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On MPC for max-plus-linear systems:

Analytic solution and stability

T.J.J. van den Boom, B. De Schutter and I. Necoara

Abstract— In previous work we have extended the popular
Model Predictive Control (MPC) design technique to a class of
discrete event systems that can be described by a model that
is “linear” in the max-plus algebra. In this paper we study
the analytic solution of the MPC controller for these max-plus-
linear (MPL) systems and we compare this solution with other
well-known control schemes. Furthermore, we derive tuning
rules for the controller parameters that guarantee us a stable
feasible and stable operation of the controller.

I. INTRODUCTION

Model predictive control (MPC) [6], [8] is a proven

technology for the control of multivariable systems in the

presence of input, output and state constraints and is capable

of tracking pre-scheduled reference signals. These attractive

features make MPC widely accepted in the process industry.

Usually MPC uses linear or nonlinear discrete-time models.

However, the attractive features mentioned above have led

us to extend MPC to discrete event systems (DES). In this

paper we consider the class of DES with synchronization but

no concurrency. Such DES can be described by models that

are “linear” in the max-plus algebra [1], [3], and therefore

they are called max-plus-linear (MPL) DES.

In [4] we have extended MPC to MPL systems. In [13] we

have studied stability and tuning of MPC controllers for MPL

systems and observed that for MPL systems, stability is not

an intrinsic feature of the system, but it also depends on

the input and the due dates (i.e., the reference signal) of

the system. In [14] we derived a max-plus (and so event-

driven) equivalent of the conventional end-point constraint,

which is in this case an inequality constraint. In this paper

we show that by a proper tuning of the design parameters

this end-point constraint is not needed, and stability can still

be guaranteed. Furthermore we derive an analytic solution

of the MPL-MPC controller and show the relation to well-

known max-plus control schemes from literature [1], [2], [7],

[9], [10], [11].

II. MAX-PLUS-LINEAR SYSTEMS

In this section we give the basic definition of the max-

plus algebra and we present some results on max-plus-linear

systems.

Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-

algebraic addition (⊕) and multiplication (⊗) are defined as
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follows [1], [3]: x ⊕ y = max(x, y), x ⊗ y = x + y for

elements x, y ∈ Rε, and

[A⊕B]ij = aij ⊕ bij = max(aij , bij) ,

[A⊗ C]ij =
n⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj) ,

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix En

is the n× n max-plus-algebraic identity matrix: (En)ii = 0
for all i and (En)ij = ε for all i, j with i 6= j. Finally, the

max-plus-algebraic matrix power of A ∈ R
n×n
ε is defined as

follows: A⊗
0
= En and A⊗

k
= A⊗A⊗

k−1
for k = 1, 2, . . . .

In [4], [5], [13] we have studied MPC for DES in which

there is synchronization but no concurrency. It has been

shown [1], [3] that these systems can be described by a

model of the form1

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) , (1)

y(k) = C ⊗ x(k) , (2)

where A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n. DES that can

be described by this model will be called max-plus-linear

(MPL). The index k is called the event counter. The state

x(k) typically contains the time instants at which the internal

events occur for the kth time, the input u(k) contains the time

instant at which the input event occurs for the kth time, and

the output y(k) contains the time instant at which the output

event occurs for the kth time.

III. THE MPC PROBLEM FOR MAX-PLUS-LINEAR

SYSTEMS

In [4] we have shown that prediction of future values

of y(k) for the system (1)–(2) can be done by successive

substitution, leading to the expression

ỹ(k) = C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ũ(k) , (3)

where C̃ and D̃ are given by

C̃ =









C ⊗A

C ⊗A⊗
2

...

C ⊗A⊗
Np









,

1In this paper we will restrict ourselves to single-input-single-output
(SISO) systems for the sake of simplicity. All results can be extended to
multivariable systems.



D̃=








C ⊗B ε . . . ε
C ⊗A⊗B C ⊗B . . . ε

...
...

. . .
...

C⊗A⊗
Np−1

⊗B C⊗A⊗
Np−2

⊗B . . . C⊗B







,

and ũ(k), ỹ(k) are defined as:

ỹ(k)=








ŷ(k|k)
ŷ(k+1|k)

...

