
Delft University of Technology
Delft Center for Systems and Control

Technical report 05-019

Learning and coordination in dynamic
multiagent systems∗

L. Buşoniu, B. De Schutter, and R. Babuška

October 2005

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/05_019.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/05_019.html

Delft University of Technology

Delft Center for Systems and Control

Interactive Collaborative Information Systems

Collaborative Decision Making

Technical report 05-019

Learning and Coordination in

Dynamic Multiagent Systems

L. Buşoniu, B. De Schutter, and R. Babuška

October 2005

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.51.19 (secretary)
fax: +31-15-278.66.79
URL: http://www.dcsc.tudelft.nl

Learning and Coordination in

Dynamic Multiagent Systems

L. Buşoniu, B. De Schutter, and R. Babuška

October 2005

Contents

List of Figures v

List of Tables vii

List of Symbols ix

List of Abbreviations xiii

1 Introduction 1

1.1 Multiagent systems and adaptive learning . 1

1.2 Theoretical framework . 3

1.2.1 Communication . 8

1.2.2 Agent roles . 10

1.2.3 Credit assignment . 11

1.3 Taxonomy . 11

1.3.1 Agent-related dimensions . 11

1.3.2 Environment-related dimensions . 13

1.4 Examples . 15

1.4.1 Conventional control . 15

1.4.2 Model-reference adaptive control . 17

1.4.3 A team model . 18

2 Multiagent reinforcement learning 21

2.1 Introduction . 21

2.2 The single-agent case . 22

2.2.1 Formal model . 22

2.2.2 Learning goal . 23

2.2.3 The Markov property . 24

2.2.4 Value functions and optimality . 24

2.2.5 The exploration issue . 26

2.2.6 Solution techniques . 28

2.3 The multiagent case . 35

2.3.1 Formal model . 36

2.3.2 Solution concepts . 38

2.3.3 Learning goal . 40

2.4 Single agent techniques in MA-RL . 41

2.5 Fully cooperative multiagent teams . 42

iii

2.6 General multiagent systems . 44
2.6.1 Stateless problems . 44
2.6.2 Multiple-state problems . 46

2.7 Adaptive techniques . 49
2.7.1 Parametric adaptation . 49
2.7.2 Structural adaptation . 51

2.8 Realistic RL . 52
2.9 Concluding remarks . 54

3 Multiagent learning: other methods 57
3.1 Evolutionary techniques . 57
3.2 Heuristic approaches . 60
3.3 Concluding remarks . 63

4 Coordination 65
4.1 Introduction . 65
4.2 Taxonomy . 66
4.3 Coordination frameworks . 67
4.4 Learning coordination . 70

4.4.1 Learning about other agents . 70
4.4.2 The value of coordination . 72

4.5 Social conventions . 73
4.6 Roles . 74
4.7 Coordination graphs . 77
4.8 Concluding remarks . 80

5 Applications domains 81
5.1 Introduction . 81
5.2 Robotic teams . 81
5.3 Distributed control . 84
5.4 Logistics . 85
5.5 Information systems . 85
5.6 Concluding remarks . 86

6 Conclusions 89
6.1 Research agenda . 91

Bibliography 93

iv

List of Figures

1.1 Schematic view of DMAS. 5
1.2 The conventional control scheme. 16
1.3 The model-reference adaptive control scheme. 17

2.1 The reinforcement learning model. 21

4.1 An example STEAM operator hierarchy. 68
4.2 Decision making with roles and social conventions. 74
4.3 An example coordination graph. 77
4.4 Decision making with roles and coordination graphs. 79

v

List of Tables

1.1 Correspondences between the COM-MTDP and the communicative DMAS elements 19

2.1 Correspondences between the MDP and the DMAS elements 23
2.2 Correspondences between the Markov game and the DMAS elements 37

3.1 Correspondences between the L-ALLIANCE and DMAS elements 61
3.2 Correspondences between the load balancing model and the DMAS elements . . 63

4.1 Correspondences between the social conventions emergence framework and the
DMAS elements . 68

4.2 Correspondences between the STEAM and the communicative DMAS elements . 69

vii

List of Symbols

Common notations

· generic placeholder for (list of) argument(s)

v joint variable collected from several agents

vT vector transpose

[v1, v2] vector concatenation

〈v1, v2〉 tuple

(v1, v2) joint collection of strategies or policies

f deterministic variant of originally stochastic function

f̃ parameterized function

v′ next value

ṽ alternate variable

v∗ optimal value

v̂ estimated value

P (·) probability

P (· | ·) conditional probability

Π(·) probability distribution over argument set

Operators

‖·‖ vector norm

|·| set cardinality

E {·} expectation

Ef {·} expectation conditioned on function

Ef {· | ·} expectation conditioned on function and initial condition

×· product over sets

d· discrete difference

dn· discrete nth order difference

Dynamic agents and multiagent systems

k, l discrete time index

A set of agents

ix

a agent variable

i, j agent index; agent with index i (j)

n number of agents in the system

X environment state space

x environment state variable

f environment dynamics

S agent internal state space

s agent internal state variable

S agent internal state space adaptation mapping

p agent internal dynamics

θ parameters vector for parameterized agent internal dynamics

Θ parameter space for parameterized agent internal dynamics

P adaptation mapping for agent internal dynamics

Y agent observation space

y agent observation variable

ω agent observation distribution

U agent action space

u agent action variable

h agent policy

U joint action space

u joint action variable

h joint agent policy

φ parameters vector for parameterized agent policy

Φ parameter space for parameterized agent policy

H agent policy adaptation mapping

Communication

Xc communication channel state space

Xe state space of the environment excluding the communication
channel

xc communication channel state variable

xe state variable for the environment excluding the communica-
tion channel

f c communication channel dynamics

xe dynamics of the environment excluding the communication
channel

M set of agent messages

mrcv message received by the agent

msnd message sent by the agent

m joint message sent by the agents

x

Y e agent’s space of environment observations

ye agent’s environment observation variable

ωe agent’s environment observation distribution

ωrcv agent’s message receival distribution

U e agent domain-level action space

ue agent domain-level action

he agent domain-level policy

hsnd agent message sending policy

U e joint domain-level action space

ue joint domain-level action

pe agent domain-level observations handling dynamics

prcv agent messages handling dynamics

Roles

U r set of agent roles

Uo space of ordinary agent actions

ur agent role

uo agent ordinary action

hr agent role choice policy

ho agent ordinary action choice policy

C role constraints function

Reinforcement learning

ρ reward function

r reward variable

V state value function

Q action value function

E eligibility trace

γ discount factor

α learning rate

λ recency factor

ε exploration probability

σ agent strategy

σ joint strategy

σ−i reduced strategy profile excluding agent i

xi

List of Abbreviations

MAS multiagent system

DMAS dynamic multiagent system

AL-MAS adaptive learning multiagent system

RL reinforcement learning

MA-RL multiagent reinforcement learning

MDP Markov decision process

MMDP multiagent Markov decision process

COM-MTDP communicative Markov team decision problem

ICIS Interactive Collaborative Information Systems

SARSA state-action, reward-state-action

WoLF-PHC Win-or-Learn-Fast policy hill-climbing

L-ALLIANCE Learning ALLIANCE

STEAM Shell for TEAMwork

xiii

Chapter 1

Introduction

1.1 Multiagent systems and adaptive learning

An agent is, informally, any entity that can perceive its environment through sensors and
act upon it through actuators (Russell and Norvig, 2003). This definition is very broad. It
includes robotic agents, that perceive their environment through cameras and distance sensors,
and act upon it with motors and grippers. It includes process controllers, that use sensors to
measure the outputs of the process, which in this case is the environment, and act upon it
with command signals. It even includes humans, perceiving the world with their five senses
and acting upon it using their motor and verbal skills.

A multiagent system (MAS) is, informally, a collection of agents that interact with each
other (Vlassis, 2003). Examples of MAS involving the three types of agents mentioned above
are, in order, teams of robots, distributed networks of controllers, and social groups of humans.

We formalize these, and the other notions that we use in this foreword, in Section 1.2.
For now, we focus on motivating MAS and learning in MAS. Specifically, we are interested in
synthetic MAS such as the robotic teams and controller networks exemplified above.

MAS are useful in the modeling, analysis and design of systems where control is distributed
among several autonomous decision makers. MAS can arise naturally as the most viable
solution of representing the considered problem. For instance, they are the most natural way
of looking at distributed systems such as the robotic teams or controller networks above. A
centralized perspective on such systems typically does not help, as it ignores the interactions
between the autonomous decision makers, interactions that can either help or damage, perhaps
up to the point of rendering it impossible, the activity of the system as a whole.

MAS can also provide an alternative perspective on systems that are originally represented
in other ways. For instance, resource allocation can be seen as a centralized decision-making
problem, where a single, central scheduler assigns resources to users. It can, however, also be
seen as a set of autonomous, proactive users, that compete to gain access to the resources.
The latter perspective can provide valuable insight into the problem and its possible solutions.

MAS offer the following potential advantages over centralized systems (Stone and Veloso,
2000):

• Speed-up of the system activity, due to parallel computation.

• Robustness and reliability, when the capabilities of the agents overlap. The system
resists to failures in one or several agents, by having other agents take over the activity
of the faulty ones.

1

INTRODUCTION

• Scalability and flexibility. In principle, since MAS are inherently modular, adding and
removing agents to the system should be easy. In this way, the system could adapt to a
changing task on-the-fly, without ever needing to shutdown or be redesigned.

• Ease of design, development, and maintenance. This also follows from the inherent
modularity of the MAS.

It should be noted at this point that MAS are not a panacea. The potential benefits
described above should be carefully weighed with the simplicity of a centralized solution,
considering the characteristics of the task. For instance, a task where parallel, distributed
control is not possible is unlikely to benefit from a MAS solution (Stone and Veloso, 2000).

