheme that is based on solving at each sample

step an MILP. The result is not surprising, since in [23]

the min-max MPC scheme is also computed by solving a

sequence of linear programming problems (that can be seen

as a MILP). With this approach the number of decision vari-

ables and constraints grows exponentially with the length of

the control horizon N . Therefore, the optimization problem

(37) is computationally intensive for large N . But this is

a drawback also for linear systems, as the authors of [12]

remark.

V. ROBUST MPC WITH UNKNOWN MODE

A. Robust MPC using quadratic optimization problems

The maximal RPI set Õ∞ included in XF , associated

to system (26) is (in general) not a convex set. Given any

initial state x0 ∈ Õ∞, we are sure that applying the nominal

controller the trajectory of the system (26) remains in this

set, as close as possible to the origin. The maximal RPI set

Õ∞, for which the nominal controller u = Fix is feasible,

is in general small. Now we derive a robustly stable MPC

scheme that uses prediction control trajectories which do not

correspond to fixed state feedback control laws. Therefore,

we enlarge the set of initial states that can be steered to a

target set, close to the origin. We introduce a new control

variable ck such that the new input applied to the system is

uk = Fixk + ck, if xk ∈ Pi. (40)

Let N be the control horizon, then ck, ..., ck+N−1 represent

degrees of design freedom and ck+N+j = 0, ∀j ≥ 0. In

this case the PWL system (26) becomes

xk+1 = AFi
xk +Bick + wk, if xk ∈ Pi. (41)

Employing a reasoning similar to [16], the dynamics of (41)

can be described by the autonomous PWL system

zk+1 = Aizk +Dwk, if zk ∈ P̃i (42)
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where z ∈ R
n+Nm, z =

[

x
f

]

, f = [cTk , ..., c
T
k+N−1]

T ,

D =

[

I
0

]

, Ai =

[

AFi

[

Bi 0 ... 0
]

0 M

]

, M =








0 I 0 ... 0
0 0 I ... 0
. . . ... .
0 0 0 ... 0









, cl(P̃i) = {z : [Ei 0]z ≥ 0}.

Clearly the stability properties of the matrices Ai depend

only on the matrices AFi
. We denote

Xi
0,z = {z = [xT fT ]T : x ∈ Xc ∩ Pi, Fix+ ck ∈ Uc}

= {z : [I 0]z ∈ Xc ∩ Pi, [Fi I 0]z ∈ Uc}.

Remark 5.1 If there exists an RPI set O for system (26),

then there must exist at least one RPI set Oz ⊆ ∪i∈IX
i
0,z

for system (42). Indeed, from the definition of the system

(42), it is clear that Oz = {z = [xT 0]T : x ∈ O} is an

RPI set for this system. ♦

So, if the maximal RPI set Õ∞ for (26) exists, then there

exists also a maximal RPI set O∞,z for the augmented

system (42) and the projection of O∞,z into the state space

R
n (denoted with O∞,zx) contains Õ∞. Therefore, the

benefits of using free control moves are clear now. The

robust MPC algorithm is defined as follows:

Algorithm (II)

1) Off-line step

• compute Fi according to Section II

• compute the maximal RPI set O∞,z for (42)

2) On-line step: each step k, given xk solve

J∗
N (k) = min

f
fT f, s.t. z = [xT

k fT ]T ∈ O∞,z (43)

Implement the controller uk = Fixk + ck.

The maximal RPI set for (42) included in ∪i∈IX
i
0,z is in

general a union of polyhedral sets: O∞,z = ∪q
j=1O

j
z , where

Oj
z are polytopes. Therefore, at step 2 of Algorithm (II) we

have to solve q quadratic programming (QP) problems, and

then to choose f for which fT f is the smallest one. The

distance of a point x to the closed, convex set O is defined

as d(x,O) = minxo∈O ‖x− xo‖. We consider ‖X‖ as the

norm 2 (‖X‖2) for vectors and matrices.

Theorem 5.2: Given x0 ∈ O∞,zx, the receding horizon

implementation of the Algorithm (II) asymptotically steers

the trajectory of (41) to Õ∞.

Proof: If x0 ∈ O∞,zx, then (43) has a solution at k =
0, f∗

0 = [c∗T0 ...c∗TN−1]
T . Moreover, there exists an i0 ∈ I

such that x0 ∈ Pi0 ∩ O∞,zx. Let us denote with f feas
1 =

[c∗T1 ...c∗TN−1 0]T . Applying the feedback input u0 = Fi0x0+
c∗0 to the system (41), and keeping in mind that O∞,z is

an RPI set for (42), then we obtain [xT
1 f feasT

1 ]T ∈ O∞,z .

