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Information providing as a control measure in an integrated traffic

control approach

M. van den Berg, B. De Schutter, J. Hellendoorn

Abstract— We develop a control method for traffic networks
that uses information providing as a control measure. The
provided information consists of travel time information of
different possible routes, shown on variable message signs. We
will present a model that describes the change in turning rates
due to a travel time difference between two possible routes.

The controller we develop integrates the provided informa-
tion with variable speed limits, ramp metering, or other control
measures. This makes it possible to influence the turning rates
and slow down the traffic in such a way that the performance
of the network is optimal, without displaying predicted travel
times that differ too much from the experienced travel times.

We consider a simple case study for which we first illustrate
the effects of the route choice model without any control in a
first simulation. Next, we illustrate the effect of variable speed
limits in the proposed setting when they are used for incident
detection and warning, and when they are used in an integrated
control method together with the travel time information.

I. INTRODUCTION

Congestion in traffic networks currently forms a major

problem. It can be solved by creating new roads, or by

making better use of the existing infrastructure. In this paper

we consider the second option. To improve the capacity

of the existing infrastructure there exist different control

measures. There are ‘hard measures’ like traffic signals [1],

speed limits [2], [3], and ramp metering signals [4], which

the drivers have to obey. On the other hand, there are also

‘soft measures’, to which the driver can comply or choose

not to do so. Providing information is such a ‘soft measure’.

In this paper we will show that although drivers are not

forced to react on the information, providing this information

can nevertheless be an effective measure to improve the

network performance, especially when it is integrated with

other available hard control measures. Providing information

can have two goals: informing the drivers about what they

can expect, and trying to influence the route choice of the

drivers. We target the second goal, i.e. we want to influence

the route choice to change the way the traffic flows divide

themselves over the network, i.e. the traffic assignment.

In a network with different routes between a specific origin

and destination, the route drivers select can depend on the

drivers’ knowledge of the network, their previously experi-

enced travel times, their habits, their preference for freeways,

the nice surroundings, etc. The first paper that describes

the effects concerning route choice is [5]. Other papers on
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this topic are [6], [7], which describe the reasoning of the

drivers while selecting their route, and which notice that the

route choice will lead to a so called user equilibrium traffic

assignment. This is the assignment in which all routes have

the same costs for the drivers. Several authors have developed

methods to compute this static equilibrium assignment [8],

[9]. But with varying demands the equilibrium assignment

will also vary, and so dynamic traffic assignment algorithms

have been developed [10], [11].

Currently many control measures and information systems

change the traffic assignment, disturbing the equilibrium

assignment. As a result, the motives of the drivers to select a

specific route get more attention [12], [13]. When the drivers

motives are known, their decisions can be influenced by e.g.

advanced traveler information systems [14], [15]. When we

want to use these systems to influence the traffic assignment,

it should be taken into account that the information provided

only changes the route choice of the drivers when it differs

enough from the knowledge the drivers have based on previ-

ous experiences. The amount of influence will also depend

on the reliability of the provided information; the difference

between the given information and the experienced travel

times may not have been too large in the past.

Nowadays traffic management bodies start to explore the

possibilities of changing the traffic assignment by influencing

the route choice of the drivers [16] via providing information.

The traffic management bodies define e.g. preferred routes

towards special destinations like the city center, a main

business building, or recreational areas. Drivers with these

destinations are thus kept out of residential and/or industrial

areas, resulting in a traffic assignment that is desired by the

traffic management bodies.

The information is often provided via Variable Message

Signs (VMS). The effect of VMS information is described

in [17], [18]. Which information should be given is also

a subject of research and is discussed in e.g. [13]. Some

authors use information on VMS to control the traffic [19],

[18].

In this paper we will use VMS in combination with speed

limits to influence the route choice of the drivers, in order

to make them select their routes approximately according

to the desired traffic assignment. Note however that other

traffic control measures can also be used with the control

method we will develop. For the integrated control of the

VMS and the speed limits, we will use model predictive

control (MPC). MPC [20], [21] has been applied successfully

to coordinated control of freeway networks [3], [22]. MPC is

an on-line method that uses a model to predict the behavior



of the traffic for a specific period. With this prediction

the settings for the control measures that lead to the best

network performance during this period are determined via

optimization, and applied using a moving horizon approach.