Learning is, informally, the acquisition and incorporation of knowledge and skills by an
agent, leading to an improvement in the agent’s performance. Learning is necessary in MAS

because many times the environment of the MAS is large, complex, open and time-varying
(Sen and Weiss, 1999). The first two properties imply that designing a good agent behaviour,
that takes into consideration all the possible circumstances the agents might encounter, is
a very difficult, if not impossible, undertaking. The second two properties, openness and
variation over time, imply that even if such a behaviour were somehow designed, it would
quickly become obsolete as the environment changes.

This behavioural improvement view is the focus of this survey. A complementary view, that
pursues insight into multiagent learning as opposed to traditional, isolated machine learning,
is also possible. Such insight could lead to novel machine learning techniques and algorithms
(Sen and Weiss, 1999).

Why, then, is adaptation necessary on top of learning? The reason stems from the fact
that, due to difficulties in dealing with open and time-varying environments, most multiagent
learning algorithms are designed for unchanging environments. They typically involve some
fixed learning structures that are updated by a set of rules involving some fixed or scheduled
parameters. We call such algorithms “static” learning.

By allowing the learning parameters or structures of the static algorithms to adapt, the
learning processes of the agents should be able to regain their ability of handling open and
time-varying environments.

Note that adaptive learning is not a radically different process from learning. It can be
viewed as a kind of “meta-learning” – that is, a special case of “learning how to learn”.

This review is organized in the following way. The rest of this chapter is dedicated to
formalizing the discussion above. First, we introduce a consistent framework focusing on the
dynamic nature of the learning agents, and adding other important elements such as inter-
agent communication. We then present a taxonomy of MAS, formalized using this framework.
We close the chapter by presenting some examples of single-agent and multiagent control, and
showing how they fit into our framework.

Chapter 2 deals with the application of reinforcement learning (RL) techniques to MAS.
We introduce the single-agent RL framework and solutions, and continue with presenting their
extension to the multiagent case. We analyze a number of adaptive RL techniques, and close
the chapter with a detailed presentation of conclusions and research opportunities.

Chapter 3 briefly presents other methods of multiagent learning: evolutionary techniques,
and heuristic approaches.

2

1.2. THEORETICAL FRAMEWORK

Chapter 4 deals with the issue of coordination in MAS, focusing on its relationship with
learning. We review the most prominent coordination techniques encountered in the litera-
ture, focusing the discussion on learned variants of these techniques. We then outline some
promising research opportunities in multiagent coordination.

Chapter 5 reviews the relevant application domains of MAS, from the perspective of the
Interactive Collaborative Information Systems large-scale traffic incident scenario.

Chapter 6 concludes the review. It summarizes our main conclusions on the multiagent
learning and coordination techniques analyzed in the preceding chapters, and distils the iden-
tified research opportunities into a concise set of research questions.

1.2 Theoretical framework

We begin by defining the concepts of dynamic agent and dynamic MAS. Our goal is to isolate
the elements belonging to the agents’ “mind” (such as reasoning and learning processes and
the data they rely on), for the purpose of analyzing them. We also emphasize the dynamic
nature of these elements. We make the definition general so as to encompass as many mod-
els as possible from the variety used by the learning and coordination algorithms addressed
throughout the review.

The two concepts are tightly interrelated: the agents are embedded in the multiagent
world, which in its turn is influenced by the decisions of the agents.

Definition 1.1 A dynamic agent is a tuple 〈S, Y, U, p, h, s0〉, where:

• S is the internal state space of the agent.

• Y is the observation space of the agent.

• U is the action space available to the agent.

• p : S × Y → S is the agent transition function, describing how the agent evolves as a
result of its observations of the environment.

• h : S × Y ×U → [0, 1] is the decision probability distribution of the agent, describing its
behaviour.

• s0 is the agent’s initial state.

Definition 1.2 A dynamic multiagent system (DMAS) is a tuple 〈A,X, f, {ωi}i∈A , x0〉, where:

• A is the set of dynamic agents, n = |A| being their number.

• X is the environment state space.

• f : X × U × X → [0, 1], with U = ×i∈AUi the joint action space, is the environment
transition probability distribution, describing how the environment evolves as a result of
the agents’ actions.

• ωi : X × Yi → [0, 1], i ∈ A are the observation probability distributions, describing how
the state of the environment is translated into agent observations.

• x0 is the initial environment state.

3

INTRODUCTION

We denote an agent in the set A simply by its index i (hence the notation “i ∈ A”). We
also indicate that an element belongs to agent i by subscript index i (e.g., Si).

In our interpretation, the agent is in complete control of its state space Si, dynamics pi
and behaviour hi. These are part of the agent’s “mind”. The observation distribution, ωi, is
not. Strictly speaking, it is a part of the environment. The observation space Yi and the set of
available actions Ui are the agent’s “interface” with the environment. Together with ωi, they
also can be considered, in a sense, a part of the agent’s sensory and actuating “body”, with
which it is endowed and that it cannot change. Moreover, the observation function ωi is not
known by the agent; all the agents sees are the results of applying this function to the state
of the environment. The observation functions, though part of the environment, are distinct
for each agent; each agent sees the world “through its own eyes”.

The environment state, observation, internal state and action spaces may be continuous or
discrete, and in the latter case infinite or finite. The spectra of observations Yi the agents may
experience and the sets of actions Ui available to the agents may depend on the state of the
environment. E.g., if a robotic agent moves along a very narrow straight underground tunnel,
it cannot observe the position of the sun, nor can it move left or right. However, to prevent
the notation from becoming cluttered, the definition above does not capture this dependence.

We work with discrete time, as virtually all learning and coordination algorithms work on
a per iteration basis. We denote the current value of the discrete time variable by k. For
readability, wherever the context clearly indicates that the exposition refers to the “current”
time step, we may omit the time variable.

We denote the environment state value by x and agent i’s action by ui. The joint agent
action is defined by u = [u1, . . . , un]

T,u ∈ U .

We denote the probability that agent i observes yi,k ∈ Yi at time step k when the envi-
ronment state is xk by P (yi,k |xk) = ωi(xk, yi,k). The definition allows for incomplete and/or
uncertain observations. When the observations are deterministic, the observation probability
distribution changes into a function ωi : X → Yi. If the agent is viewed as a controller of the
environment, then its observation may also be interpreted as its input, or control feedback.

We denote the fact that agent i changes its internal state to si,k+1 as a result of observing
yi,k in state si,k, by si,k+1 = pi(si,k, yi,k).

We denote the probability of agent i taking action ui,k at step k, given its updated internal
state si,k+1 and its observation yi,k, by P (ui,k | si,k+1, yi,k) = hi(si,k+1, yi,k, ui,k). We refer to
hi as the policy of the agent. The model thus assumes stochastic policies in the general case.
When the policy is deterministic, it changes into a function hi : Si × Yi → Ui. If the agent is
interpreted as a controller of the environment, then its action may also be interpreted as its
command output.

At first sight, it appears strange that the value of the updated agent state si,k+1 is used
in the action choice. The reason is that it is essential for the agent to take into account and
adapt to the environment’s state as soon as it can be observed. Because of this, the first
thing that happens after the agent receives its observation is the update of its internal state:
si,k+1 = pi(si,k, yi,k). Hence, the notation si,k+1 is conventional and should be understood as
an “updated” value rather than a “next” value that, intuitively, cannot exist yet.

We denote the probability of the environment changing its state to xk+1 ∈ X as a result
of the application of joint action uk in state xk ∈ X at time step k, by P (xk+1 |uk, xk) =
f(xk,uk, xk+1). The definition allows for stochastic environment evolution. When the en-
vironment evolution is deterministic, the transition probability distribution changes into a
function f : X ×U → X.

4

1.2. THEORETICAL FRAMEWORK

With these notations, the description of the interaction between the agents and their
environment is given in Algorithm 1.1. We use deterministic functions to keep the notation
simple. We also use assignments instead of equal signs where statements are operational rather
than declarative. All the system components have the same clock – i.e., evolve along the same
discrete time axis.

Algorithm 1.1 DMAS evolution

1: k ← 0
2: loop
3: yi,k ← ωi(xk), ∀i ∈ A ⊲ observe state
4: si,k+1 ← pi(si,k, yi,k), ∀i ∈ A ⊲ evolve
5: ui,k ← hi(si,k+1, yi,k), ∀i ∈ A ⊲ take action
6: xk+1 ← f(xk,uk), where uk = [u1,k, . . . , un,k]

T ⊲ environment evolves
7: k ← k + 1
8: end loop

Figure 1.1 presents a schematic view over a dynamic multiagent system. The operator z−1

delays the discrete signal with one time step.

x

ω1

ωn

h1

f

an
✛

✲

✛

✲
✲ ✲

✲ ✲

✲

✲

✲

✲

z−1

z−1

p1

y1

a1

yn

s1
u1

un

x
u

Figure 1.1: Schematic view of DMAS.

The evolution of the DMAS world can also be interpreted in the following way. The environ-
ment and agent states are components of a global state xk = [xk, s1,k, . . . , sn,k]

T. The agents
choose actions as their decision making functions dictate, ui,k = hi(si,k+1, yi,k). The world
changes state as described by a global transition function, xk+1 = f(xk,uk), and then the
cycle repeats. The observation function together with the environment and internal transition
functions are then all incorporated into the global transition function f . This is a very general
interpretation, but it does not provide the explicit separation between the agents’ “mind” and
their environment, that we are interested in.

We define the concepts of a rational agent and learning agent within the introduced frame-
work.

Definition 1.3 A rational agent is a dynamic agent that continuously strives to optimize a
performance measure expressed in terms of its observations.

5

INTRODUCTION

This performance measure encodes, or represents, the goal of the agent. The performance
measure is expressed in terms of observations because that is the only way the agent can
access the environment’s state. The goal of the agent can be (and most of the times will be)
originally expressed in terms of the environment’s state, but still the agent can only rely on
its observations to estimate this state.

