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Abstract

We give an overview of our recent results on model

predictive control (MPC) for a class of non-smooth hy-

brid systems subject to perturbations. More specif-

ically, we consider continuous and non-continuous

piecewise-affine (PWA) systems. Most results on

MPC for PWA systems involve non-perturbed systems.

In this paper we consider perturbed PWA systems

with bounded disturbances, i.e., PWA systems whose

system equations contain a disturbance term with a

bounded support. We show that for both continuous

and non-continuous PWA systems an MPC approach

consisting of an off-line step and an (efficient) on-line

step can be developed.
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1 Introduction

In this paper we give an overview of our recent re-

sults on model predictive control (MPC) for continu-

ous and non-continuous piecewise-affine (PWA) sys-

tems. MPC (Maciejowski, 2002) is a model-based,

receding-horizon control approach that uses on-line or

off-line optimization to determine appropriate control

inputs. Although MPC has its origins in the process

industry and was developed for linear and non-linear

continuous-variable systems, it has recently been ex-

tended to hybrid systems.

PWA systems are a class of hybrid systems that are

characterized by an input/state space that is subdi-

vided in several polyhedral regions, in each of which

the behavior of the system is described by an affine

state space model. PWA models are often used to de-

scribe the behavior of hybrid systems since they form

the “simplest” extension of linear systems that can

still model nonlinear and non-smooth processes with

arbitrary accuracy and since they can deal with hy-

brid phenomena. PWA systems have been studied by

many authors (Bemporad et al., 2000b; Bemporad and

Morari, 1999; Chua and Deng, 1988; Chua and Ying,

1983; Johansson, 2003; Kevenaar and Leenaerts, 1992;

Leenaerts and van Bokhoven, 1998; Sontag, 1981; Ve-

liov and Krastanov, 1986). In particular, Sontag has

considered PWA systems from a classical control per-

spective (Sontag, 1981). He has also studied spe-

cific properties like representation, realization, observ-

ability, and decidability questions. Furthermore, re-

cently, several authors (Bemporad et al., 2000a; Be-

mporad et al., 2000b; Bemporad and Morari, 1999;

Borrelli, 2003; Ferrari-Trecate et al., 2001; Kerrigan

and Mayne, 2002; Lazar et al., 2004b; Mayne and

Raković, 2003; Raković et al., 2004; Rantzer and Jo-

hansson, 2000) have developed an MPC approach for

PWA systems. Furthermore, we have recently devel-

oped an MPC approach for continuous PWA systems

(De Schutter and van den Boom, 2004) using the equiv-

alence between continuous PWA systems and max-

min-plus-scaling (MMPS) systems, i.e., systems the

behavior of which can be described by the operations

maximization, minimization, addition and scalar multi-

plication. This equivalence allows to compute the MPC

input via the on-line solution of several linear program-

ming problems.

Most results on MPC for PWA systems involve non-

perturbed systems. We now consider perturbed PWA

systems with bounded disturbances, i.e., PWA systems

whose system equations contain a disturbance term

with a bounded support. This disturbance term could

represent bounded modeling errors, noise and/or dis-

turbances. In this paper we give an overview of our re-

sults on MPC for perturbed PWA systems (Necoara et

al., 2004; Necoara et al., 2005b; Necoara et al., 2005a).

First, we consider MPC for perturbed continuous

PWA systems (or MMPS systems) with a PWA cost cri-

terion. The proposed MPC method for this class of sys-

tems is based on minimizing the worst-case cost crite-

rion, i.e., a min-max approach. We show that the result-



ing MPC optimization problem can be computed effi-

ciently using a two-level optimization approach con-

sisting of an off-line and an on-line step. In the off-line

step we have to solve a multi-parametric linear pro-

gramming problem and to compute a canonical expres-

sion of the cost criterion. On-line, we have to solve a

set of linear programming problems, for which efficient

optimization algorithms exist.

Next, we consider general PWA systems. Here, we

also use an MPC scheme consisting of an off-line step

and an on-line step. In the first step, we compute off-

line the set of states that can be steered to a certain con-

vex target set using a semi-feedback controller. This

local controller can be computed using linear matrix

inequalities (LMIs). The second step consists in solv-

ing on-line, at each sample step a mixed-integer linear

programming problem. This results in a min-max feed-

back MPC scheme based on a dual-mode approach that

stabilizes the system.

This paper is organized as follows. In Section 2 we

present PWA and MMPS functions and systems, and

we establish the equivalence between continuous PWA

systems and MMPS systems. Next, we give a short

introduction to MPC in Section 3. In Section 4 and

Section 5 we then discuss MPC for perturbed MMPS

systems and for perturbed PWA systems respectively.

2 Piecewise affine systems and max-min-plus-

scaling systems

In this section we present PWA and MMPS functions

and systems, and we discuss the link between continu-

ous PWA systems and MMPS systems. We also present

canonical forms for MMPS functions.