This paper is organized as follows. We describe the traffic

flow model and the implementation of the speed limits in

Section II. In Section III an example of a possible a route

choice model is explained, and Section IV describes how

drivers react on information. The integrated control structure

which uses MPC is proposed in Section V. To illustrate the

method a case study is done in Section VI.

II. TRAFFIC FLOW MODEL AND SPEED LIMITS

MPC uses a model to predict the traffic. This model

should give an accurate description of the traffic flows, but

it should not be too computationally intensive. Thus we

propose to use a macroscopic traffic flow model. As an

example we will use the METANET model, developed by

Messmer and Papageorgiou [23]. The reaction on the speed

limits is formulated as in [3].

Our short description of the METANET model is based

on [22]. The freeway network is described as a set of links,

connected by nodes. The freeway links are divided into

segments, and the state of the freeway network at time

t = kTsim (where Tsim is the simulation time step) is

characterized by the mean density ρm,i(k), flow qm,i(k) and

speed vm,i(k) for each segment i of freeway link m.

At nodes the arriving flows are added together, and the re-

sulting total flow is divided over the leaving nodes according

to the turning rates:

qm,0(k) = βn,m(k)Qtot,n(k) for each m ∈ On (1)

where Qtot,n is the total flow entering node n, βn,m(k) is

the turning rate from node n to leaving link m, and On the

set of leaving links of node n.

The reaction on the speed limits is modeled by changing

the desired speed of the drivers [3]:

V (ρm,i(k)) = min[Vdesired(ρm,i(k)), (1 + α)vm,control(k)]

where V (ρm,i(k)) is the desired speed for a given density

ρm,i(k) when speed limits are active, Vdesired(ρm,i(k)) is

the desired speed without speed limits, vm,control the applied

speed limit, and α a compliance factor that expresses to

which extent the speed limits are obeyed. The value of α

can change depending on the kind of drivers on the road or

depending on the level of enforcement.

III. ROUTE CHOICE MODEL

When there are different routes between an origin and

destination drivers will select one of these routes. This is

modeled with a route choice model that describes the route

choice behavior of drivers based on given or measured

variables. To be able to use a route choice model in the

MPC structure there are some requirements for the model.

First we will explain the requirements, and next we give a

description of the model we use for our control approach.

Current traffic situation

Experienced cost

Preferences

route choice

Within−day Experience 

during trip

Day−to−day

route choice

Selected

route

Fig. 1. Overview of the route choice process

A. Requirements for the route choice model

There exist two kinds of route choice mechanisms. There

is the day-to-day change in route choice, and the within-

day route choice. Both mechanisms must be taken into

account when we want to influence route choice by providing

information [24]. The most important requirements for the

route choice model are that it should describe both mech-

anisms, using measurable variables. The day-to-day model

may contain some parameters for preferences, e.g. nice

surroundings, no traffic signals, wider lanes. The updating

of the model at the end of each day should be done based

on measurable results of the last day, e.g. queue lengths,

travel times, delays, etc.

The within-day model has to describe a relation between

the route choice and the measurable quantities at the moment

the driver has to make this route choice. This quantities

are e.g. the instantaneous travel time, instantaneous queue

lengths, or even better the flow, density or speed at this

moment. An overview of the resulting route choice process

is given in Figure 1.

We could select one of the models described in [12], [13].

However, these models are complex and detailed, and as

a result, they require too much computational effort to be

used as a prediction model for the controller. Nevertheless,

they can be used as simulation models. As prediction model

we use a model based on statistical learning, which will be

described next.

B. Statistical learning model

We assume that the within-day route choice process of a

driver is divided into three steps:

1) First the driver analyzes the current situation. For the

sake of simplicity of the exposition we will from now

on assume that the driver makes his decisions based on

one important variable only, e.g. the density. However,

the approach can easily be generalized to the case

where several variables determine the decision. We

divide all possible densities in, say, three groups: low,

medium and high density. The driver selects to which

group the current density belongs.