Definition 1.4 A learning agent is a rational agent that makes use of its internal state s and
dynamics p in an attempt to improve its ability of optimizing the aforementioned performance
measure.

The meaning of the internal state and dynamics of the agent in the context of learning is the
following: the internal state si incorporates the agent’s learned knowledge, and the dynamics
pi include the learning processes of the agent (i is the agent’s index). These processes strive to
improve the knowledge of the agent, and through it, its decision making abilities. Historical
data can be stored into the agent’s internal state via the agent dynamics. The internal state
is also the structure where any prior knowledge should be stored. Among other things, the
dynamics pi can also perform predictions to help with action selection. The result of these
predictions are saved onto the internal state and can be “read” by the agent policy.

Many models employed by multiagent learning algorithms do not explicitly account for the
internal state of the agents, but instead consider the agent learning processes separate from the
environment evolution processes and give them access to certain learning data structures. Our
model integrates these learning structures into the generic concept of internal agent state and
allows the agents and the environment to flow together in their evolution. Thus, the dynamic
nature of a learning agent clearly stands out. An agent can, however, also be dynamic without
necessarily learning.

Definition 1.5 A learning multiagent system is a DMAS within which at least one of the
agents is a learning agent.

By allowing the agent to alter the elements it has control over – its internal state space,
transition function, and policy – we obtain an adaptive agent.

Definition 1.6 An adaptive agent is a tuple 〈S0, Y, U, p0, ω, h0, s0,S,P,H〉, where:

• Y, U, ω have the same meaning as in Definition 1.1.

• S is the internal state adaptation mapping of the agent. This mapping specifies how the
internal state space of the agent adapts at each step as a result of the agent’s internal
state and observation: Sk+1 = S(Sk, sk, yk). Thus:

• Sk, k ≥ 0 is the adapting internal state space of the agent, with S0 being the initial state
space.

• P is the transition adaptation mapping of the agent. This mapping specifies how the
transition function of the agent adapts at each step as a result of the agent’s internal
state and observation: pk+1 = P(pk, sk, yk). Thus:

• pk+1 : Sk × Y → Sk+1, k ≥ 0 is the adapting transition function of the agent, with
p0 : S0 × Y → S0 being the initial transition function.

6

1.2. THEORETICAL FRAMEWORK

• H is the policy adaptation mapping of the agent. This mapping specifies how the decision
distribution probability of the agent adapts at each step as a result of the agent’s internal
state: hk+1 = H(hk, sk, yk). Thus:

• hk : Sk × Y × U → [0, 1], k ≥ 0 is the adapting decision probability distribution of the
agent, with h0 being the initial distribution.

An adaptive agent is an enhancement of a dynamic agent. An adaptive agent that is also
learning is able at each time step not only to use its dynamics to improve its knowledge, but
also to alter the structure of this knowledge and the way its learning algorithm and policy
work. We call such an agent an adaptive learning agent.

Definition 1.7 An adaptive learning multiagent system (AL-MAS) is a DMAS within which
at least one of the agents is an adaptive learning agent.

Algorithm 1.2 describes the interaction between the agents and their environment in an
AL-MAS. We use deterministic functions and assume all agents are adaptive to keep the
notation simple. Prior to doing anything else, the agent adapts and then learns, hence the
presence of the incremented time indices where adaptive elements are used. As explained
before, these incremented indices should be interpreted as “updated” rather than “next”
elements.

Algorithm 1.2 AL-MAS evolution

1: k ← 0
2: loop
3: yi,k ← ωi(xk), ∀i ∈ A ⊲ observe state
4: Si,k+1 ← Si(Si,k, si,k, yi,k), ∀i ∈ A
5: pi,k+1 ← Pi(pi,k, si,k, yi,k), ∀i ∈ A ⊲ adapt
6: hi,k+1 ← Hi(hi,k, si,k, yi,k), ∀i ∈ A
7: si,k+1 ← pi,k+1(si,k, yi,k), ∀i ∈ A ⊲ learn
8: ui,k ← hi,k+1(si,k+1, yi,k), ∀i ∈ A ⊲ decide
9: xk+1 ← f(xk,uk), where uk = [u1,k, . . . , un,k]

T ⊲ environment evolves
10: k ← k + 1
11: end loop

Note that we do not require all the agents in an (adaptive) learning DMAS to be (adaptive)
learning agents. This allows for greater flexibility. We also do not forbid adaptation in non-
learning agents.

One of the most important reasons for adaptation in an agent is keeping pace with a time-
varying environment: f = fk and / or ωi = ωi,k. This happens when the DMAS is not closed,
but interacts with the outside world: e.g., objects might be inserted or removed in a spatial
domain, or temperature drifts might affect parameters in the process controlled by the agents.

We can distinguish two special, very interesting cases of adaptation. The first occurs when
the agent adapts some parameters of its learning and / or policy function; the second, when it
adapts its state space.

Definition 1.8 Parametric adaptation is the process of adaptation occurring within an adap-
tive learning agent that:

7

INTRODUCTION

1. uses parametric representations for its learning and policy functions: pk(·) = p̃(·, θk), p̃ :
S × Y × Θ → S, hk(·) = h̃(·, φk), h̃ : S × Y × U × Φ → [0, 1], k ≥ 0, where θk ∈ Θ and
φk ∈ Φ are parameter vectors with some given initial values θ0 and φ0.

2. adapts the parameter vectors instead of the functions themselves: θk+1 = P̃(θk, sk, yk),
φk+1 = H̃(φk, sk, yk).

Definition 1.9 Structural adaptation is the process of adaptation occurring within an adap-
tive learning agent that makes use of the state space adaptation function S to adapt its internal
state space, and of the transition and policy adaptation mappings P and H to allow its transi-
tion and policy functions to accommodate the alterations in the structure of the internal state
space.

These definitions do not limit the adaptation behaviour of the agent. For instance, an
agent using parametric adaptation may also use structural adaptation, and viceversa. The
most restrictive type of structural adaptation is where P and H are used only to accommodate
the alterations caused by S, such as changes in dimensionality and constraints of the state
space. The most restrictive type of parametric adaptation is where adaptation of the state
space is forbidden. A broader type of adaptation of which parametric adaptation is a special
case can be imagined, where the learning and policy functions are directly adapted but the
state space may or may not be adapted.

It is important to note that adaptive learning can always be seen as a static learning process
over an augmented static agent state space S̃. E.g., for parametric adaptation, this augmented
state space incorporates the parameter spaces Θ, Φ, and the augmented state variable is s̃k =
[sk, θk, φk]

T. For structural adaptation, the augmented state space incorporates the structural
parameters of the adapting state space Sk, such as number of dimensions, component ranges,
discretization grain.

1.2.1 Communication

We introduce a special case of DMAS to deal with communication. Throughout the following,
when stating “environment” we mean “environment excluding the communication channel”.

Definition 1.10 A communicative multiagent system without interference is a DMAS 〈A,X,
f, x0〉 within which:

(i) X = Xe×Xc, where Xe is the state space of the environment, and Xc is the state space
of the communication channel. Thus, ∀x ∈ X,x = [xe, xc]T, with xe ∈ Xe, xc ∈ Xc.

(ii) ∀i ∈ A, Yi = Y e
i ×Mi, where Y

e
i is the space of environment observations, and Mi is the

message space of agent i. Thus, ∀yi ∈ Yi, yi = [yei ,m
rcv
i]T, with yi ∈ Yi,m

rcv
i ∈Mi. The

variable mrcv
i is called the received message.

(iii) ∀i ∈ A, there exist two distributions ωe
i : xe × Y e

i → [0, 1] and ωrcv
i : Xc ×Mi → [0, 1],

such that ∀x = [xe, xc]T ∈ X, yi = [yei ,m
rcv
i]T ∈ Yi, P (yi |x) = ωi(x, yi) iff P (yei |x

e) =
ωe
i (x

e, yei) and P (mrcv
i |x

c) = ωrcv
i (xc,mrcv

i). The distribution ωe
i is the environment

observation distribution, whereas ωrcv
i is the message receival distribution.

(iv) ∀i ∈ A,Ui = U e
i ×Mi, where U e

i is the space of domain-level (environment) actions,
and Mi is the message space of agent i. Thus, ∀ui ∈ Ui, ui = [uei ,m

snd
i]T, with ui ∈

Ui,m
snd
i ∈Mi. The variable msnd

i is called the sent message.

8

1.2. THEORETICAL FRAMEWORK

(v) ∀i ∈ A, there exist a distribution hei : Si×U
e
i → [0, 1] and a function hsndi : Si →Mi, such

that ∀s ∈ S, ui = [uei ,m
snd
i]T ∈ Ui, P (ui | si) = hi(si, ui) iff P (uei | si) = hei (si, u

e
i) and

msnd
i = hsndi (si). The distribution hei is the domain-level (environment) policy, whereas

the function hsndi is the message sending policy.

(vi) Defining U e = ×i∈AU
e
i , ue = [ue1, . . . , u

e
n]

T, M = ×i∈AMi, m = [msnd
1 , . . . ,msnd

n]T,
there exist two distributions f e : Xe × U e × Xe → [0, 1] and f c : Xc ×M × Xc →
[0, 1], such that ∀x = [xe, xc]T ∈ X,x′ = [xe′, xc′]T ∈ X,u = [ue1,m1, . . . , u

e
n,mn]

T ∈
U , P (x′ |x,u) = f(x,u, x′) iff P (xe′ |xe,ue) = f e(xe,ue, xe′) and P (xc′ |xc,m) =
f c(xc,m, xc′). The distribution f e is the environment dynamics, whereas f c is the com-
munication channel transmission dynamics.