Therefore, f feas
1 is feasible at k = 1.

By induction, we can prove that given x(k), for all k ≥
1 the optimization problem (43) has an optimal solution

f∗
k = [c∗Tk , ..., c∗Tk+N−1]

T and at sample step k+1 we have a

feasible solution f feas
k+1 = [c∗Tk+1...c

∗T
k+N−10]

T . In conclusion

J∗
N (k + 1)− J∗

N (k) ≤ −‖c∗k‖
2. (44)

So, the sequence {J∗
N (k)}k≥0 is non-increasing and

bounded below by 0. Therefore, it converges to J∞
N <

∞. Summing the relation (44) from 0 to ∞ we obtain:

0 ≤
∑

k≥0 ‖c
∗
k‖

2 ≤ J∗
N (0) − J∞

N < ∞. In conclusion, the

series
∑

k≥0 ‖c
∗
k‖ is convergent. We conclude that c∗k →

0 as k → ∞. Therefore, limk→∞ d(xk, Õ∞) = 0, because

Õ∞ is the maximal set of states for which the controller

u = Fix if x ∈ Pi is feasible. ♦

B. Robust MPC using a single QP problem

In this section we develop an new MPC scheme, such that

we solve on-line a single quadratic optimization problem.

Off-line step

In this step, we compute off-line the set of initial states

and input correction sequences that steer these states to the

RPI set O∞ (defined in (29)) in N steps, using the controller

(40), where N is the prediction horizon. This set is obtained

recursively as follows:

X i
0 = Oi

∞, ∀i ∈ I, (45)

X i
k+1 =











x
c
c̃



:

[

AFi
x+Bic⊕W

c̃

]

∈
⋂

j∈I X j
k

x ∈ Xc, Fix+ c ∈ Uc







k = 0, ..., N−1 and i ∈ I. Note that a similar recursion was

proposed also in [5] in the context of gain scheduling for

nonlinear systems. The dimension of the sets X i
k increases

as k increases. Clearly X i
N ⊆ R

n+mN . We denote with Xi
k

the projection of X i
k into the state space R

n. In conclusion

the set of initial states that can be steered to O∞ in N steps,

using the semi-feedback controller (40) is:

XN = ∪i∈I(X
i
N ∩ Pi).

Because Xc, Uc and W are polytopes and initially X i
0 =

Oi
∞, with Oi

∞ a polytope, we obtain the X i
N ’s are polytopic

sets as well. As a consequence Xi
N is a polytope, for any

i ∈ I. Therefore, XN is a union of polytopes.

Proposition 5.3: The set ∪i∈I(X
i
N ∩ P̃i) is an RPI set

for the augmented system (42).

Proof: Let z0 = [xT
0 fT

0 ]T ∈ ∪i∈I(X
i
N ∩ P̃i). There

exists an i0 ∈ I such that x0 ∈ Xi0
N . From the definition of

Xi0
N , applying the feedback input u(k) = Fi0x0 + c0 to the

system (41), according to the set recursion (45), we obtain

that there exists a mode j ∈ I such that x1 ∈ Xj
N−1.

Moreover, let us denote with f feas
1 = [cT1 ...c

T
N−1 0]T .

Then z1 = [xT
1 f feasT

1 ]T ∈ (X j
N ∩ P̃j). In conclusion

z1 ∈ ∪i∈I(X
i
N ∩ P̃i).

By induction we can prove zk ∈ ∪i∈I(X
i
N ∩ P̃i) for all

k ≥ 0 i.e. the set ∪i∈I(X
i
N ∩ P̃i) is an RPI set for the PWL

system (42). ♦
It is clear that ∪i∈I(X

i
N ∩ P̃i) ⊆ O∞,z . Moreover, the

evolution of (41) under the input sequence (40), with the

initial state x0 is given by:

xk+1 = AFi(k)
...AFi(0)

x0 (46)

+
k+1
∑

j=1

AFi(k+1)
...AFi(j)

(Bi(j−1)cj−1+wj−1)

9



where AFi(k+1)
= I and i(0), ..., i(k) is any feasible switch-

ing sequence corresponding to state sequence x0, ..., xk.