2.1 Piecewise affine (PWA) systems

Definition 2.1. (Chua and Deng, 1988) A scalar-

valued function f :Rn →R is said to be a PWA function

if and only if the following conditions hold:

1. The domain space R
n is divided into a finite num-

ber of polyhedral regions R(1), . . . ,R(N).

2. For each i ∈ {1, . . . ,N}, f can be expressed as

f (x) = αT
(i)x+β(i) for any x ∈ R(i) with α(i) ∈ R

n

and β(i) ∈ R.

If f is continuous on any boundary between two re-

gions, then we say that f is a continuous PWA function.

A vector-valued function is continuous PWA if each of

its components is continuous PWA.

A PWA system is a system of the form

x(k+1) = Px(x(k),u(k)) (1)

y(k) = Py(x(k),u(k)) , (2)

with Px,Py vector-valued PWA functions and where

u, y, and x represent the input, output and state of the

system respectively. If Px,Py are continuous, we say

that the system is continuous PWA. For more infor-

mation on PWA functions and PWA systems we re-

fer to (Bemporad et al., 2000b; Chua and Deng, 1988;

Chua and Ying, 1983; Johansson, 2003; Kevenaar and

Leenaerts, 1992; Leenaerts and van Bokhoven, 1998;

Sontag, 1981) and the references therein.

2.2 Max-min-plus-scaling (MMPS) systems

Definition 2.2. An MMPS function f : Rn →R
m is de-

fined by the recursive grammar

f (x) := xi

∣

∣α
∣

∣ max( fk(x), fl(x))
∣

∣ (3)

min( fk(x), fl(x))
∣

∣ fk(x)+ fl(x)
∣

∣β fk(x) ,

with i ∈ {1, . . . ,n}, α,β ∈ R, and where fk, fl : Rn →
R

m, are again MMPS functions; the symbol | stands

for “or”, and max and min are performed entrywise.

Systems described by a state space model of the form

x(k+1) = Mx(x(k),u(k)) (4)

y(k) = My(x(k),u(k)) , (5)

where Mx,My are (vector-valued) MMPS functions,

are called MMPS systems.

2.3 Equivalence of continuous PWA and MMPS

systems

Theorem 2.3. If f is a continuous PWA function of the

form given in Definition 2.1, then there exist index sets

I1, . . . , Iℓ ⊆ {1, . . . ,N} such that

f = max
j=1,...,ℓ

min
i∈I j

(αT
(i)x+β(i)) . (6)

Proof. See (Gorokhovik and Zorko, 1994; Ovchin-

nikov, 2002).

From the definition of MMPS functions it follows that

any MMPS function is also a continuous PWA func-

tion. Hence, continuous PWA systems and MMPS sys-

tems are equivalent, i.e., for a given continuous PWA

model there exists an MMPS model (and vice versa)

such that the input-output behavior of both models co-

incides. So we have:

Proposition 2.4. Continuous PWA systems and MMPS

systems are equivalent.

2.4 Canonical forms of MMPS functions

Each MMPS function can be rewritten in a max-min

or min-max canonical form as follows:

Theorem 2.5. A scalar-valued MMPS function f can

be rewritten into the min-max canonical form

f = min
i=1,...,K

max
j=1,...,ni

(αT
(i, j)x+β(i, j)) (7)



or into the max-min canonical form

f = max
i=1,...,L

min
j=1,...,mi

(γT
(i, j)x+δ(i, j)) (8)

for some integers K, L, n1, . . . ,nK , m1, . . . ,mL, vectors

α(i, j),γ(i, j), and real numbers β(i, j),δ(i, j).
For vector-valued MMPS functions the above state-

ments hold componentwise.

Proof. See (De Schutter and van den Boom, 2004).

3 Model predictive control (MPC)

In this section we give a short introduction to the basic

ideas behind MPC. For more detailed information on

MPC we refer the interested reader to (Camacho and

Bordons, 1995; Clarke et al., 1987; Garcı́a et al., 1989;

Maciejowski, 2002) and the references therein.

MPC is a model-based control approach that allows

constraints on the inputs and outputs. In MPC at each

sample step the optimal control inputs that minimize

a given objective function over a given prediction hori-

zon are computed, and applied using a receding horizon

approach.

More specifically, in MPC we compute at each sam-

ple step k an optimal control input that minimizes a

cost criterion over the period [k,k+Np − 1] where Np

is the prediction horizon. The cost criterion J(k) =
Jout(k) + λJin(k) used in MPC reflects the reference

tracking error (Jout) and the control effort (Jin), where λ
is a nonnegative weight parameter. We usually also in-

clude (linear) constraints on the inputs, states and out-

put that should be satisfied over the prediction period.

If we have a prediction model for the system (e.g.,

a model of the form (1)–(2) or (4)–(5), and if we as-

sume that at sample step k the current state can be

measured, estimated or predicted using previous mea-

surements, we can make an estimate ŷ(k+ j|k) of the

output of the model at sample step k+ j based on the

state x(k) and the future inputs u(k+ i), i = 0, . . . , j−1.