So, we assume an explicit communication channel Xc embedded in the world (i), whose
state is “read” by the message receival distribution ωrcv

i at each time step to produce a message
(iii). This message becomes a distinct part of the agent’s observation, usable by the agent’s
internal processes pi (ii). Similarly, at each time step the agent is given the opportunity to
create and send a message, besides the usual action applied to the environment (v). The
message is a distinct part of the agent’s output, and the set of messages that can be sent and
received are identical (iv).

The definition ensures that there are no interferences between the communication chan-
nel and the environment: neither during sending and transmission, as the evolutions of the
environment and of the communication channel are independent (vi); nor during receival, as
the environment observation distribution and the message receival distribution are indepen-
dent (iii). Hence, the characterization of the communication as “without interference”. By
removing these requirements, we allow the environment to interfere with the communication,
but the analysis becomes more difficult and the distinction between the communicative and
general DMAS becomes blurred.

Note however that we allow both the message transmission and receival to be noisy in the
general case, since both f c and ωrcv

i are stochastic.

The complex Definition 1.10, intended to clearly expose the way communication emerges
within the natural DMAS framework, can be taken further. By taking advantage of the as-
sumption of no interference and separating the agents’ dynamics in two parts, one that handles
messages, prcvi : Si ×Mi → Si, and another handling observations, pei : Si × Y

e
i → Si, we can

distinguish an independent communication process running in the DMAS, as described by
Algorithm 1.3. The algorithm assumes noise-free communication (i.e., deterministic receival
functions and channel dynamics).

Algorithm 1.3 Communication in an interference-free communicative DMAS

1: loop
2: mrcv

i ← ωrcv
i (xc) ∀i ∈ A ⊲ read channel for input message

3: si ← prcvi (si,m
rcv
i), ∀i ∈ A ⊲ process input message

4: msnd
i ← hsndi (si), ∀i ∈ A ⊲ create and send output message

5: xc ← f
c
(xc,m), where m = [msnd

1 , . . . ,msnd
n]T ⊲ channel processes messages

6: end loop

An important observation is that communication is not instantaneous. There is a delay of
at least one time step between the placing of a message onto the communication channel and

9

INTRODUCTION

its receival by the agents. This is because in our model, all interactions must pass through
the environment. However, if the processes in Algorithm 1.1 and Algorithm 1.3 take place
simultaneously with different clocks, then the communication process can be made faster
than the environmental interaction process, and in the limiting case communication can be
considered instantaneous.

A agent using the described communication mechanism can also be adaptive. The exten-
sion is intuitively straightforward, and involves endowing the agent with the possibility to alter
its communication policy. Because it is part of the observation space, however, the available
set of messages must remain constant.

1.2.2 Agent roles

Informally, a role is a restriction imposed on the space of available domain-level actions for
the agent taking that role. The explicit representation of roles leads to a special case of DMAS.
We extend from the definition of a plain DMAS, but we do not introduce conflicts between
communication and roles, so that a DMAS can have either of the two mechanisms or both of
them. This definition was inspired by Jung et al. (2002).

Definition 1.11 A multiagent system with roles is a tuple 〈A,X, f, U r, x0〉 where 〈A,X, f, x0〉
is a DMAS and:

• U r is a set of available roles.

• The action space of each agent i ∈ A is of the form Ui = U r
i ∪ U

o
i , with U

r
i ∈ U

r. Here,
U r
i are the roles available to agent i, and Uo

i is the space of ordinary actions available to
agent i.

• The policy of each agent i ∈ A can be decomposed in two parts:

– a role choice policy hri : Si×Yi×U
r
i → [0, 1], indicating how the agent chooses roles

given its internal state and observation.

– the time-varying ordinary action choice policy hoi,k : Si×Yi×Ci(u
r
i,k)→ [0, 1], with

Ci : U
r
i → Uo

i the role constraints function and uri,k the role chosen at step k by hri
given si,k and yi,k.

In the interpretation of this definition, roles are something the agents choose to employ,
rather than something that is imposed to them. Rational agents will therefore choose to use
roles because it benefits their performance. At each time step, the agent decides whether to
maintain its current role or change it, and then decides on an ordinary action from the set
indicated by the role via the constraint function Ci.

Roles will typically be used in cooperative multiagent systems. The set of roles is a
characteristic of the multiagent system, but each agent uses its own subset U r

i of this set. The
interpretation of the roles (the constraints imposed on the action space) is also particular to
each agent. Typically, however, agents will have some information on the roles used by other
agents, and perhaps even on the constraints imposed by the roles on these agents’ actions.

Since it has full control over its role choice policy and its role constraints, an adaptive agent
can, in principle, adapt both these elements. However, due to the fact that other agents may
have information on these elements and may rely on that information in making decisions,
adaptation in the role choice and constraints area should be done cautiously.

10

1.3. TAXONOMY

1.2.3 The credit-assignment problem

The credit-assignment problem is the problem of determining the DMAS activities that were
responsible for a detected change in the performance of an agent. This problem has two
aspects: structural, and temporal credit assignment.

The structural credit-assignment problem is the problem of an agent determining the com-
ponents of the DMAS that were responsible for a detected change in its performance. Structural
credit assignment is performed at two levels: inter-agent, when the agent tries to determine
the size of its own contribution to the performance change relative to the contribution of
the others; and intra-agent, when the agent subsequently distributes this partial contribution
among its internal components responsible with decision-making (Sen and Weiss, 1999).

The temporal credit-assignment problem arises because the DMAS environment is dynamic,
and sometimes (in fact, most of the times) the effects of an action prolong far into the future.
E.g., if a robotic agent goes right at a junction, passing into a straight corridor that leads it to
its destination without any other turns, the robot has to somehow determine that the decision
of going right earlier at the junction enabled it to reach its destination. Formally, then, the
temporal credit-assignment problem is the problem of determining which of the past actions
of an agent were responsible for a detected change in its performance.

1.3 Taxonomy of multiagent systems

Using the framework introduced in Section 1.2, we describe here several taxonomy dimensions
for multiagent systems. We select the dimensions on the importance of which researchers agree,
and that bear relevance in this review. Wherever the taxonomy categories impose restrictions
with respect to the adaptivity of the agents, these restrictions are explicitly mentioned.

1.3.1 Agent-related dimensions

Degree of heterogeneity

A homogeneous dynamic multiagent system is a DMAS 〈A,X, f, x0〉 where ∀i, j ∈ A, Si = Sj ,
Yi = Yj , Ui = Uj , pi ≡ pj , and hi ≡ hj .

Note that we do not require the observation distributions nor the initial states of the agents
to be identical. The former allows for local agent perspectives and the latter for different initial
knowledge. Thus, though homogeneous, the agents will not be identical and will gain different
knowledge during their lifetime.

A heterogeneous dynamic multiagent system is a DMAS for which at least one of the above
set of identities is not satisfied for at least one pair i, j ∈ A.

Both homogeneous and heterogeneous agents can be adaptive. An additional requirement
for homogeneous agents is that they should use the same internal state, transition and policy
adaptation mappings: Si ≡ Sj ,Pi ≡ Pj ,Hi ≡ Hj , ∀i, j ∈ A.

Compatibility of agent goals

A common goal MAS is one within which the agents strive to maximize a common performance
measure. Such a MAS is typically referred to as a multiagent team.

At the other end of the spectrum, the goal of any agent is completely opposite to the goals
of the other agents. This is a fully competitive setting.

11

INTRODUCTION

Intermediate situations exist, where the goals of the agents, without being completely
opposite, sometimes come into conflict. Many times, even a common goal may lead the
agents to partially conflicting secondary goals on the way to the solution (for example, taking
possession of a shared resource).

Inter-agent cooperation

A cooperative multiagent system is one within which the agents are willing to help other agents
obtain their goals. Self-interested agents, on the other hand, act only towards achieving their
own goals.

This dimension is strongly related to goals compatibility. Multiagent teams will always be
cooperative, whereas fully competitive agents will always be self-interested. In the grey area
in between, cooperation is optional.

An agent helping other agents achieving their goals, whatever these goals are, may cost the
agent temporary losses in its own performance, or it may not. On the long run, cooperation
must be beneficial, or a rational agent does not have the incentive to cooperate.

The simple situation where the agents share a common goal and their temporary perfor-
mance is never, at any time step, affected negatively by cooperation, is called fully cooperative.

Degree of control decentralization

When the actions of the all the agents are dictated by a single, central authority, we say that
the control is centralized. In this case, the multiagent system degenerates into a single agent.
Most of the control schemes in control engineering are centralized (see Section 1.4).

At the opposite end of the spectrum, the agents are the only arbiters of their own actions.
This is decentralized (or “distributed”) control. Decentralized control does not mean that an
agent cannot coordinate its actions with other agents; rather, it means that the agent is free
to choose whether and how to coordinate.

In between sits hierarchical control. In a hierarchical control scheme, agents retain part
of their autonomy. However, agents on higher levels in the hierarchy impose goals onto the
agents residing on lower levels. These lower-level agents are then bound to try realizing those
goals. Higher-level agents may also judge the quality of the actions of their subordinates and
offer them feedback in this respect. It is not necessary that there is a single top-level (“root”)
agent; several may exist.

We refer to hierarchical and decentralized control by the generic term of “distributed”
control.

Reactivity versus deliberation

A reactive agent is a tuple 〈Y, U, ω, h〉, where the policy is h : Y × U → [0, 1] and the other
elements have the same meaning as in Definition 1.1.

The above says that a reactive agent does not have an internal state, and takes actions
only on the basis of its observation.

For an agent to be deliberative, the literature typically requires that it uses its internal
dynamics to search through the space of available actions, predict their effects, and finally
choose an action on the basis of these predictions. This requirement is, however, not strictly
necessary for attaining a good performance, even for a learning agent. For instance, Q-learning
agents act in a reflex fashion on the basis of their Q-function (see Section 2.2), but update

12

1.3. TAXONOMY

this Q-function on the basis of feedback from the environment. Hence, we could argue that
since the Q-function encodes the experience of the agent – in effect, predictions on the results
of its actions – the Q-learning agent is, in a sense, deliberative.