2) In the second step the driver estimates which route

will result in the lowest costs, based on the current

density. For the sake of simplicity we assume that

the only factor that influences these costs is the travel

time, but note that the extension to more factors is

straightforward. This means that the driver will select



the route that according to his beliefs has the shortest

travel time.

3) During the last step, the driver decides whether he will

indeed take the route with the lowest cost, or, e.g. when

two routes have the same cost, which route is the best

one to select.

The main decisions in the within-day route choice process

are based on the knowledge of the driver. This knowledge is

described with the day-to-day route choice model, which is

updated after each trip. The day-to-day route choice model

contains estimated travel times, and the probabilities that

drivers select a route.

1) Estimated travel times: For each density group, the

estimated travel time of each route is determined. These

estimated travel times are computed by taking the average of

previously experienced travel times, using a forgetting factor

because the last experiences are seen as more important

according to [13]. So we have

Mest,new = ωMlast exp + (1− ω)Mest,prev

where Mest,new is the new estimate of the travel time,

Mest,prev is the previous estimate, ω ∈ [0, 1] is the multi-

plication factor , and Mlast exp is the last experienced travel

time.

2) Probability of selecting a route: The probability that

a driver selects a specific route for a given density is

based on earlier experiences. To compute this probability

statistical information of previous trips is used. Note that

we aggregate the knowledge of the drivers assuming that

historical experiences can be accumulated. We will illustrate

the procedure with a situation where two route choices are

possible. The probability of selecting route 1 under low

density conditions, P (S1|low) is computed as:

P (S1|low) =P (S1|R1)P (R1|low)

+ P (S1|R2)P (R2|low) (2)

+ P (S1|EQ)P (EQ|low)

The first term describes the probability that route 1 is the

shortest under low density conditions times (P (R1|low))
times the probability that route 1 is selected when route

1 is the shortest (P (S1|R1)). The second term describes

the probability that route 1 is selected when route 2 is the

shortest given low density conditions. The last term expresses

the probability that route 1 is selected when the routes are

equally long. Because the probability that both routes are

equally long is also included, the model does not tend to

a route choice of fifty-fifty for each route when the travel

times are equal, but maintains the route choice ratio that has

resulted in the equal travel times.

The probabilities are computed as follows:

P (R1|low) =
R1 low

R1 low +R2 low + EQ low

P (S1|EQ) =
S1 EQ

S1 EQ+ S2 EQ

where R1 low, R2 low, EQ low, S1 EQ, and S2 EQ

are counters that express how often these combinations

have happened during earlier trips. Other probabilities are

computed in the same way. The counters are updated after

each trip. When updating them, a forgetting factor is used to

describe the effect that last experiences are more important.

Because the prediction model is macroscopic, we use this

probability as the percentage of the traffic that selects a route.

This gives for the turning rates towards route 1 on node n

under low density conditions:

β
routechoice,low
n,1 (k) = P (S1|low). (3)

IV. REACTION ON INFORMATION

We model the reaction on information separately from the

route choice model. There are some arguments to include it

in the learning route choice model, but to be able to clearly

distinguish the effects of information and those of normal

route choice, we formulate it separately.

To provide the information we use a VMS that shows

travel times for the different routes. The reaction on the

information is based on the presented difference in travel

time between the routes, and on the number of drivers that

can be influenced to change their route. We first model the

reaction on a cost difference, and next the number of drivers

that can be influenced by the information is described.

A. Reaction on a cost difference

The model developed by Dial [9] is used as a model to

describe the likelihood that drivers will change their route

based on the given information. The model computes the

likelihood (lr,p) that drivers with a preference for route r

will change their preferred route into route p according to:

lr,p(k) =
{

1− exp(θ(Cp(k)− Cr(k))) if Cp(k) < Cr(k)

0 otherwise

where Cp(k) is the cost of route p, Cr(k) the cost of route

r, and θ ∈ [0, 1] represents the amount of traffic that can

be influenced by the provided information. When θ is 1, all

drivers can be influenced by the information, while when θ

is 0, none of them can.