After computation of the optimal control sequence

u(k),u(k+ 1), . . . ,u(k+Np − 1), only the first control

sample u(k) will be implemented, subsequently the

horizon is shifted one sample; next, the model and the

state are updated using new information from the mea-

surements, and a new MPC optimization is performed

for sample step k+1. This is the receding horizon ap-

proach used in MPC.

4 MPC for perturbed MMPS systems and contin-

uous PWA systems

In this section we discuss MPC for perturbed MMPS

systems, or equivalently for continuous PWA systems.

This section is based on (Necoara et al., 2004; Necoara

et al., 2005b).

4.1 Multi-parametric linear programming

A multi-parametric linear programming problem

(MPLP) is defined as follows (Borrelli et al., 2003).

Consider matrices and vectors S ∈ R
m×n, c ∈ R

n, q ∈
R

m, U ∈ R
m×s, and let Θ ⊆ R

s be the set in which

the parameter variable θ of the MPLP lives. We as-

sume that Θ is a polyhedral set, i.e., it can be written as

Θ = {θ ∈R
s |Wθ 6 ω} for some matrix W and vector

ω . Now the MPLP is defined as

max
x∈Rn

cT x subject to Sx 6 q+Uθ , (9)

where x is the optimization variable of the MPLP, and

θ the parameter variable of the MPLP. For simplicity,

we will assume in this paper that for any θ ∈ Θ (where

Θ is a bounded polyhedron), the MPLP problem (9) has

a finite optimal solution.

Let V ∗(θ) denote the maximum value of the objective

function in the MPLP problem (9), and x∗(θ) the op-

timizer related to V ∗(θ) for any θ ∈ Θ. Note that in

general, x∗(θ) is set-valued. The following proposition

characterizes the solution of an MPLP:

Proposition 4.1. With the above notations, the func-

tion V ∗ : Θ → R is a concave MMPS function, i.e.,

an MMPS function that can be written as a min-plus-

scaling expression (so no max is required). Further-

more, there exists an MMPS function X∗ : Θ →R
n such

that X∗(θ) ∈ x∗(θ) for all θ ∈ Θ.

Proof. See (Necoara et al., 2004).

The reader is referred to (Borrelli et al., 2003) for an

algorithm for computing the solution of an MPLP.

4.2 The worst-case MPC problem for perturbed

continuous PWA or MMPS systems

Now we extend the deterministic continuous PWA

model (1)–(2), or equivalently the MMPS model (4)–

(5) to take also the uncertainty into account. Recall that

the MPC method is based on a prediction model of the

system and that this prediction model is used to deter-

mine the optimal control inputs for the system. There-

fore, we must also take into account the uncertainty

when we implement MPC. If we ignore the disturbance

in the plant, this can lead to errors in the system equa-

tions and even an unstable closed-loop behavior.

As in conventional linear systems, we model the dis-

turbances by including an additive term in the system

equations for continuous PWA systems. Hence, we

consider the perturbed continuous PWA model:

x(k+1) = Px(x(k),u(k),e(k)) (10)

y(k) = Py(x(k),u(k),e(k)), (11)

where Px and Py are continuous vector-valued PWA

functions, and the uncertainty caused by disturbances

in the estimation of the real system is gathered in the

uncertainty vector e(k). We assume that this uncer-

tainty is included in a bounded polyhedral set E = {e ∈
R

s |Se 6 q}.



Using the equivalence between continuous PWA and

MMPS systems, the perturbed continuous PWA model

(10)–(11) can be also written as a perturbed MMPS

system:

x(k+1) = Mx(x(k),u(k),e(k)) (12)

y(k) = My(x(k),u(k),e(k)), (13)

where Mx, My are vector-valued MMPS functions.

We assume that at each step k of MPC, the state x(k) is

available (can be measured or estimated) and we gather

the uncertainty over the interval [k,k +Np − 1] in the

vector ẽ(k) = [eT (k), . . . ,eT (k+Np − 1)]T ∈ Ẽ , where

Ẽ , according to our assumption, is a bounded poly-

hedral set. Then it is easy to see that the prediction

ŷ(k+ j|k) of the future output for the system (12)–(13)

can be written in MMPS form, for j = 1, . . . ,Np.

Let r denote the reference signal, and define

ũ(k) =
[

uT (k) . . . uT (k+Np −1)
]T
, (14)

ỹ(k) =
[

ŷT (k+1|k) . . . ŷT (k+Np|k)
]T
, (15)

r̃(k) =
[

rT (k+1) . . . rT (k+Np)
]T

. (16)

Just as in (De Schutter and van den Boom, 2004) we

consider the following output and input cost functions:

Jout,1(k)=‖ỹ(k)− r̃(k)‖1, Jin,1(k)= ‖ũ(k)‖1, (17)

Jout,∞(k)=‖ỹ(k)− r̃(k)‖∞, Jin,∞(k)=‖ũ(k)‖∞ . (18)

Note that these cost functions are also MMPS functions

since |x|= max(x,−x) for x ∈R. Hence, after comput-

ing the ỹ(k) using successive substitution (note that this

yields an MMPS function), we can compute J(k) as a

function of x(k), ũ(k) and ẽ(k). It is easy to verify that

with a combination of the output and input cost func-

tions of (17)–(18) this also yields an MMPS function.