Wee see then that a clear definition of a deliberative agent is difficult to give. Consequently,
the distinction between reactive and deliberative agents is not clear-cut. An intermediate
example could be a deliberative agent that uses reflexes to perform certain simple tasks.

1.3.2 Environment-related dimensions

Degree of communication

The communicative multiagent system has already been defined in Section 1.2, Definition 1.10.

We say a DMAS 〈A,X, f, x0〉 has no interference-free communication if there exist no sets
Xc, Mi, i ∈ A, distributions f

c, ωrcv
i , i ∈ A, and functions hsndi , i ∈ A such that the decompo-

sition in Definition 1.10 is possible.

By dropping the requirement of no interference, as explained in Section 1.2, the distinction
between communicative and non-communicative multiagent systems blurs. In this case, we
can look at the interaction between the communication channel dynamics f c and environment
dynamics f e in two ways. First, we can see it as an interference from the environment affecting
the channel. By taking another point of view that does not perform the separation between
the communication channel and the environment, we can look at communication as a process
of transmitting information indirectly by affecting the environment. This is the concept of
stigmergy. An example of stigmergy, for multiple robots performing a cleaning task, is one
of the robots passing over an area that has already been cleaned. The robot can infer that
another robot has passed through that area earlier, without any explicit communication taking
place.

Both communicating and non-communicating agents can be adaptive. The special char-
acteristics of the adaptation process for a communicating agent were described in Section 1.2.

Scope of the agent perspective

The agents in a DMAS 〈A,X, f, x0〉 have a common perspective if ∀i, j ∈ A,ωi ≡ ωj ≡ ω, where
ω is a common observation distribution. This immediately implies the equality of the agents’
observation spaces: Yi = Yj = Y , where Y is a common observation space.

A global perspective offers the agents the same quantity of information about the environ-
ment. This doesn’t mean that the environment state must be translated into observations
identically for all the agents. This last statement only holds for the global perspective when
the agents are homogeneous. In this case, the notions of global and common perspective
coincide.

In general, the common perspective is a special case of global perspective.

If the quantities of information offered to the agents differ, we say that the agents have a
local perspective.

Degree of measurability

The DMAS environment is completely measurable (or, simply, measurable) if ∀x ∈ X, and for
any i ∈ A, the corresponding observation yi can uniquely identify the state, i.e., ∀x̃ ∈ X, x̃ 6=
x, P (x̃ | yi) = 0.

13

INTRODUCTION

When the above is not satisfied, the environment is partially measurable.

These definitions are inspired by Pynadath and Tambe (2002). The researchers identified
another interesting level of measurability1. When the observations of one agent are not enough
to uniquely identify the environment state, but the collective observation of all the agents is,
the environment is collectively completely measurable (or collectively measurable).

Formally, the DMAS environment is collectively measurable if ∀x ∈ X, the corresponding
observations y1, . . . , yn uniquely identify the state, i.e., ∀x̃ ∈ X, x̃ 6= x, P (x̃ | y1, . . . , yn) = 0.
This last level of measurability is useful only in the presence of communication.

We must stress here that the virtually all the MAS literature identifies measurability with
observability, and speaks of the property calling it observability. This is not entirely accurate,
as we shall see below; measurability is a special case of a broader notion of observability. We
treated it separately because it carries weight in the literature.

Degree of observability

The DMAS environment is completely observable if for any possible sequence of environment
states, the current state can be determined in finite time from the observations.

Formally, the DMAS environment is completely observable (or, simply, observable), if for all
possible sequences of states x1, x2, . . . , xk, . . . , for any k, and for any agent i ∈ A, there exists
a finite li ≥ 0 such that xk can be uniquely determined from the sequence yi,k, . . . , yi,k+li , i.e.,
∀x̃ 6= xk, P (x̃ | yi,k, . . . , yi,k+li) = 0.

When the above is not satisfied, the environment is partially observable.

Similarly to the above, when the observations of one agent are not enough to uniquely
identify the environment state in finite time, but the collective observation of all the agents
is, the environment is collectively completely observable (or collectively observable).

These definitions are inspired from the control-engineering notion of observability.

The observability dimension is not orthogonal to the measurability dimension, being in-
stead its generalization for sequences of observations: if all li are zero, observability reduces to
measurability. For instance, if the environment is measurable, then by necessity it is observ-
able. However, it can be observable without being measurable. Similarly, if the environment is
collectively measurable, it is also collectively observable, without the converse being necessarily
true.

Episodic vs. continuing tasks

The task of the MAS is episodic, if the interaction between the agents and the environment
breaks naturally into subsequences, each terminating in one of a set of terminal states, and at
a final time step. Each of these subsequences is an “episode” or “trial”, and after each episode
termination, the MAS is “reset” to an initial state or to a state drawn from a distribution of
initial states.

When the interaction between the agents and the environment does not break naturally
into identifiable episodes, but goes on indefinitely, the MAS task is continuing. These definitions
are borrowed from Sutton and Barto (1998).

1In fact, they also identified a fourth level. When the system receives no feedback at all from the environment
(in control terminology, the control is open-loop), then the environment is not measurable. This level is however
of little use in our setting, so we do not refer to it further.

14

1.4. EXAMPLES

An example of episodic task is navigating through a maze: when all the agents exit the
maze, the task ends. Many times, the goal of a MAS in an episodic task is to reach any of a
subset of desirable terminal states in minimum time.

An example of continuing task is process control.

Along the presented taxonomy dimensions, we are interested in:

1. both homogeneous and heterogeneous agents;

2. agent teams, that are

3. cooperative (though not necessarily fully cooperative);

4. distributed agent control;

5. both reactive and deliberative agents;

6. all levels of inter-agent communication;

7. both global and local perspectives, especially the latter;

8. both complete and partial measurability, especially the latter;

9. both complete and partial observability;

10. both episodic and continuing tasks.

1.4 Examples

We present in this section several frameworks from control engineering and the multiagent
systems literature, analyzing how they fit into the DMAS – AL-MAS models introduced in
Section 1.2. In addition to illustrating the generality of our framework, the analysis will also
provide helpful insight into its characteristics.

1.4.1 The conventional control scheme

We begin with the simplest feedback control scheme from control engineering: a linear, time
invariant single-input, single-output plant controlled by a linear, time invariant controller
(Figure 1.2). The evolution of the plant can be described by the discrete state space model:

{
xk+1 = Φpxk + Γpuk

yk = Cpxk
(1.1)

where Φp ∈ R
np×np is the discrete transfer matrix, Γp ∈ R

np×1 the discrete input matrix,
Cp ∈ R

1×np the discrete output matrix, with np the size of the plant’s state space. The signal
x is the plant’s state, u is the command input, and y is the plant’s output.

The controller is given by:

{
sk+1 = Φcsk + Γcyk

uk = Ccsk +Dcy
ref

(1.2)

15

INTRODUCTION

where Φc ∈ R
nc×nc , Γc ∈ R

nc×1 and Cc ∈ R
1×nc have similar meanings, this time for the

controller, Dc is the discrete direct feedthrough matrix, s is the controller’s state, and yref is
the reference signal. The basic control goal is to make the plant’s output follow the reference
signal as closely as possible.

+ Cp

Cc

Dc

✞
✝
☎
✆

✲

✲✲
✲❄

✲ ✲✲ ✻
Φcs+ Γcy

yref

y
y

Plant

x
u

Φpx+ Γpu

Controller

s

+

Figure 1.2: The conventional control scheme.

It can be seen immediately that this scheme bears resemblance to the DMAS representation
in Figure 1.1. The most notable difference is the reduction to a single agent / controller.

In fact, the control scheme is equivalent to a single-agent, deterministic DMAS. Clearly, as
the notations indicate, y corresponds to the agent’s observation, s to its state, u to the agent’s
action, and x to the environment’s state. The correspondence between the linear relations
(1.1 – 1.2) and the functional elements of the DMAS is the following:

f(xk, uk) = Φpxk + Γpuk (1.3)

ω(xk) = Cpxk (1.4)

p(sk, yk) = Φcsk + Γcyk (1.5)

h(sk) = Ccsk +Dcy
ref
k (1.6)

An interesting difference can be observed: the DMAS has no explicit element similar to the
reference signal (the control goal) in Figure 1.2. This opens the way for two interpretations:

• The goal is internal to the agent. The agent knows what it wants to achieve, pursues its
goal, and is the only arbiter of its own actions.

• The goal is a component of the agent’s observation (input). It is imposed by an external
authority, such as a human, or another agent one level higher in a hierarchical control
scheme.

The scheme in Figure 1.2 isolates the plant. In DMAS, the plant corresponds to the
environment, and nothing places itself between the agents and the environment, such as noisy
transmission channels for the command or feedback signals. These are all modeled as part of
the environment.

If we allow the controller to be time varying:

{
sk+1 = Φc,ksk + Γc,kyk

uk = Cc,ksk +Dc,ky
ref
k

(1.7)

16

1.4. EXAMPLES

we can identify it with an adaptive agent:
{
pk(sk, yk) = Φc,ksk + Γc,kyk

hk(sk) = Cc,ksk +Dc,ky
ref
k

(1.8)

1.4.2 Model-reference adaptive control

The model reference adaptive system is an adaptive control scheme that expresses the control
goal in terms of a reference model. The reference signal is passed through this model to gen-
erate the desired response of the plant. The control law is parameterized, and the parameters
are adapted by an adjustment mechanism in such a way that the difference between the actual
and the desired output of the plant is minimized (Figure 1.3).

y

Model

PlantController

Mechanism
Adjustment

✲

✲

✲
✲

✲

❄
✛

❄yref

Controller parameters

ym

u

Figure 1.3: The model-reference adaptive control scheme.