ŷ(k+Np−1|k)







, ũ(k)=








u(k|k)
u(k+1|k)

...

u(k+Np−1|k)







,

where ŷ(k+ j|k) denotes the prediction of y(k+ j) based

on knowledge at event step k, u(k+j|k) denotes the future

input sequence based on knowledge at event step k, and Np

is the prediction horizon.

The MPC problem for MPL systems is formulated as

follows [4], given x(k − 1):

min
ũ(k),ỹ(k)

J(ũ(k), ỹ(k))= min
ũ(k),ỹ(k)

Jout(ỹ(k))+βJin(ũ(k)) (4)

subject to (3) and

u(k) ≥ u(k−1), for j = 0, . . . , Np−1 , (5)

where Jout is the output cost criterion, Jin the input cost

criterion and β is a trade-off variable with 0 < β < 1.

Remark 1: In [4] we have taken constraints

on inputs and outputs into account of the form

E(k) ũ(k) + F (k) ỹ(k) ≤ h(k). In this paper we restrict

ourselves only to constraint (5).

Equation (5) guarantees a non-decreasing input signal2.

The above problem will be called the MPL-MPC problem.

MPC uses a receding horizon strategy. So after compu-

tation of the optimal control sequence u∗(k|k), . . . , u∗(k+
Np − 1|k), only the first control sample u(k) = u∗(k|k)
will be implemented, subsequently the horizon is shifted and

the model and the initial state estimate can be updated if

new measurements are available, then the new MPL-MPC

problem is solved, etc.

In the remainder of this paper we consider the following

output and input objective functions:

Jout(ỹ(k)) =

Np−1
∑

j=0

max
(

ŷ(k + j|k)− r(k + j), 0
)

, (6)

Jin(ũ(k)) =

Np−1
∑

j=0

(

r(k + j)− u(k + j|k)
)

. (7)

The criteria can be interpreted as follows: Jout measures

the tracking error or tardiness of the system, which is equal

to the delay between the output date ŷ(k+j|k) and due date

2Note that the input sequences correspond to occurrence times of con-
secutive events, and so u(k) should be nondecreasing.

r(k + j) if ŷ(k + j|k) − r(k + j) > 0, and zero otherwise;

Jin intends to maximize the input dates3 u(k + j|k).
We can rewrite Jout(ỹ(k)) as a function of ũ by substitu-

tion of (3) in (6) and we obtain:

Jout(ũ(k))=

Np−1∑

i=0

max
(

(C̃⊗x(k−1)⊕ D̃⊗ũ(k))i−r̃i(k), 0
)

.

(8)

This Jout(ũ(k)) is a convex function of the variable ũ(k).
The term r(k) in Jin has been added to obtain a bounded

objective function Jin. It has no influence on the optimiza-

tion.

Lemma 1: Assume β < 1/Np, and define

ū(k) =
[
u(k−1) u(k−1) · · · u(k−1)

]T
, (9)

z̃(k) =
[
zT (k|k) zT (k+1|k) . . . zT (k+Np−1|k)

]T
,

= C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ū(k) ⊕ r̃(k), (10)

and consider the maximization problem

ũ∗(k) = argmax
ũ(k)

Np∑

ℓ=1

ũℓ(k),

subject to

D̃j ⊗ ũ(k) ≤ z(k + j|k), for j = 0, . . . , Np−1, (11)

u(k + j) ≥ u(k + j − 1), for j = 0, . . . , Np−1, (12)

where D̃j denotes the jth row of D̃. Then ũ∗ is the optimal

solution of the original MPL-MPC problem.

The optimal output cost is Jout(ũ
∗(k)) =

Np∑

j=1

(z(k+ j|k)−

r(k + j)), and the optimal input cost is Jin(ũ
∗(k)) =

Np∑

j=1

(

r(k + j)− u∗(k + j|k)
)

.

Proof: Define

ỹ0(k) = C̃ ⊗ x(k − 1) ⊕ D̃ ⊗ ū(k), (13)

then

z̃(k) = ỹ0(k) ⊕ r̃(k). (14)

We will prove this Lemma by contradiction.