Hence, we can write J(k) in max-min canonical form:

J(ẽ(k), ũ(k),x(k)) = max
j=1,...,l

min
i∈S j

(ᾱT
(i, j)x(k)+ (19)

β̄ T
(i, j)ũ(k)+ γ̄T

(i, j)ẽ(k)+ δ̄(i, j)).

Note that if the reference signal r depends on k then

δ(i, j), δ̄(i, j) will depend also on k.

Just as in (De Schutter and van den Boom, 2004) we

consider only linear constraints on the input, i.e., con-

straints of the form P(k)ũ(k)+q(k)6 0.

The worst-case MMPS-MPC problem at step k can

now be defined as

min
ũ(k)

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k),x(k)) (20)

subject to P(k)ũ(k)+q(k)6 0 .

4.3 An algorithm for the worst-case MPC problem

for perturbed MMPS systems

For a given ũ(k), x(k) we define the inner worst-case

MMPS-MPC problem as follows:

max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k),x(k)). (21)

We denote

ẽ∗(ũ(k),x(k)) = arg max
ẽ(k)∈Ẽ

J(ẽ(k), ũ(k),x(k)), (22)

J∗(ũ(k),x(k)) = J(ẽ∗(ũ(k),x(k)), ũ(k),x(k)). (23)

Now we have:

Proposition 4.2. For a given ũ(k) and x(k),
ẽ∗(ũ(k),x(k)) given by (22) can be computed us-

ing a sequence of linear programming (LP) problems.

Proof. This proof can also be found in (Necoara et

al., 2004) but we include it for the sake of complete-

ness.

Let the bounded polyhedral set Ẽ in which ẽ(k) lives be

given by Ẽ = {ẽ(k) | S̃ẽ(k)6 q̃}. Now we determine for

any fixed [ũT (k) xT (k)]T the optimal ẽ∗(ũ(k),x(k)), us-

ing the max-min canonical form (19) of J(·), by solving

the following optimization problem:

max
ẽ(k)

max
j=1,...,l

min
i∈S j

(ᾱT
(i, j)x(k)+ (24)

β̄ T
(i, j)ũ(k)+ γ̄T

(i, j)ẽ(k)+ δ̄(i, j))

subject to S̃ẽ(k)6 q̃ .

This problem is equivalent to

max
j=1,...,l

max
ẽ(k)

min
i∈S j

(ᾱT
(i, j)x(k)+ (25)

β̄ T
(i, j)ũ(k)+ γ̄T

(i, j)ẽ(k)+ δ̄(i, j))

subject to S̃ẽ(k)6 q̃ .

Now for each j = 1, . . . , l we have to solve

max
ẽ(k)

min
i∈S j

(ᾱT
(i, j)x(k)+ β̄ T

(i, j)ũ(k)+ γ̄T
(i, j)ẽ(k)+ δ̄(i, j))

subject to S̃ẽ(k)6 q̃, (26)

which is equivalent to the following LP problem:

max
ẽ(k),t( j)(k)

t( j)(k) (27)

subject to

t( j)(k)6 ᾱT
(i, j)x(k)+ β̄ T

(i, j)ũ(k)+

γ̄T
(i, j)ẽ(k)+ δ̄(i, j) for each i ∈ S j

S̃ẽ(k)6 q̃ .



To obtain the solution of (24) we solve (27)

for each j = 1, . . . , l, with the optimal solution

[t∗( j)(ũ(k),x(k)) ẽ∗T
( j)(ũ(k),x(k))]

T and then we select

as ẽ∗(ũ(k),x(k)), the optimal solution ẽ∗( j)(ũ(k),x(k))

for which mini∈S j
(ᾱT

(i, j)x(k) + β̄ T
(i, j)ũ(k) + γ̄T

(i, j)

ẽ∗( j)(ũ(k),x(k))+ δ̄(i, j)) is the largest.

Remark 4.3 We define U = {ũ(k) |P(k)ũ(k)+q(k) 6
0} and we assume U to be bounded. This assumption

is not restrictive, because in practice the input ũ(k) will

always be bounded. Furthermore, the feasible set of

the states X is assumed to be also a bounded polyhe-

dron. This implies that for any [ũT (k) xT (k)] ∈ U ×X

(a bounded polyhedron), the MPLP (21) has a finite op-

timal solution. ♦

Furthermore, from Proposition 4.1 it follows that (see

also (Necoara et al., 2004)):

Proposition 4.4. With the notations (22)–(23), J∗ :

U ×X →R is an MMPS function and ẽ∗ : U ×X →R
s

is a PWA function.