We assume the most general form for the plant and the (parameterized) controller:
{
xk+1 = fp(xk, uk)

yk = hp(xk)
(1.9)

{
sk+1 = f̃c(sk, y

ref
k , yk, θk)

uk = h̃c(sk, y
ref
k , φk)

(1.10)

where yref is the command input. This signal generates the desired plant output ym via the
reference model.

Similarly to what was done in Section 1.4.1, we can establish a correspondence between a
single-agent, deterministic AL-MAS and (1.9 – 1.10):

f(xk, uk) = fp(xk, uk) (1.11)

ω(xk) = hp(xk) (1.12)

p̃(sk, yk, θk) = f̃c(sk, y
ref
k , yk, θk) (1.13)

h̃(sk, φk) = h̃c(sk, y
ref
k , φk) (1.14)

The controller is now an adaptive agent using parametric adaptation. Again, the goal repre-
sentation yref is in our framework internal to the agent.

The adjustment mechanism adapts the controller parameters:

θk+1 = θ̃(θk, uk, ym,k, yk) (1.15)

φk+1 = φ̃(φk, uk, ym,k, yk) (1.16)

17

INTRODUCTION

and corresponds to the adaptation mappings in Definition 1.8:

P̃(θk, sk, yk) = θ̃(θk, uk, ym,k, yk) (1.17)

H̃(φk, sk, yk) = φ̃(φk, uk, ym,k, yk) (1.18)

The model of the plant is in the DMAS interpretation part of the agent. Its state vector
xm can be interpreted as part of an extended state signal s = [s, xm]T. Similarly, its dynamics
fm can be seen as part of extended agent dynamics. The output function of the model is
integrated into the adaptation mappings P̃ and H̃, which use it to compute ym.

1.4.3 A communicative multiagent team model

Our last example is a multiagent teamwork model developed by Pynadath and Tambe (2002)
with the purpose of analyzing the tradeoff between optimality and complexity in teamwork
models and theories. We choose to illustrate this model for two reasons: first, it is very general
and representative for the multiagent literature, and second, it has been one of the sources of
inspiration for defining our (communicative) DMAS model. The model subsumes among others
Markov decision processes and team Markov games with deterministic rewards, and is easily
extensible to handle stochastic rewards and conflicting goals situations. These frameworks
are, as we shall see later, very important for multiagent learning.

The name of the model is the communicative Markov team decision problem (COM-MTDP).
Given a team of agents A, a COM-MTDP is a tuple 〈X,UA,MA, f, YA, ωA, BA, ρ〉 where:

• X is a set of world states.

• UA =×i∈AUi is a set of combined actions, where Ui is the set of actions for agent i.

• MA =×i∈AMi is a set of combined messages, where Mi is the set of messages for agent
i.

• f is the state transition probability distribution, f(x,u, x′) = P (xk+1 = x′ |xk = x,uk = u).

• YA =×i∈AYi is a set of observations, where Ui is the set of observations for agent i.

• ωA is the joint observation distribution, ωA(x,u,y) = P (yk = y |xk = x,uk = u). The
observation distribution ωi for agent i is given by ωi(x,u, yi) = P (yi,k = yi |xk = x,uk = u).

• BA = ×i∈ABi is a set of combined belief states, where Bi is the set of possible belief
states for agent i.

• ρ is the common reward function of the team, representing its joint preference over states
and the cost of actions and communication, ρ : X×MA×UA → R. The reward function
is the sum of two rewards: (i) ρe : X × UA → R, representing the utility of the domain
actions, and (ii) ρc : X ×MA → R, representing the cost of communication.

The agent decides which actions to take and which messages to send on the basis of its
belief state bi ∈ Bi. The domain actions are dictated by a domain-level policy hei : Bi → Ui.
Similarly, the sent messages are dictated by a communication policy hci : Bi →Mi.

The belief state is updated in two stages at each time step: once when the agent ob-
serves the world (“pre-communication”), and a second time when it receives the joint mes-
sage sent by the team (“post-communication”). The updates are performed via so-called

18

1.4. EXAMPLES

“state-estimators”: pre-communication, βprei : Bi × Yi → Bi, and post-communication, βposti :
Bi ×MA → Bi, respectively.

At every step, each agent executes an action and sends a message as indicated by its
domain-level and communication policies, respectively, and the world evolves in consequence.

We proceed to show that a COM-MTDP can be described by a communicative DMAS (Def-
inition 1.10), and to enumerate the differences between the two frameworks.

The correspondences between the COM-MTDP and communicative DMAS elements are sum-
marized in Table 1.1.

COM-MTDP Communicative DMAS

world state space X environment state space Xe

domain-level action space Ui domain-level action space U e
i

set of messages Mi set of messages Mi

transition distribution f environment transition distribution f e

set of observations Yi set of environment observations Y e
i

observation distributions ωi environment observation distributions ωe
i

belief state space Bi (included in) agent internal state space Si
pre-communication estimators βprei (included in) observations agent dynamics pei
post-communication estimators βposti messages handling agent dynamics prcvi

reward function ρ (implicit in) the env. observation distributions ωe
i

domain-level policy hei domain-level policy hei
communication policy hci message sending policy hsndi

– channel state space Xc

– channel dynamics f c

– message receival distributions ωrcv
i

Table 1.1: Correspondences between the COM-MTDP and the communicative DMAS elements

Many of these correspondences are immediate. The following differences exist:

• The DMAS model does not assume that an authority providing a reward signal exists in
the environment; instead, the agent must maintain some kind of goal representation in
its internal state si, and judge the quality of its actions only on the basis on their effect
on the environment, monitored via its observations ωe

i . Nevertheless, an explicit reward
function can be assumed to be part of the agent’s observation function ωi.

• In the view of COM-MTDP, the agent’s internal state is used only to represent beliefs on
the world’s state, and consequently, the agent dynamics are used only to update these
beliefs. The DMAS view is broader: the agent’s internal state includes all the information
relevant to the decision making process of the agent, possibly including among others
a-priori knowledge, learned knowledge, and prediction results. Consequently, the agent’s
dynamics can include, among other things, learning and prediction processes.

• COM-MTDP does not have any explicit representation of the communication channel dy-
namics or of the message receival process. As such, it cannot describe transmission or
receival noise. In contrast to the COM-MTDP, in the communicative DMAS communica-
tion is not added on top of preexisting structures, but arises naturally from the basic
DMAS framework.

19

INTRODUCTION

Therefore, the communicative DMAS is a more general model than the COM-MTDP, offering
additional expressiveness in the form of agent internal dynamics and explicit communication
dynamics.

20

Chapter 2

Multiagent reinforcement learning

2.1 Introduction

Reinforcement learning (RL) is the problem faced by an agent that must learn behaviour
through trial-and-error interactions with a dynamic environment (Kaelbling et al., 1996; Sut-
ton and Barto, 1998). The RL field was born from the junction of several research threads
in various disciplines, among which the most important are trial-and-error learning in animal
psychology and the dynamic programming approach to optimal control in control engineering
(Sutton and Barto, 1998).

Reinforcement learning assumes the following interaction model between the agent and its
environment (we use the terms “world” and “environment” interchangeably in the RL context):
at each discrete time step, the agent observes the current state of the environment, and chooses
an action. As a result, the environment transitions into a new state, and the agent receives
a scalar reward signal (see Figure 2.1). This signal is a measure of the quality of the agent’s
actions, as determined by the environment (this placement of the evaluation process in the
environment is characteristic to RL).

action

state

reward

state

reward

Agent Environment

Figure 2.1: The reinforcement learning model.

Consider for instance, a “mouse” agent in a maze, who needs to find the exit. The actions
of the mouse are its movements; the state consists of its position, and changes as a result of the
mouse’s movements. The mouse receives zero reward while it is inside the maze, and a positive
reward (“cheese”) when it finds the exit. An added incentive to find the exit quickly can be
provided to the mouse by giving it a small negative reward (“penalty” in the RL terminology)
instead of zero, at each time step it spends inside the maze.

21

MULTIAGENT REINFORCEMENT LEARNING

This simple example problem illustrates the two fundamental characteristics of reinforce-
ment learning: trial-and-error search and delayed reinforcement (Sutton and Barto, 1998).
The mouse does not receive any indication as to what movement would have been best at
some junction in the maze, as it would be the case in supervised learning. Instead, it is only
informed of the relative quality of its movement via the reward signal, and it needs to find out
by itself which moves are best – this is trial-and-error search. Assume now that the mouse
made a crucial decision at a maze junction close to its start point. That decision enabled
the agent to reach the maze exit after a certain time τ ; however, the positive reward that
was obtained in a significant part in consequence of that decision, is given to the agent only
after the interval τ has elapsed. It is up to the agent to infer which decisions along its tra-
jectory contributed to it obtaining the final reward, and with what weight – this is delayed
reinforcement.

It is clear that learning techniques based on such a model are very attractive, regardless
of whether one or more agents are involved. When the agents are reinforcement learners,
the task of the designer reduces in a first approximation to specifying a reinforcement signal
that accurately represents the goals set to the multiagent system (this is not an easy task,
however). Of course, when more than one agent is involved, the environment is no longer the
static, reactive machine represented in Figure 2.1.

Due to the strong appeal of RL, much of the research in multiagent learning focuses on
this field. As such, this chapter constitutes the main body of the part of our review dealing
with learning in multiagent systems. A survey of other multiagent learning methods can be
found in Chapter 3.

The chapter is organized in the following way: the RL problem is formally introduced
in the single-agent case, together with its solution concepts and techniques. We proceed
then to present some of the formal representations and solution concepts of the multiagent
reinforcement learning (multiagent reinforcement learning (MA-RL)) problem explored in the
literature . We present a selection of methods used by researchers to solve this problem, and
conclude with some remarks and research opportunities.