First let us consider a ũ♯ that satisfies (11) and (12) but for

which

Np∑

ℓ=1

ũ♯
ℓ(k) <

Np∑

ℓ=1

ũ∗
ℓ (k). Define ỹ♯(k) = C̃ ⊗ x(k −

1) ⊕ D̃ ⊗ ũ♯(k), then from (14) it follows that

max(ỹ♯i (k), r̃i(k)) = max(max(ỹ0i (k), D̃i ⊗ ũ♯(k)), r̃i(k))

= max(ỹ0i (k), D̃i ⊗ ũ♯(k), r̃i(k))

= max(z̃i(k), D̃i ⊗ ũ♯(k)),

3For a manufacturing system, this corresponds to a scheme in which raw
material is fed to the system as late as possible. Note that this implies that
the internal buffer levels are kept as low as possible.



Using (11) we find max(ỹ♯i (k), r̃i(k)) = z̃i(k) and so

Jout(ũ
♯(k)) =

Np∑

i=1

z̃i(k)− r̃i(k) = Jout(ũ
∗(k)).

On the other hand

Jin(ũ
♯(k)) =

Np−1
∑

j=0

(

r(k + j)− u♯(k + j|k)
)

>

Np−1
∑

j=0

(

r(k + j)− u∗(k + j|k)
)

= Jin(ũ
∗(k))

and so J(ũ♯(k)) > J(ũ∗(k)) which means that ũ♯(k) cannot

be the optimal value.

Next let us consider a vector ũ′(k) that satisfies (12) but

does not satisfy (11). Let α > 0 be such that

max
j

(D̃j ⊗ ũ′(k)− z(k + j|k)) = α

then there exists a j′ ∈ {1, . . . , Np − 1} such that y′(k +
j′|k) = D̃j′ ⊗ ũ′(k) = z(k + j′|k) + α and so

Jout(ũ
′(k)) =

Np−1
∑

j=0

max
(

y′(k + j|k)− r(k + j), 0
)

≥

Np−1
∑

j=0

max
(

z(k + j|k)− r(k + j), 0
)

+ α

= Jout(ũ
∗(k)) + α

Now define ũ′′(k) = (ũ′(k)−α) ⊕ ū(k). Then D̃i⊗ũ′′(k) ≤
z̃i(k) and so Jout(ũ

′′(k)) = Jout(ũ
∗(k)) ≤ Jout(ũ

′(k))−α.

On the other hand

Jin(ũ
′′(k)) =

Np−1
∑

j=0

(

r(k + j)− u′′(k + j|k)
)

≤

Np−1
∑

j=0

(

r(k + j)− u′(k + j|k)
)

+Np α

= Jin(ũ
′(k)) +Np α

and so

J(ũ′′(k)) = Jout(ũ
′′(k)) + βJin(ũ

′′(k))

≤ Jout(ũ
′(k))− α+ βJin(ũ

′(k)) + βNp α

= J(ũ′(k)) + (βNp − 1)α

≤ J(ũ′(k))

which means that ũ′(k) cannot be the optimal value.

This proves that ũ∗ is the optimal solution of the original

MPC problem.

Lemma 2: Let

u∗(k+j|k) =







min
i
(z(k+i|k)− D̃ij)

for j = Np−1

min
(

min
i
(z(k+i|k)− D̃ij), u

∗(k+j+1|k)
)

for j = 1, . . . , Np−2
(15)

Then ũ∗(k) is the optimal solution of the MPL-MPC

problem.

Proof: The proof is straightforward:

Let ũ♯(k) be such that for some j′ there holds u♯(k+j′|k) >
u∗(k + j′|k), then either u♯(k + j′|k) > mini(z(k + i|k)−
D̃ij′) or u♯(k + j′|k) > u∗(k + j′ + 1). In the first case,

there will be an i′ such that [D̃ ⊗ ũ♯(k)]i′ > z̃i′(k) and so

constraint (11) will not be satisfied. In the second case, (12)

will not be satisfied. So ũ♯ cannot be the optimal solution.