The outer worst-case MMPS-MPC problem is now

defined as

min
ũ(k)

J∗(ũ(k),x(k)) (28)

subject to P(k)ũ(k)+q(k)6 0 .

Proposition 4.5. Given x(k), the outer worst-case

MMPS-MPC problem can be solved using a sequence

of LP problems.

Proof. This proof can also be found in (Necoara et

al., 2004) but we include it for the sake of complete-

ness.

From Proposition 4.4 we know that J∗ : U ×
X → R is an MMPS function. Therefore, it

can be written in the following min-max canonical

form J∗(ũ(k),x(k)) = min j=1,...,l̂ maxi∈Tj
(µT

(i, j)x(k) +

νT
(i, j)ũ(k)+ ξ(i, j)). Then, the outer worst-case MMPS-

MPC problem (28) can be written as

min
ũ(k)

min
j=1,..,l̂

max
i∈Tj

(µT
(i, j)x(k)+νT

(i, j)ũ(k)+ξ(i, j)) (29)

subject to P(k)ũ(k)+q(k)6 0 .

For each j = 1, . . . , l̂ we must thus solve the following

linear programming problem:

min
ũ(k),t( j)

t( j) (30)

subject to

t( j) > µT
(i, j)x(k)+νT

(i, j)ũ(k)+ξ(i, j)

for each i ∈ Tj

P(k)ũ(k)+q(k)6 0 .

In order to obtain the solution of (28), we solve (30),

obtaining the optimal solution [t∗( j)(x(k)) ũ∗T
( j)(x(k))]

T

for each j = 1, . . . , l̂, and then we select the opti-

mal ũ∗(x(k)) as the optimal solution ũ∗( j)(x(k)) for

which maxi∈Tj
(µT

(i, j)x(k) + νT
(i, j)ũ

∗
( j)(x(k)) + ξ(i, j)) is

the smallest.

Based on the above results we now present an algo-

rithm to solve the worst-case MMPS-MPC problem:

Algorithm 1

Step 1: Solve off-line the inner worst-case MMPS-

MPC problem (21) via the MPLP approach. According

to Proposition 4.4 J∗(x,u) is an MMPS function. Also

compute the min-max canonical form of this function

off-line.

Step 2: Compute on-line (at each step k) the solution

of the outer worst-case MMPS-MPC problem (28) ac-

cording to Proposition 4.5.

The solution of the MPLP of Step 1 can be obtained

with different algorithms such as the geometric algo-

rithm of (Borrelli et al., 2003), or the dual-based vertex

enumeration approach of (Diehl and Björnberg, 2004),

which was proposed in the context of robust MPC.

Note that when r in not a constant reference signal the

function J∗(x,u) will depend also on r(k+1), . . . ,r(k+
Np) at sample step k, so in that case we will have to

include r̃ as an additional argument of J in Step 1 when

we compute the min-max canonical form.

Corollary 4.6. Using Algorithm 1, the worst-case

MMPS-MPC problem can be solved using a sequence

of LP problems. Moreover the associated controller is

a PWA function of the state x(k) (and of r̃(k) if the ref-

erence signal is not constant).

5 MPC for perturbed PWA systems

Now we derive an MPC approach for general per-

turbed — thus not necessarily continuous — PWA sys-

tems. The aim of this approach is to design a robustly

stable MPC controller. This will be done using a two-

step approach. In the first step we design a piecewise

linear feedback controller, that stabilizes the nominal

system. Next, we construct a polyhedral robustly posi-

tively invariant set for the system, and we design MPC

schemes that steer the perturbed system to the invari-

ant set, resulting in an overall stabilizing MPC scheme.

This section is based on (Necoara et al., 2005a).

5.1 Notations and definitions

We use the following notations: a PWA system with

additive disturbance is defined as

x(k+1) = Aix(k)+Biu(k)+ai +w(k), if x(k) ∈ Pi ,

(31)

where w denotes disturbance and {Pi}i∈I is a fi-

nite partition of R
n. The closure cl(Pi) is given by



cl(Pi) = {x |Eix > ei}. When ai = 0, ei = 0 for all

i ∈ I , we get a piecewise linear (PWL) system:

x(k+1) = Aix(k)+Biu(k)+w(k), if x(k)∈Pi , (32)

It is assumed that the disturbance belongs to a

bounded polyhedron w ∈ W , and that the control and

state are required to satisfy the constraints u ∈ Uc and

x ∈ Xc; Xc,Uc and W are all polytopes, with 0 ∈ Uc,W

and 0 ∈ int(Xc).
Given two sets Y,Z ⊂ R

n, the Minkowski sum of Y

and Z is defined as Y ⊕Z = {y+ z |y ∈ Y,z ∈ Z}.