Returning to the example with two possible routes, the

turning rate toward route 1 can be computed as:

βinformation
n,1 (k) =βroutechoice

n,1 (k)− l1,2(k)β
routechoice
n,1 (k)

+ l2,1(k)β
routechoice
n,2 (k) (4)

where βinformation
n,1 (k) is the turning rate toward route 1

based on information and route choice, βroutechoice
n,1 (k) and

βroutechoice
n,2 (k) the turning rates toward route 1 and 2 result-

ing from (3). Note that this method is easily extended to

networks with several possible routes.

As all route choice processes are included in the turning

rate βinformation
n,r (k) we use this turning rate when predicting

the traffic (see (1)), so βn,m(k) = βinformation
n,r (k), assuming

that freeway link m is a part of route r.



V. INTEGRATED CONTROL

The control measures we describe in this paper are route

information and speed limits. The effect of the measures

can be increased by using them in an integrated control

structure. We propose a model predictive control structure,

and introduce the corresponding costs and control signals.

A. Model predictive control (MPC)

MPC works as follows [20], [21]. At a given time

t = kcTc = kTsim (where Tc is the controller time

step) the MPC controller uses the prediction model (see

Section II), the route choice model (see Section III), and

numerical optimization to determine the optimal control

sequence c∗(kc), . . . , c
∗(kc + Np − 1) that minimizes a

given performance indicator J(kc) over the time period

[kcTc, (kc +Np)Tc) based on the current state of the traffic

network and on the expected demands over this period, where

Np is called the prediction horizon. The prediction horizon

should be long enough to show all the effects of a control

action. This can be reached by choosing it larger than or

equal to the time that is needed by a vehicle to drive through

the longest route of the network.

Furthermore, a receding horizon approach is used in which

at each control step only the first control input sample c∗(kc)
is applied to the system during the period [kcTc, (kc+1)Tc).
For the next control time step the optimization procedure is

started again.

B. Performance indicator and control signal

The MPC method uses a performance indicator to deter-

mine the performance of the network. As main performance

indicator we will consider the total time spent (TTS) by all

vehicles in network, but note that the proposed approach also

works for other performance indicators.

In addition to the TTS, the total performance indicator

contains two other factors. One of them is a penalty on

variations in the control signals, preventing fast switching

of the signals. To increase the reliability of the provided

travel time information, a penalty on the difference between

the shown travel time and the experienced travel time is also

included in the performance indicator:

J(kc) = TTS(kc) + γ1

(

var(c(kc))
)

+ γ2
∑

r∈R

∣

∣

∣
TTr(kc)− TTinfo

r (kc)
∣

∣

∣

where R is the set of possible routes, TTr the real experi-

enced travel time on route r, TTinfo
r the travel time shown

on the VMS for route r, and γ1, γ2 are weighting factors.

The control signal consists of the values for the speed

limits and the values for the travel times that should be shown

on the VMS. The MPC method can handle hard constraints,

and so minimum and maximum values for the speed limits

can be taken into account. Also a maximum length for the

queues at the origins can be guaranteed.
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Fig. 2. Layout of the network

VI. CASE STUDY

We will use a simple case study to show the effects of

the integrated MPC method. We have selected a network

with two possible routes, see Figure 2. A three-lane freeway

splits into a one-lane freeway and a two-lane freeway, where

the two-lane freeway is longer than the one-lane freeway.

Later the two freeways join each other again in a three-lane

freeway. The shortest route with one lane is route 1, the

longest route with two lanes is route 2. The VMS is located

at the splitting node, and shows travel times for both routes.

Speed limits can be applied on both routes.

The traffic scenario is chosen such that all three density

groups appear, and that the highest density results in a

congestion at the shortest route. The traffic demand varies in

discrete steps from 2000 veh/h, to 4000 veh/h, to 8500 veh/h,

and back to 4000 veh/h and 2000 veh/h. As traffic model we

have used the METANET model, and for the route choice the

model described in Section III. In this model the probability

that the shortest route is also the best selection is very large,

and so we assume this probability is one: P (S1|R1) = 1.

In the same way we assume that selecting the longest route

is not very likely, so we select P (S2|R1) = 0. With the

assumed values, (2) can be simplified to:

P (S1|low) = P (R1|low) + P (S1|EQ)P (EQ|low)

For the MPC controller we have selected Np = 10 and

Tc = 1 minute. Because the day-to-day learning is also an

important aspect of the model, each of the simulations is

repeated 100 successive days.