Now let ũ♭(k) be such that for some j′ there holds ũ♭
j′(k) <

ũ∗
j′(k). Then constraints (11) and (12) are both satisfied, but

Np−1
∑

j=0

u♭(k + j|k) <

Np−1
∑

j=0

u∗(k + j|k),

and so ũ♭ cannot be the optimal solution.

Qualitative comparison with other existing max-plus control

approaches

The max-plus control approaches proposed in [1], [7], [9],

[10] typically involve an open-loop control approach over a

given horizon Np and for a given due date signal r such that

the output y of the system satisfies y(k + i) ≤ r(k + i) for

k = 1, . . . , Np. The solution of this optimal control problem

is computed using residuation [3], resulting in a just-in-time

control input. The disadvantage of this approach is that the

resulting control input sequence is sometimes decreasing,

and thus not physically feasible. This issue is overcome in

[2], [11] by considering residuation-based approaches that

result in non-decreasing input sequences.

IV. THE SHIFTED SYSTEM

Let us assume that the system is strongly connected4, which

means that there are no internal buffers that are not (indi-

rectly) coupled to the output of the system (observability).

Let λ be the unique max-plus algebraic eigenvalue of A, so

there exists an eigenvector vλ such that A ⊗ vλ = vλ ⊗ λ.

Let c be the cycle length, so A⊗
c
= A+ c λ. The eigenvalue

λ gives a minimum for the average duration of a system

cycle. If the asymptotic slope of the due date signal r(k) is

smaller than λ, the system cannot complete tasks in time and

y(k)− r(k) will grow unbounded in time. Therefore in this

paper we choose

r(k) = r0 + ρ k. (16)

where we assume that ρ > λ. Now define u(k) = ρ k +
uρ(k), x(k) = ρ k+xρ(k), y(k) = r0+ρ k+yρ(k), and Aρ

and Cρ are matrices with [Aρ]ij = [A]ij − ρ and [Cρ]ij =
[C]ij − [r0]i. To every ρ we can then associate a shifted

system

xρ(k) = Aρ ⊗ xρ(k − 1) ⊕ B ⊗ uρ(k),

yρ(k) = Cρ ⊗ xρ(k).

4This means that the precedence graph of the system is strongly connected
[1], or equivalently, the system matrix A is irreducible.



The MPL-MPC problem for the shifted system means that

we aim to minimize

J = min
ũ

Np−1
∑

j=0

max(y(k + j|k)− r(k + j), 0)

+ β(r(k + j)− u(k + j|k)

= min
ũρ

Np−1
∑

j=0

max(yρ(k + j|k), 0) + β(r0 − uρ(k + j|k)),

subject to

u(k + j|k)− u(k + j − 1|k) =

= uρ(k + j|k)− uρ(k + j − 1|k) + ρ ≥ 0

or uρ(k + j|k)− uρ(k + j − 1|k) ≥ −ρ.

V. STABILITY

In this paper we adopt the notion of stability for DES from

[12], in which a DES is called stable if all its buffer levels

remain bounded.

In [13] we showed that for a strongly connected system

all the buffer levels are bounded if the dwelling times of

the parts or batches in the system remain bounded. This

implies that for an observable strongly connected DES with

due date r(k) closed-loop stability is achieved if there exist

finite constants Myr, Mry and Myu such that

y(k)− r(k) ≤ Myr, (17)

r(k)− y(k) ≤ Mry, (18)

y(k)− u(k) ≤ Myu . (19)

Condition (17) means that the delay between the actual

output date y(k) and the due date r(k) remains bounded.

Condition (18) implies that the stock time will remain

bounded. Finally, condition (19) means that the time

between the starting date u(k) and the output date y(k)
(i.e., the throughput time) is bounded. For due date (16)

with ρ > 0 this implies finite buffer levels.

We will proof stability for the shifted system. Note that

if the shifted system is stable, also the original system will

be stable. First we need the following lemma:

Lemma 3: Assume a finite impulse response, so

Cρ ⊗Aρ
⊗
k
⊗B > ε for all k ≥ 0.