5.2 Stabilizing feedback controller for the nominal

PWL system

First we design a local stabilizing feedback controller

for the nominal PWL system associated with the per-

turbed PWL system (32), viz.

x(k+1) = Aix(k)+Biu(k), if x(k) ∈ Pi (33)

Now we determine a PWL state feedback controller

u(k) = Fix(k), if x(k) ∈ Pi such that the nominal sys-

tem (33) in closed-loop with this controller is stable.

We search for a piecewise quadratic Lyapunov function

(Mignone et al., 2000; Rantzer and Johansson, 2000)

V (x) = xT Pix, if x ∈ Pi, such that

xT (Ai +BiFi)
T Pj(Ai +BiFi)x− xT Pix < 0 (34)

xT Pix > 0 (35)

for all x ∈ Pi and for all (i, j) ∈ I ×I

that satisfy x ∈ Pi and (Ai +BiFi)x ∈ P j.

Since (34)–(35) has to be valid only for x ∈ Pi, we

can use the S-procedure (Boyd et al., 1994), which re-

sults in: Find Fi,Pi,Ui j,Vi for all (i, j) ∈I ×I , where

Ui j,Vi have all entries non-negative that satisfy the fol-

lowing matrix inequalities:

(Ai +BiFi)
T Pj(Ai +BiFi)

T −Pi +ET
i Ui jEi < 0 (36)

Pi > ET
i ViEi (37)

We have the following solution for (36)–(37) where the

symbol * is used to induce symmetry:

Theorem 5.1. Equations (36)–(37) have a solution if

and only if the following matrix inequalities have a so-

lution

[

BT
i PjBi BT

i PjAi

∗ AT
i PjAi−Pi +ET

i Ui jEi

]

<

[

I −Fi

∗ FT
i Fi

]

(38)

Pi > ET
i ViEi (39)

where Ui j,Vi have all entries non-negative for all (i, j).

Proof. See (Necoara et al., 2005a).

Next, we discuss some relaxations for (36)–(37).

The first relaxation is to replace (37) with Pi > 0. In this

case we can apply the Schur complement to (36) (see

also (Necoara et al., 2005a)), and then we obtain that

for Pi > 0, the matrix inequalities (36) are equivalent to

[

Pi −ET
i Ui jEi ∗

Ai +BiFi S j

]

> 0 (40)

0 < Pj 6 S−1
j , for all (i, j) ∈ I ×I . (41)

Now we discuss a second relaxation. If we do not ap-

ply the S-procedure for (34)–(35), i.e., we replace the

condition “x ∈ Pi” with the condition “x ∈ R
n”, then

(34)–(35) becomes

(Ai +BiFi)
T Pj(Ai +BiFi)−Pi < 0, Pi > 0 (42)

for all (i, j) ∈ I ×I . We can linearize (42) using

the well-known linearizing change of variable Si =
P−1

i ,Yi = FiSi (this type of linearization was used also

in (Mignone et al., 2000; Lazar et al., 2004a; Lazar

et al., 2004b)). This then results in a linear matrix in-

equality (LMI) (see also (Necoara et al., 2005a)). If we

can solve this LMI and obtain Pi,Fi, then the piecewise

feedback controller u(k) = Fix(k) if x(k) ∈ Pi asymp-

totically stabilizes the origin of system (33).

5.3 Convex robustly positively invariant sets

Now assume that we have determined a state feedback

controller u(k) = Fix(k) if x(k) ∈ Pi that stabilizes the

nominal system (33). If we define AFi
= Ai +BiFi, then

the closed-loop perturbed PWL system becomes:

x(k+1) = AFi
x(k)+w(k), if x(k) ∈ Pi. (43)

We define XF = ∪i∈I {x ∈ Pi |x ∈ Xc,Fix ∈Uc}.

Definition 5.2. (Kolmanovsky and Gilbert, 1998) A

set Ω ⊆ XF is a robustly positively invariant (RPI) set

for system (43) if for any x ∈ Ω∩Pi with i ∈ I , we

have AFi
x+w ∈ Ω for all w ∈ W. The maximal RPI

set for system (43) is defined as the largest RPI set for

(43).

It can be easily seen that the maximal RPI set as-

sociated with system (43) is in general a non-convex

set. For system (43) the evolution of the mode i = i(k)
depends on the state x(k). Nevertheless, for ease of

computation of a convex (polyhedral) RPI set for (43),

we will disregard this relation mode-state and we will

consider that i(k) evolves independently of x(k) (i.e.,

i(k + 1) ∈ I for all k > 0). This type of relaxation

was also used also in (Chisci et al., 2003; Lazar et

al., 2004b) in order to obtain a convex invariant set for



deterministic PWL systems. So, we replace the PWL

system (43) with the following time-varying system

xk+1 = AFi(k)
xk +wk, with i(k+1) ∈ I (44)

where i(·) is a switching signal in I N.