On-line step

Assume x(k) ∈ Pi. At this stage, we compute on-line,

at each step k, the following QP problem:

J∗
N (k) = min

f
fT f, s.t. [xT

k fT ]T ∈ X i
N (47)

Then, according to the receding horizon strategy, the input

applied to the system at step k is given by: uk = Fixk +
c∗k. Once xk ∈ O∞, the MPC law is given by the local

controller uk = Fixk, which has the property that it keeps

the state inside this RPI set for any disturbance in W .

We assume that the matrices AFi
are asymptotically sta-

ble for all i ∈ I. In this case, we have the following stability

result for the MPC scheme presented in this section.

Theorem 5.4: Provided that the initial state x0 ∈ XN

then the feedback MPC law uk = Fixk + c∗k drives the

state xk asymptotically to the RPI set O∞.

Proof: Using similar arguments as in Theorem 5.2 we

conclude that

c∗k → 0 as k → ∞. (48)

Let us now prove that d(xk,O∞) → 0 as k → ∞. Given

x0 ∈ XN there exists an xo
0 ∈ O∞ such that d(x0,O∞) =

‖x0 − xo
0‖ (since O∞ is a closed, convex set). Now x1 =

AFi(0)
x0 + Bi(0)c

∗
0 + w0. Let us define xo

1 = AFi(0)
xo
0 +

w0. From the definition of O∞ it is clear that xo
1 ∈ O∞.

Therefore, we obtain:

d(x1,O∞)≤‖x1 − xo
1‖≤‖AFi(0)

‖ ‖x0 − xo
0‖+‖Bi(0)c

∗
0‖

By induction, using (46), we can prove that

d(xk+1,O∞) ≤ ‖xk+1 − xo
k+1‖

≤ ‖AFi(k)
‖...‖AFi(0)

‖ ‖x0 − xo
0‖ (49)

+
k+1
∑

j=1

‖AFi(k+1)
‖...‖AFi(j)

‖ ‖Bi(j−1)c
∗
j−1‖,

for any feasible sequence of switches i(0), ..., i(k), where

xo
k+1 = AFi(k)

xo
k+wk ∈ O∞. Since AFi

are asymptotically

stable for any i ∈ I, there exists a constant 0 < δ < 1 and

L > 0 such that

‖AFi(k)
‖...‖AFi(j)

‖ ≤ Lδk−j . (50)

Using now (50) and (48) in (49), we obtain

d(xk,O∞) → 0 as k → ∞. ♦

VI. EXTENSION TO PWA AND HYBRID SYSTEMS

Let us now discuss the possible extensions of the previous

results to PWA and hybrid systems. We consider the PWA

system (1), such that the origin is an equilibrium point.

Therefore, the system (1) is described by PWL dynamics

around the origin: ai = 0 for all i ∈ I0. In this case we

can derive a local controller corresponding to the PWL dy-

namics of the system according to Section II. The robustly

positively invariant set O∞ corresponds also to the PWL

dynamics of the system (that are defined around the origin)

and is constructing according to Section III. Therefore, for

the PWA system (1) we have available a local controller

u = Fix if x ∈ Pi, with i ∈ I0 and a corresponding

terminal set O∞ = ∩i∈I0
Oi

∞. Both, the controller and the

terminal set are defined around the origin, where the PWL

dynamics of (1) can be active.

The feedback min-max MPC scheme presented in Section

IV can then be easily implemented for PWA system (1).

Using the equivalence of a PWA systems with a MLD

systems, the optimization problem (38) still remains a

MILP. The stability results derived in Theorem 4.2 are still

valid.

Remark 6.1 An interesting case is when I0 contains only

one element I0 = {1}, i.e. the origin is contained in

the interior of P1 (we have only one PWL dynamic that

contains the origin and the rest of dynamics are PWA). As

it is done in the linear case, we can construct a stabilizing

controller for the PWL dynamic and a robustly positively

invariant set. Then, we can formulate the feedback min-max

MPC scheme (38) with a fixed prediction horizon N , since

in that case the control sequence defined as:

∑

ℓ∈LN−1
v

µℓu
∗ℓ
1|0, ...,

∑

ℓ∈LN−1
v

µℓu
∗ℓ
N−1|0, F1x

ℓ
N |0 (51)

is feasible for the next step (and it keeps the next N
modes fixed). The same stability properties are valid in this

particular case. ♦

The second MPC scheme derived in Section V is more

difficult to be implemented to other classes of hybrid

systems, due to the special construction of the set XN in the

off-line step. It is easy to derive a local controllers u = Fix
if x ∈ Pi, for all i ∈ I that stabilizes the PWA system

(1), using similar arguments as in Section II. Of course, if

we are able to construct an RPI set O∞ for all dynamics

of the PWA system (not only for the PWL dynamics),

then the stable MPC scheme presented in Section V can

be implemented also for PWA systems (1). One way for

constructing a RPI set for PWA system (1) corresponding

to all dynamics of the systems is to use the Proposition 3.7.