2.2 Single agent reinforcement learning

Most multiagent reinforcement learning algorithms build on single-agent methods. We there-
fore thoroughly introduce the theory and techniques employed by these methods.

2.2.1 Formal model

In the independent learning agent case, the reinforcement learning task is typically formalized
as a Markov decision process.

Definition 2.1 A finite Markov decision process (MDP) is a tuple 〈X,U, ρ, f〉 where X is the
discrete and finite state space, U is the discrete and finite action space, ρ : X ×U ×X ×R→
[0, 1] is the reward probability distribution, and f : X × U ×X → [0, 1] is the state transition
probability distribution.

There is also a general type of MDP with possibly infinite / continuous state and action
spaces. There exist methods of handling such types of problems, though the theoretical
guarantees valid for approaches dealing with the finite case typically do not carry over to
those methods. For the remainder of the presentation, we consider only finite MDPs.

22

2.2. THE SINGLE-AGENT CASE

The behaviour of the RL agent in an MDP is described by a possibly stochastic policy
mapping states into actions, h : X × U → [0, 1]. This policy is changed over time by the
reinforcement learning algorithm.

Using this formal model, the RL iteration can be described as follows: the agent observes the
current state xk of the environment, and chooses an action uk. As a result, the environment
transitions into a new state xk+1 with probability f(xk, uk, xk+1) and the agent receives a
reward rk+1 with probability ρ(xk, uk, xk+1, rk+1).

The MDP fits into our DMAS model (Definition 1.2) by reduction to one agent (denoted as
agent 1) and assumption of full measurability. The MDP represents only the learning tasks, so
the DMAS elements internal to the agent are missing. Furthermore, our model does not assume
that an authority providing a reward signal exists in the environment, as RL does; instead, in
the general case the agent must maintain some kind of goal representation in its internal state
s1, and judge the quality of its actions only on the basis on their effect on the environment.
Nevertheless, an explicit reward function can be assumed to be part of the agent’s observation
function ω1. Hence, as the environment is fully measurable, the observation of the agent is of
the form y1,k = [xk, rk]

T.

These correspondences are summarized in Table 2.1.

MDP DMAS

state space X environment state space X
action space U action space U1

transition distribution f transition distribution f
reward distribution ρ (implicit in) the observation distribution ω1

policy h policy h1

Table 2.1: Correspondences between the MDP and the DMAS elements

The RL policy h is time-varying as described before, under the influence of the learning
algorithm. In our model, the policy h1 is not time-varying, but is a function of the time-varying
internal state s1, which is changed by the learning processes p1.

Since most of our discussion on RL does not explicitly address the internal agent state,
throughout this chapter by simply stating “state” we mean “environment state”. When dis-
cussing the internal agent state, we declare it explicitly.

2.2.2 Learning goal

The RL agent is a rational agent that uses an optimality measure expressed in terms of its
rewards. The most common ways of expressing this optimality measure are (Kaelbling et al.,
1996):

(i) The finite horizon expected return:

Rk = E

{
T∑

l=0

rk+l+1

}
. (2.1)

This measure can only be used for episodic tasks.

23

MULTIAGENT REINFORCEMENT LEARNING

(ii) The infinite horizon expected discounted return:

Rk = E

{
∞∑

l=0

γlrk+l+1

}
. (2.2)

This measure is suitable for both episodic and continuing tasks. The variable γ ∈ [0, 1)
is the discount factor, and may be interpreted in several ways:

– a probability that the agent survives to the next step;

– a measure of how “far-sighted” the agent is in considering its rewards;

– a mathematical trick to bound the otherwise infinite sum.

(iii) The infinite horizon expected average return:

Rk = lim
h→∞

E

{
1

h

h∑

l=0

rk+l+1

}
. (2.3)

This measure is also appropriate for both episodic and continuing tasks, and can be
seen as the limiting case of the discounted expected return when the discount factor
approaches 1 (Kaelbling et al., 1996).

We use the expected discounted return throughout our review, since it is the most popular
and can handle both continuing and episodic tasks (including episodic tasks repeated along
the agent’s life).

2.2.3 The Markov property

The most important assumption that many theoretical results on reinforcement learning rely
on is the Markov property. This property refers to the state signal and is satisfied if this signal
contains at each step all the information relevant to the agent’s decision making process. The
state signal should also be, of course, as compact as possible.

Formally, the Markov property is expressed by the following identity (Sutton and Barto,
1998):

P (xk+1 = x, rk+1 = r |xk, uk, xk−1, uk−1, . . . , x0, u0) = P (xk+1 = x, rk+1 = r |xk, uk) . (2.4)

That is, it is sufficient to know the last state and action to determine the next state and
reward. We call a task that satisfies this property a “Markov” task.

2.2.4 Value functions and the Bellman equations

Almost all RL algorithms rely on estimating how good it is for the agent to be in a given state,
or to take a given action in a given state. These estimates are embodied by the state value
function and action value function, respectively (Sutton and Barto, 1998).

Definition 2.2 The value of a state x under a policy h is the expected return when starting
in x and following h thereafter:

V h(x) = Eh {Rk |xk = x} . (2.5)

24

2.2. THE SINGLE-AGENT CASE

Under the expected discounted return (2.2), this is:

V h(x) = Eh

{
∞∑

l=0

γlrk+l+1

∣∣∣xk = x

}
. (2.6)

Definition 2.3 The value of taking action u in state x under a policy h is the expected return
when starting in x, taking u and following h thereafter:

Qh(x, u) = Eh {Rk |xk = x, uk = u} . (2.7)

Under the expected discounted return (2.2), this is:

Qh(x, u) = Eh

{
∞∑

l=0

γlrk+l+1

∣∣∣xk = x, uk = u

}
. (2.8)

Action-values are also called “Q-values”. We also sometimes call the Q-function “Q-table”
since most of the results presented in this chapter rely on a complete, tabular representation
of the Q-function, indexed by states and actions.

The fundamental property of value functions is that they satisfy the following recursive
equations for any policy h (assuming deterministic rewards to prevent the notation from
becoming cluttered):

V h(x) =
∑

u∈U

h(x, u)
∑

x′∈X

f(x, u, x′)
[
ρ(x, u, x′) + γV h(x′)

]
∀x ∈ X, (2.9)

Qh(x, u) =
∑

x′∈X

f(x, u, x′)

[
ρ(x, u, x′) + γ

∑

u′∈U

h(x′, u′)Qh(x′, u′)

]
∀x ∈ X,u ∈ U.

(2.10)

Definition 2.4 (Optimality in MDPs)

(i) The optimal state value function is the function associating each state with the maximal
attainable value from that state:

V ∗(x) = max
h

V h(x), ∀x ∈ X. (2.11)

(ii) The optimal action value function is the function associating each state-action pair with
the maximal attainable value after taking that action in that state:

Q∗(x, u) = max
h

Qh(x, u), ∀x ∈ X,u ∈ U. (2.12)

(iii) An optimal policy h∗ is a policy attaining the optimal state value function or the optimal
action value function.

An MDP always has a deterministic optimal policy, given by:

h∗(x) = argmax
u∈U

Q∗(x, u). (2.13)

25

MULTIAGENT REINFORCEMENT LEARNING

There may in fact be more optimal policies, but all attain the same state and action value
functions – the optimal ones.

Clearly, the optimal value functions must satisfy the recursive relations (2.9), (2.10). The
obtained expressions are the Bellman optimality equations:

V ∗(x) = max
u∈U

∑

x′∈X

f(x, u, x′)
[
ρ(x, u, x′) + γV ∗(x′)

]
∀x ∈ X, (2.14)

Q∗(x, u) =
∑

x′∈X

f(x, u, x′)

[
ρ(x, u, x′) + γmax

u′∈U
Q∗(x′, u′)

]
∀x ∈ X,u ∈ U. (2.15)

These equations are the cornerstone of most RL solution techniques.

2.2.5 The exploration issue

Equation (2.13) suggests the agent can choose at each step the action that, according to the
action value function, yields the maximum value. This is called greedy action selection; if
the agent chooses the greedy action, we say it is “exploiting”. The greedy action would,
of course, be the best idea if the agent knew the optimal value function. During learning,
however, the agent has only an estimate of this value function. It might be that some action
is underestimated and is actually better than the action with the highest value in the current
value estimate. At each step, the learning agent must weigh the direct benefits of choosing
the greedy action with the possible benefit of choosing some other action to find out whether
it is not, in fact, better. The latter course of action is called exploration, and when an agent
follows it we say that it is “exploring”.

In the maze example, assume the mouse agent has chosen at a T junction to go left, but
that the exit is very close to the right path, while also reachable via the left path. If the
mouse actually reaches it, chances are that the estimated value of the left path will become
greater than that of the right path. Then, the next time the mouse is at the same junction,
according to its estimates it will prefer going left; this is the greedy action. However, if the
mouse chooses to explore instead and goes right, it will find out that this underestimated path
actually gets it to the goal much faster.

When reinforcement is delayed, we must rely on heuristics or approximations in balancing
exploration with exploitation. Thrun (1992) classified exploration strategies in two categories,
directed and undirected. Exploration is directed when it takes into account some measure of
the expected gain in information obtained by following exploratory moves, and attempts to
maximize this measure. When such a measure is not used, exploration is undirected.

Undirected exploration

Though the efficiency of exploration has tremendous consequences on the learning perfor-
mance, most RL researchers use simple stochastic strategies. The two most common of these
are (for a detailed discussion, see Singh et al., 2000a):

(i) ε-greedy exploration. This strategy chooses at each step the greedy action with probabil-
ity 1− ε, and some other random action with probability ε, ε ∈ (0, 1]. The exploration
probability ε is typically initialized at a relatively high value and decays as learning
progresses.