Then for any µ ≥ 0 there exist an Np such that for all

ℓ ≥ Np − 1 there holds:

max
i

[Cρ ⊗ (Aρ)
⊗
ℓ
]i −max

j
[Cρ ⊗Aρ]j ≤ −µ, (20)

and

Cρ ⊗
(

Aρ
⊗
j−i

− (i+ 1) ρ
)

⊗B − Cρ ⊗B ≤ 0. (21)

Proof: Note that there exists an ℓ0 such that Aρ
⊗
ℓ+c

=

Aρ
⊗
ℓ
+ c(λ− ρ), for all ℓ > ℓ0, where c is the cycle length,

λ is the max-plus-algebraic eigenvalue of A, and ρ > λ is

the asymptotic slope of due date signal r(k). Let

amax = max
ℓ=0,...,ℓ0+c−1

max
i,j

[Aρ
⊗
ℓ
]i,j ,

and let m0 be the smallest integer satisfying m0 ≥ (amax +
µ)/c(ρ − λ) and let Np satisfy Np > ℓ0 + m0 c. Consider

ℓ = ℓ0 + m1 c + m2 where m1,m2 ∈ Z, m1 ≥ m0, 0 ≤
m2 ≤ c− 1, then

[(Aρ)
⊗
ℓ0+m1 c+m2

]i,j = [(Aρ)
⊗
ℓ0+m2

]i,j +m1c(λ− ρ)

≤ amax −m1c(ρ− λ) ≤ amax − (amax + µ) ≤ −µ .

Now for ℓ > Np we find

max
i

[Cρ ⊗ (Aρ)
⊗
ℓ
]i −max

p
[Cρ ⊗Aρ]p

= max
i

[Cρ ⊗Aρ ⊗ (Aρ)
⊗
ℓ−1

]i −max
p

[Cρ ⊗Aρ]p

= max
i

[Cρ ⊗Aρ]i +max
i,j

[(Aρ)
⊗
ℓ−1

]i,j −max
p

[Cρ ⊗Aρ]p

= max
i,j

[(Aρ)
⊗
ℓ−1

]i,j

≤ −µ ,

This proofs that there exists an Np such that (20) holds.

Define ν = maxi[Cρ]i + maxp[B]p − Cρ ⊗ B , and let n0

be the smallest integer satisfying n0 ≥ (amax+ν)/c(ρ−λ).
Now define i0 = (ν+ amax)/ρ− 1 and let Np satisfy Np >
ℓ0 + i0 + n0 c . Consider ℓ = ℓ0 + i0 + n1 c + n2 where

n1, n2 ∈ Z, n1 ≥ n0, 0 ≤ n2 ≤ c − 1, then for 0 ≤ i ≤ i0
there holds:

[Aρ
⊗
ℓ−i

− (i+ 1) ρ]i,j ≤ [(Aρ)
⊗
ℓ0+i0+n1c+n2−i

]i,j

= [(Aρ)
⊗
ℓ0+i0+n2−i

]i,j − n1c(ρ− λ) ≤ amax − n1c(ρ− λ)

≤ amax − (amax + ν) ≤ −ν,

and for i0 ≤ i ≤ ℓ there holds:

[Aρ
⊗
ℓ−i

− (i+ 1) ρ]i,j ≤ amax − (i0 + 1) ρ

≤ amax − (amax + ν) ≤ −ν ,

So we can derive

Cρ ⊗
(

Aρ
⊗
ℓ−i

− (i+ 1) ρ
)

⊗B − Cρ ⊗B ≤

≤ max
q

[Cρ]q +max
j1,j2

[Aρ
⊗
ℓ0+i0+n1 c+n2−i

− (i+ 1) ρ]j1,j2

+max
p

[B]p − Cρ ⊗B

≤ max
q

[Cρ]q − ν +max
p

[B]p − Cρ ⊗B

≤ max
q

[Cρ]q −
(

max
i

[Cρ]i +max
p

[B]p − Cρ ⊗B
)

+max
p

[B]p − Cρ ⊗B

≤ 0 .

This proofs that there exists an Np such that (21) holds.

So if we choose Np = max
(

ℓ0 +m0 c, ℓ0 + i0 + n0 c
)

, we

are sure that both (20) and (21) are satisfied.