The stability result derived in Theorem 5.4 is valid also for

this type of systems.

From [9], we know that the class of PWA systems is

equivalent with some other important classes of hybrid

systems like MLD systems, extended linear complemen-

tary systems, max-min-plus-scaling systems. Therefore, the

stable MPC schemes derived in Section IV and V can be

applied also to these classes of hybrid systems.

VII. ILLUSTRATIVE EXAMPLE

We consider the following example taken from [2], but

this time with an additive term to take also into account the

10
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Fig. 1. The outer polyhedron represents the maximal RPI set Õ∞ for
the system while the inner polytope represents O∞.

disturbance:

x(k + 1) = 0.8

[

cosα(k) − sinα(k)
sinα(k) cosα(k)

]

x(k)

+

[

0
1

]

u(k) + w(k),

α(k) =

{

π/3 if [1 0]x(k) ≥ 0

−π/3 if [1 0]x(k) < 0

with the following constraints:

X = {x ∈ R
2 : ‖x‖∞ ≤ 10}, U = {u ∈ R : |u| ≤ 1}.

We assume that the disturbance set is given by:

W = {w ∈ R
2 : w1 = w2, ‖w‖∞ ≤ 0.1}.

We get the following PWL feedback controller u =
Fix, i = 1, 2 , according to Section II:

F1 = [−0.692 − 0.4], F2 = [0.866 − 0.5].

We see that the matrices AFi
are strictly stable. Therefore,

we can apply Theorem 3.5, the RPI set O∞ being deter-

mined after 2 iterations (i.e. t∗ = 2):

O∞=















































x ∈ R
2 :

























−0.866 −0.5
0.866 0.5
0.866 −0.5
−0.866 0.5
0.499 −0.866
−0.499 0.866
0.500 0.866
−0.500 −0.866

























x ≤

























1.25
1.25
1
1

1.3906
1.3906
1.1125
1.1125







































































which is a polytope that contains the origin in the interior

(see also VII).

Applying the robust feedback min-max MPC scheme

proposed in Section IV, with initial state x0 = [3 2.1],
Q = I2, R = 1, together with infinite norm ‖ · ‖∞, initial

prediction horizon N = 3 and the terminal set being O∞,

we get the straight line in Figure VII. We also apply the

MPC scheme proposed in Section V for the initial state

x0 = [1.5 2.1] with the same prediction horizon N = 3. In

the first plot we represented the trajectories of the system

in closed-loop with the feedback min-max MPC scheme

(straight line) and with the MPC scheme from Section V

(dotted line). The inner polytope represents the set O∞ and

the outer polygon is the maximal RPI set associated to the

PWL system. We remark that once the trajectory enters O∞

it remains there in both schemes. In the second plot we have

represented the optimal inputs given by our robust MPC

schemes (straight line for the MPC scheme from Section IV

and dotted line for the MPC scheme presented in Section

V). Note that the constraints on input are satisfied. In order

to compute the RPI set O∞ we used the Set invariance

toolbox from [11]. For solving the LMIs we used the Matlab

LMI toolbox.

VIII. CONCLUSIONS

In this paper we have derived two stable MPC algorithms

for the class of perturbed PWL systems with additive

disturbance. We have derived LMIs conditions in order to

find a PWL controller which stabilizes the nominal systems.

We have taken into account the piecewise linear structure

of the system, conservativeness being reduced using the

S-procedure. We have computed a convex RPI set for the

perturbed PWL system. We have derived conditions when

this set is finitely determined and therefore is a polytope.

Further we have proposed first a stable robust feedback

min-max MPC scheme that uses the fact that the mode

of the system is certain at each step k. We incorporate

feedback in the control sequence, in order to increase the

domain of the feasible control sequences. Our MPC scheme

is based on solving at each step a MILP problem, but

the computational complexity decreases at each step. The

second stable MPC scheme is based on unknown mode,

using a semi-feedback controller. For this scheme we have

to solve on-line only a quadratic optimization problem.

Therefore, this scheme is less demanding than the min-

max MPC scheme. Extensions of these results to PWA and

hybrid systems are also possible.
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