Definition 5.3. A set Ω is an RPI set for (44) if for any

x ∈ Ω we have AFi
x+w ∈ Ω for any possible switching

i ∈ I and any admissible disturbance w ∈W.

Now we construct an RPI set for (44). We define the

following set recursion:

O
i
0 = X i

0 = {x |x ∈ Xc,Fix ∈Uc}, (45)

O
i
t = {x ∈ XFi

|AFi
x⊕W ⊆ ∩ j∈I O

j
t−1}

for any i ∈ I and t = 1,2, . . . . It is clear from (45)

that O i
t+1 ⊆ O i

t , and therefore O i
t converges to O i

∞. We

define: O i
∞ = limt→∞ O i

t = ∩t>0O
i
t and O∞ = ∩i∈I O i

∞.

We have

Theorem 5.4. (i) The maximal RPI set included in

∩i∈I XFi
for the system (44) is the convex set O∞.

(ii) The set O∞ is an RPI set for the PWL system (43).

Proof. See (Necoara et al., 2005a).

Because the sets O i
t are described by a finite number

of linear inequalities, it is important to know whether

O∞ can be finitely determined, i.e. , whether there ex-

ists a finite t∗ such that O i
t∗ = O i

t∗+1 for all i ∈ I . In

(Necoara et al., 2005a) we some give necessary condi-

tions for finite determination. Note that finite determi-

nation implies that O∞ = ∩i∈I O i
t∗ is a polyhedral set.

In the sequel we propose a robustly stabilizing MPC

scheme for the PWL system (32). We consider the case

where the mode at each sample step is known (i.e., can

be determined or measured independently of the uncer-

tainty about the state, e.g., the mode is only determined

by the unperturbed part of the state; an example could

be a gear box in a car where the gear position deter-

mines the mode).

5.4 Robust MPC with known mode: Feedback

min-max MPC scheme

In this section we develop a stable MPC scheme for

the PWL system (32), with known mode despite the

presence of disturbances, based on a feedback min-max

approach. For deterministic systems, almost all MPC

schemes contain two ingredients: a terminal set and a

terminal cost (see (Mayne et al., 2000) for a survey). If

the system is uncertain, the stability and also the fea-

sibility may be lost. In order to achieve robustness,

the controller must stabilize the system for all possi-

ble realizations of the disturbance along the prediction

horizon. In this section we use a dual-mode MPC for-

mulation.

In order to determine a suitable control law, an opti-

mal control problem VN(.) with horizon N is solved.

Let w = (w(0), . . . ,w(N −1)) be a possible realization

of the disturbance over the interval 0 to N−1. Efficient

control in the presence of disturbances requires state

feedback; so, the decision variable (for a given initial

state x) in the optimal control problem is a control pol-

icy defined as

π = (u(x),µ1(·), . . . ,µN−1(·)) , (46)

where u(x) ∈ Uc and µk : Xc → Uc, k = 1, . . . ,N − 1 is

a state feedback control law. Let x(k;x,π,w) denote

the solution to (32) at step k. The feedback min-max

optimization problem is defined as

VN(x) : min
π

max
w∈W N

N−1

∑
k=0

l(xk,uk) (47)

subject to

xk = x(k;x,π,w) ∈ Xc

uk = µk(x(k;x,π,w)) ∈Uc

xN = x(N;x,π,w) ∈ O∞

∀k ∈ {1, . . . ,N −1} and ∀w ∈W N ,

where l(x,u) is convex and such that l(x,u) >

α(d(x,O∞)) if x 6∈ O∞ and l(x,u) = 0 if x ∈ O∞ with

α a K−function (Scokaert and Mayne, 1998). The dis-

tance of a point x to the closed, convex set O∞ is defined

as d(x,O∞) = minxo∈O∞ ‖x−xo‖. In the sequel we con-

sider ‖X‖ as the p-norm (‖X‖p, p > 1) for vectors and

matrices.

For linear systems problem (47) can be solved using

the approaches proposed in (Bemporad et al., 2003;

Diehl and Björnberg, 2004; Pluymers et al., 2004;

Muñoz de la Peña et al., 2004; Scokaert and Mayne,

1998; Kerrigan and Maciejowski, 2004). In our set-

ting, due to the nonlinearities of the system, these ap-

proaches cannot be applied directly. To overcome this

problem, we propose to restrict the admissible control

policies π to only those that guarantee that, for every

value of the disturbance, the mode of the system i(k) is

unique at each sample step k:

x(k;x,π,w) ∈ Pi(k), ∀w ∈W N . (48)

Therefore, we restrict the system to the admissible con-

trol policies only that guarantee the mode of the system

is “certain” at sample step k, but the state is not known

(recall that this could, e.g., hold when the mode is only

determined by the unperturbed part of the state; an ex-

ample could be a gear box in a car where the gear po-

sition determines the mode). It can be easily observed

that imposing (48) to the system (32) the state set gen-

erated by the disturbance at each sample step k is a con-



vex set:

x(k;x,π,W k) = x(k;x,π,0) (49)

+X(k; i(0), . . . , i(k−1),W k)

where the first term expresses the nominal trajectory

corresponding to the system (33) and the second term

represents a convex uncertainty set associated with the

state, which depends on the switching mode sequence

i(0), . . . , i(k−1) and on the set W k.