Theorem 4: Assume that for the finite values of xρ(k−1)
there hold

max
i,j

| [xρ(k − 1)]i − [xρ(k − 1)]j | ≤ µ , (22)

where µ > 0 is constant. Now let Np satisfy conditions (20)

and (21) from lemma 3, and let β be such that

β < 1/Np , (23)

then the closed loop will be stable.

Proof: For any initial xρ(k − 1) satisfying (22), we

have

Cρ ⊗Aρ ⊗ xρ(k − 1) =

= max
m

([Cρ ⊗Aρ]m + [xρ(k − 1)]m)

≥ max
m

[Cρ ⊗Aρ]m + [xρ(k − 1)]j − µ

for any j = 1, . . . , n. Now we derive for ℓ ≥ Np − 1:

Cρ ⊗ (Aρ)
⊗
ℓ
⊗ xρ(k − 1)− Cρ ⊗Aρ ⊗ xρ(k − 1) ≤

≤ max
i

(

[Cρ ⊗ (Aρ)
⊗
ℓ
]i + [xρ(k − 1)]i

)

−max
j

(

max
m

[Cρ ⊗Aρ]m + [xρ(k − 1)]j − µ
)

≤ max
i

(

[Cρ ⊗ (Aρ)
⊗
ℓ
]i + [xρ(k − 1)]i − [xρ(k − 1)]i

)

−max
m

[Cρ ⊗Aρ]m + µ

= max
i

[Cρ ⊗ (Aρ)
⊗
ℓ
]i −max

m
[Cρ ⊗Aρ]m + µ

≤ 0 ,

because of (20).

Furthermore for any i = 1, . . . , ℓ there holds:

Cρ ⊗B ⊕ uρ(k − 1) =

= max
(

Cρ ⊗B, uρ(k − 1)
)

≥ max
(

Cρ ⊗
(

Aρ
⊗
j−i

− (i+ 1) ρ
)

⊗B, uρ(k − 1)
)

= Cρ ⊗
(

Aρ
⊗
j−i

− (i+ 1) ρ
)

⊗B ⊕ uρ(k − 1) ,

because of (21).

Now define zρ(k + j|k) = z(k + j|k)− r(k + j), then with

z(k + j|k) = C ⊗A⊗
j+1

⊗ x(k − 1) ⊕
j

⊕

i=0

C ⊗
(

A⊗
j−i

)

⊗B ⊗ u(k − 1) ⊕ r(k + j) ,

we obtain

zρ(k + j|k) = z(k + j|k)− r0 − (k + j)ρ

= (C − r0)⊗ (A⊗
j+1

− (j + 1)ρ)⊗

(x(k − 1)− (k − 1)ρ) ⊕
j

⊕

i=0

(C − r0)⊗
(

A⊗
j−i

− (j − i)ρ− (i+ 1) ρ
)

⊗

B ⊗ (u(k − 1)− (k − 1)ρ) ⊕ (r(k + j)− r(k + j))

= Cρ ⊗Aρ
⊗
j+1

⊗ xρ(k − 1) ⊕
j

⊕

i=0

Cρ ⊗
(

Aρ
⊗
j−i

− (i+1) ρ
)

⊗B ⊗ uρ(k−1) ⊕ 0.

Now for any j ≥ Np − 1 we have

Cρ ⊗B ⊕ uρ(k − 1)

≥ Cρ ⊗
(

Aρ
⊗
j−i

− (i+ 1) ρ
)

⊗B ⊕ uρ(k − 1),

and Cρ ⊗ Aρ ⊗ xρ(k − 1) ≤ Cρ ⊗ (Aρ)
⊗
j
⊗ xρ(k − 1),

and so we find (zρ(k|k) − zρ(k + j|k)) ≥ 0 for j ≥
Np − 1. Now we can write u∗

ρ(k|k) ≤ zρ(k)−Cρ ⊗B, and

u∗
ρ(k +Np|k + 1) = zρ(k +Np)− Cρ ⊗B. Define

δuρ(k + j|k + 1) = u∗
ρ(k + j|k)− u∗

ρ(k + j|k + 1),

for j = 1, . . . , Np − 1,

u′
ρ(k|k) = zρ(k)− Cρ ⊗B,

δz = max
(

zρ(k +Np − 1|k)− zρ(k +Np|k + 1), 0
)