The first simulation shows the performance of the route

choice model. Figure 3 shows the development of the pre-

ferred turning rate toward route 1, for each of the three

density groups, from day 1 to day 100. As starting value

for all turning rates we have selected 0.5. The solid line

represents the turning rates for low density situations. At low

densities it is logical that the shorter but smaller route is the

fastest, and indeed, the turning rate towards route 1 increases

over the days. The dashed line represents the turning rate for

medium density conditions. As the density on the shortest

route has become a little higher, the travel time on this route

is increased. Both routes have nearly the same travel time,

resulting in a turning rate of 0.45. Finally, the dotted line

shows the turning rates for high density conditions. Route
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Fig. 4. Evolution of the average travel times

1 is congested, and so more drivers select the second route

and the turning rate towards route 1 decreases.

Figure 4 shows the average travel time for each day. While

the drivers are still learning, the travel times on both routes

are high. After 17 days the drivers have selected the best

routes, and the travel times reach a more or less stable value.

The two mean travel times are not exactly equal. This is

because some day-to-day changes still occur, and because

the drivers do not change their route when the difference in

travel times is small.

The TTS in the network is 761.1 veh·h on the first day,

and 546.7 veh·h on the last day. This shows that the drivers

learn to select a route that leads to a lower cost.

The second simulation is done with variable speed limits

used as an incident detection or warning system (as they

are currently often used in, e.g., The Netherlands, in order

to slow down traffic upstream of a congestion). This works

as follows. When the speed in a segment drops below 40

km/h the speed limit in this segment is set on 50 km/h and

the speed limit in the upstream segment on 70 km/h. When

the speed increases above 50 km/h, the speed limits are no

longer active. On the VMS instantaneous travel times are

shown, mainly to inform the drivers.

In Figure 6 it can be seen that with this method the

constant values of the travel times are reached within 12

days, and the maximum mean travel time stays lower. But

the turning rates, shown in Figure 5 keep varying more than

without control. This is due to the fact that more drivers

switch route based on the given information.

The TTS on the first day is 512.3 veh·h, and on the last

day it is 542.1 veh·h. This shows that many drivers react on

the provided information the first day, but that they do not
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Fig. 5. Turning rates with variable speed limits as incident detection tool
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Fig. 6. Travel times with variable speed limits as incident detection tool

experience the same travel time as presented on the VMS.

As a result, their belief in the information decreases and

they start to neglect the information, which leads to nearly

the same traffic assignment as without control.

The last simulation shows the effect of the MPC method

described in this paper. Figures 7 and 8 show the results.

The TTS on the last day is 533.5 veh·h, which is only an

improvement of 3% compared to no control, and of 2% to

the method with variable speed limits as incident detection

tool. A contribution of the developed MPC based method

can be seen in the first 10 to 15 days. The high peak in

average travel times is prevented, showing that the drivers

learn faster what the best route is. It can also be seen that

during the next days a more stable situation occurs, there

are less fluctuations in travel times, making the routes more

reliable. A side effect is that more drivers use the first route,

which is shorter in distance and thus leads to less vehicle

kilometers.
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VII. CONCLUSION

Traffic control on freeways is often done with ramp

metering or speed limits. Information is only used to inform

the drivers about the current state of the network. In this

paper we have considered the use of information to improve

the performance of the network. We have developed an

integrated control method using variable message signs with

travel time information, and variable speed limits or other

‘hard’ control measures. The integrated control method uses

a prediction model to predict the traffic over a specified

period, and optimizes the control signals for this period.

We have presented a probability-based route choice model

which described the day-to-day as well as the within-day

route choice. We have also described the reaction on the

control methods.

In a simple case study we have illustrated the performance

of the route choice model, and compared the integrated MPC

control method with currently used control methods. This

resulted in an improvement of 3%, with as main results more

stable travel times and avoidance of peaks caused by drivers

that are unfamiliar with the network.

Future research will focus on including urban roads into

the system. Validation and calibration of the model, and

robustness tests of the controller will be done. After these a

real-life case study can be performed. Furthermore, we will

investigate the scalability of the method for larger networks,

and the possibilities to include other control measures.
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