Using the constraint (48) and the fact that W is a

bounded polyhedron with v vertices, let L N
v denote the

set of indexes ℓ such that wℓ = (w(0)ℓ, . . . ,w(N − 1)ℓ)
takes values only on the vertices of W . It is clear that

L N
v is a finite set with the cardinality VN = vN . Further,

let uℓ = (uℓ0, . . . ,u
ℓ
N−1) denote a control sequence asso-

ciated with the ℓth disturbance realization wℓ and let

xℓk = x(k;x0,u
ℓ,wℓ) be the solution of the PWL model

(32) with the additional constraint (48). Therefore,

given the current state xk, the MPC optimization to be

solved at sample step k becomes

VN−k(xk) : min
u

max
ℓ∈L

N−k
v

N−k−1

∑
j=0

l(xℓk+ j|k,u
ℓ
k+ j|k) (50)

subject to

constraint (48), xℓk|k = xk, ∀ℓ ∈ L
N−k

v

xℓk+ j|k ∈ Xc, j = 1, . . . ,N − k−1, ∀ℓ ∈ L
N−k

v

uℓk+ j|k ∈Uc, j = 0, . . . ,N − k−1, ∀ℓ ∈ L
N−k

v

xℓN|k ∈ O∞, ∀ℓ ∈ L
N−k

v

x
ℓ1

k+ j|k = x
ℓ2

k+ j|k ⇒u
ℓ1

k+ j|k = u
ℓ2

k+ j|k,∀ℓ1, ℓ2∈L
N−k

v .

where xℓ
k+ j|k is the prediction of the state at step k+ j

given by the model (32), corresponding to the ℓth dis-

turbance realization (w(0)ℓ, . . . ,w(N −k−1)ℓ) and ap-

plying the input sequence uℓ
k|k, . . . ,u

ℓ
N−1|k. The con-

straint (48) is imposed only to the states xℓ
k+ j|k with

j = 1, . . . ,N−k−1 and not to xℓ
N|k. The only constraint

on the state xℓ
N|k is the terminal constraint: xℓ

N|k ∈ O∞.

We use a variable horizon scheme as in (Scokaert and

Mayne, 1998).

The feedback min-max MPC controller is based on a

dual-mode approach. For any k > 0, given the current

state xk, the algorithm is formulated as follows where

uRH(x) denotes the control input applied to the system

according to the receding horizon strategy.

Feedback min-max MPC algorithm (Algorithm I)

Off-line step: Compute O∞

On-line step: For each k:

Step 1: if xk ∈O∞∩Pi then take uRH(xk) = Fixk, ∀i ∈
I

Step 2: otherwise, solve (50) and set uRH(xk) to the first

control in the optimal solution computed: uℓ
k|k.

As regards the stability of this algorithm we have the

following result:

Theorem 5.5. The feedback min-max MPC law uRH(.)
given by Algorithm I makes O∞ robustly finite-time sta-

ble for the system (32) in closed-loop with uRH(x) with

a region of attraction X̄N .

Proof. See (Necoara et al., 2005a).

Note the optimization problem (50) can be recast as

a mixed-integer linear programming (MILP) problem

when the p-norm used is either ‖ · ‖1 or ‖ · ‖∞.

6 Discussion

In this paper we have given an overview of our re-

cent results in connection with MPC for PWA systems.

More specifically, we have presented an MPC method

for MMPS (or equivalently for continuous PWA) sys-

tems, and an MPC method for (general) PWA systems.

We have considered the disturbances as an extra addi-

tive term on the system equations. For each class the

proposed approach consists of an on-line step and an

off-line step.

For the MMPS and continuous PWA systems we can

compute the optimal MPC input using a two-level op-

timization approach. In first step we have to solve off-

line an MP-LP or to compute the vertices of some poly-

hedral cones and then to write the min-max expression

of the worst-case performance criterion. On-line we

solve only a sequence of LP problems.

For the general PWA systems the proposed approach

was also a two-step approach. First we have use LMIs

to find a PWL controller that stabilizes the nominal sys-

tem. Next, we compute a convex robustly positively

invariant set for the perturbed PWL system and we

steer the system towards this set. To this aim we have

proposed a robustly stable feedback min-max MPC

scheme that uses the fact that the mode of the system

is certain at each step. This MPC scheme is based on

solving at each step an MILP problem.

Topics for future research include: a thorough as-

sessment and comparison of the proposed methods in-

cluding their computational complexity, extension to

stochastic disturbances, further improvement of the ef-

ficiency of the proposed approaches.
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