,

then u∗
ρ(k|k) ≤ u′

ρ(k|k) and

u∗
ρ(k+Np−1|k)− u∗

ρ(k+Np|k+1) =

=
(

zρ(k+Np−1|k)−Cρ⊗B
)

−
(

zρ(k+Np|k+1)−Cρ⊗B
)

= zρ(k+Np−1|k)− zρ(k+Np|k+1)

≤ δz ,

and so we find:

δuρ(k+Np|k+1) = u∗
ρ(k+Np−1|k)

− u∗
ρ(k+Np−1|k+1) ≤ δz .

Similarly we find for j = 1, . . . , Np−1: δuρ(k+j|k+1) ≤ δz .

Now we derive:

J(k)− J(k+1) =

= zρ(k|k)− βu∗
ρ(k|k)− zρ(k+Np|k + 1)

+ βu∗
ρ(k+Np|k+1)− β

Np−1
∑

j=1

δuρ(k + j|k+1)

≥ zρ(k|k)− βu′
ρ(k|k)− zρ(k+Np|k + 1)

+ βu∗
ρ(k+Np|k+1)− β

Np−1
∑

j=1

δuρ(k + j|k+1)

= (1−β)zρ(k|k)− (1−β)zρ(k+Np)



− β

Np−1
∑

j=1

δuρ(k + j|k+1)

= (1−β)(zρ(k|k)−max(zρ(k+Np−1), zρ(k+Np)))

+ (1−β)max(zρ(k+Np−1)− zρ(k+Np), 0)

− β

Np−1
∑

j=1

δuρ(k + j|k+1)

≥ (1−β)(zρ(k|k)−max(zρ(k+Np−1), zρ(k+Np)))

+ (1−β)δz − β(Np − 1)δz

= (1−β)
︸ ︷︷ ︸

>0

(zρ(k)−max(zρ(k+Np−1), zρ(k+Np)))
︸ ︷︷ ︸

≥0

+

+ (1−βNp)
︸ ︷︷ ︸

>0

δz
︸︷︷︸

≥0

≥ 0 .

And so the cost function J(k) will be a decreasing

function for an increasing event step. This means that Jout(k)
and Jin(k) will be bounded for k → ∞. This implies

that there exists an upper bound for y(k) − r(k) and that

r(k)− u(k) will have both an upper and lower bound. With

the property that y(k) − u(k) ≥ C ⊗ B we also prove that

r(k)−y(k) has an upper bound, which proves that the closed-

loop system is stable.

VI. WORKED EXAMPLE

Consider an MPL system (1)-(2) with

A =







ε 0 ε 9
4 3 4 5
8 ε 1 8
0 0 ε ε






, B =







0
5
2
8






,

C =
[
7 5 8 ε

]
.

We find a lower bound for Np ≥ 5, and an upper bound for

β < 0.2. In a first simulation we choose Np = 5 and β =
0.18. We find a stable operation and the cost-function J(k)
remains bounded. In a second simulation we choose Np = 2
and β = 0.18, and in a third simulation we choose Np = 5
and β = 0.65. In both cases the closed loop will become

unstable and the cost function J(k) will grow unboundedly.

The evolution of cost function J(k) for the three simulations

is given in figure 1.

VII. DISCUSSION

In this paper we have derived the analytic solution for

the MPL-MPC control problem by studying the solution

of the corresponding optimization problem. We compared

the solution to other well-known control schemes for MPL

systems. We derived bounds on the tuning variables, the

prediction horizon Np and the trade off constant β, such that

the MPL-MPC now gives a guaranteed stable closed-loop,

which means that all the buffer levels of the system remain

bounded. A simulation example illustrates that a wrong

choice of the tuning parameters may indeed destabilize the

system.
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Np = 5 , β = 0.65

Fig. 1. J(k) for various value of λ and Np

Topics of future research are to incorporate general

inequality constraints, perturbations and to extend the

results to multivariable systems.
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