26

2.2. THE SINGLE-AGENT CASE

(ii) softmax (or “Boltzmann”) exploration. The basic mechanism is the same as for ε-greedy
exploration, but when exploring, this strategy does not select a random action. Instead,
it ranks actions based on their values, and then chooses one of them stochastically.
Specifically, the probability of selecting action u when exploring from state x is:

P (u |x) =
eQ(x,u)/τ

∑
u′∈U

eQ(x,u′)/τ
. (2.16)

The “temperature” parameter τ controls the randomness of the action selection. When
at high values, the actual value of the actions has little influence on what action is
selected. When τ has low values, however, the softmax strategy approaches greedy
action selection.

Another option is optimism in the face of uncertainty: the action value function is ini-
tialized with overestimated values, such that “disappointment” experienced from the already
tried actions drives the agent to explore new ones (Sutton and Barto, 1998). If the initial
values are sufficiently high (for an example of a special case where the initial values are ex-
actly computable, see Sen et al., 1994) and given enough time, the agent will explore the entire
state-action space. This is not always desirable; it might be better to initialize the action value
function with moderate values so that the agent doesn’t waste time exploring everything.

Directed exploration

Thrun (1992) further separates directed exploration strategies into three classes:

(i) frequency-based exploration remembers how often states or state action pairs were vis-
ited. An illustrative variant of this counts the number of times each state has been
visited, and chooses in every state the action that will move the agent into the least-
visited adjacent state (Thrun, 1992). The goal is to improve the agent’s knowledge in
states about which it has (presumably) the least information.

(ii) recency-based exploration relies on the elapsed time since an action was last tried. The
exploration is biased towards actions that weren’t tried in a long time, in order to
improve the knowledge of the agent on their effects.

(iii) error-based exploration uses second order information to estimate the uncertainty in
the estimated action values. Exploration is biased towards actions that have higher
potential. One such method is Kaelbling’s interval estimation heuristic (Kaelbling et al.,
1996). This method computes an upper bound of a confidence interval (for instance, a
95% interval) for all actions and chooses the action with the highest upper bound.

De Jong (1997) attempted to combine the advantages of recency-based and error-based
methods into the exploration buckets method. In this method, all actions have an associated
exploration “bucket”. At each step, a quantity related to the error in the reward predicted
by the action last time it was chosen, is added to its bucket. Buckets of chosen actions are
emptied. The error-based character of the method is obvious; the recency-based character is
given by the fact that biases accumulate in the exploration buckets.

27

MULTIAGENT REINFORCEMENT LEARNING

2.2.6 Solution techniques

Model-based techniques

Model based methods assume a model of the environment (reward and transition functions)
is available, and compute the optimal course of action given that model. It is easy to do this
indirectly, by first computing an optimal value function and then using greedy action selection.
The method is called value iteration, and is presented in Algorithm 2.1.

Algorithm 2.1 Value iteration

Require: f , the transition model; ρ, the reward model
Input: threshold θ ≥ 0, discount factor γ ∈ [0, 1)
Output: an optimal policy h∗

1: Q(x, u)← 0, ∀x ∈ X,u ∈ U
2: repeat
3: δ ← 0
4: for all x ∈ X,u ∈ U do
5: q ← Q(x, u)
6: Q(x, u)←

∑
x′∈X f(x, u, x′) [ρ(x, u, x′) + γmaxu′∈U Q(x′, u′)]

7: δ ← max {δ, |Q(x, u)− q|}
8: end for
9: until δ ≤ θ

10: h∗(x)← argmaxu∈U Q(x, u), ∀x ∈ X ⊲ breaking ties randomly

The algorithm turns the Bellman equation (2.15) into an assignment. Convergence to the
optimal value function can be proven under certain conditions.

Policy iteration operates directly on the policy of the agent (Algorithm 2.2). It works by
iteratively executing two interdependent processes: policy evaluation, where the value function
of the current policy is computed, and policy improvement, where this value function is used
to compute a new policy. It can be shown that policy evaluation converges to the true value
of the policy and that policy improvement yields a better policy except when the policy is
optimal – hence the stopping condition of the algorithm.

Equivalent value and policy iteration algorithms using the state value function exist (see
Sutton and Barto, 1998). Since most practical solution methods rely on action values, we
focus here on the action value function

These techniques are directly derived from dynamic programming in optimal control, and
therefore bear its name.

Model-free techniques

In many cases, it is difficult or impossible to obtain the accurate models of the world required
by model-based techniques. Moreover, the state space of some problems is very large and
processing all the states might not be practical. These problems are solved by model-free
methods.

The Monte Carlo class of model-free methods evaluates a policy by actually executing
large numbers of episodes with that policy and averaging over the obtained returns (Sutton
and Barto, 1998). Since returns are obtained by direct experience in the environment, a model
is no longer needed. Moreover, the computation can be focused on the interesting areas of

28

2.2. THE SINGLE-AGENT CASE

Algorithm 2.2 Policy iteration

Require: f , the transition model; ρ, the reward model
Input: threshold θ ≥ 0, discount factor γ ∈ [0, 1)
Output: an optimal policy h∗

1: h(x)← a random action u ∈ U, ∀x ∈ X
2: repeat
3: Q(x, u)← 0, ∀x ∈ X,u ∈ U
4: repeat ⊲ policy evaluation
5: δ ← 0
6: for all x ∈ X,u ∈ U do
7: q ← Q(x, u)
8: Q(x, u)←

∑
x′∈X f(x, u, x′) [ρ(x, u, x′) + γQ(x′, h(x′))]

9: δ ← max {δ, |Q(x, u)− q|}
10: end for
11: until δ ≤ θ
12: hstable ← true ⊲ policy improvement
13: for all x ∈ X do
14: v ← h(x)
15: h(x)← argmaxu∈U Q(x, u) ⊲ breaking ties randomly
16: if h(x) 6= v then
17: hstable ← false
18: end if
19: end for
20: until hstable
21: h∗ ← h

29

MULTIAGENT REINFORCEMENT LEARNING

the state space where useful policies evolve. For instance, if the mouse in our example starts
somewhere near the exit of a very large maze, it is not interested in computing accurate values
for states far back from its starting position.

The advantages of Monte Carlo methods are obvious; the disadvantage is that they require
large numbers of episodes, which may be costly to obtain. Moreover, continuing tasks do not
have any well-defined “end”. Temporal difference methods are able to perform useful updates
at each step taken in the world. They combine the ideas of dynamic programming and
Monte Carlo methods. The actual reward obtained by experience in the world is used, like in
Monte Carlo methods – except that temporal difference performs updates using this reward
at each step, not only after long experience sequences. The update rule moves the current
value estimate towards a target formed by combining the observed reward with the current
estimated value of the next state – like value iteration, but using actual experience instead of
the model to obtain the next state and reward:

Q(xk, uk)← Q(xk, uk) + α [rk+1 + γQ(xk+1, uk+1)−Q(xk, uk)] . (2.17)

Here, the agent chose uk in state xk at time step k, and as a result the world changed
state to xk+1, rewarding the agent by rk+1. The action uk+1 is that chosen by the agent at
time step k + 1. A few interesting things are worth noting about this update rule:

• The estimate Q(xk, uk) is not moved all the way to the target [rk+1 + γQ(xk+1, uk+1)],
as value iteration would do. Instead, it is moved only a fraction α of the distance. This
fraction is called “step-size” or learning rate. It typically varies decreasingly during the
learning process.

• The estimate Q(xk, uk) is updated using another estimate, Q(xk+1, uk+1). This tech-
nique is called bootstrapping.

• The agent uses its next action uk+1 to determine the value of the next state. Hence, the
estimates will converge to the value of the actually used policy. The update rule is said
for this reason to be “on-policy”.

The on-policy algorithm resulting from the combination of (2.17) with a policy derived
from the current action value estimates is called SARSA (from the structure of the experience
instance used by the update rule: state-action, reward-state-action). Under certain conditions,
it can be shown that state-action, reward-state-action (SARSA) converges to the optimal policy.
These conditions notably include an exploratory policy with decaying exploration so that in
the limit the policy becomes greedy; and a learning rate series that sums up to infinity, but
whose squares sum up to a finite value.

A disadvantage of SARSA is that the agent cannot know the actual optimal action values
until the policy has converged to the optimal policy, whereas the convergence conditions
require the policy to be exploratory and thus non-optimal. It turns out that temporal difference
methods can actually estimate the optimal value function while following a sub-optimal policy
– such methods are characterized as “off-policy”. The modification required for the update
rule is straightforward:

Q(xk, uk)← Q(xk, uk) + α

[
rk+1 + γmax

u′∈U
Q(xk+1, u

′)−Q(xk, uk)

]
. (2.18)

30

2.2. THE SINGLE-AGENT CASE

Algorithm 2.3 Q-learning

Input: learning rate α, discount factor γ
1: Q(x, u)← 0, ∀x ∈ X,u ∈ U
2: observe initial state x
3: loop
4: u← h(x) where h is a policy derived from Q (e.g., ε-greedy)
5: apply u, observe r and x′

6: Q(x, u)← Q(x, u) + α [r + γmaxu′∈U Q(x′, u′)−Q(x, u)]
7: x← x′

8: end loop

The algorithm resulting from the combination of (2.18) with a policy derived from the
current action value estimates is called Q-learning and is presented in Algorithm 2.3 (Watkins
and Dayan, 1992).

It has been shown that Q-learning converges to the optimal policy under more relaxed
conditions than SARSA (Watkins and Dayan, 1992) (the only condition imposed on the policy
is that all state-action pairs should continue to be updated). The initialization of Q-values
to 0 is arbitrary, any finite initial values satisfy the convergence properties. An immediate
advantage of this is that optimistic initial values can be used (Section 2.2.5).

In the multiagent context, we sometimes refer to this original variant of Q-learning as
“basic” or “plain” Q-learning.

Q-learning and its derivations are the most widely used reinforcement learning algorithms.
We therefore analyze how they fit into the DMAS framework. Table 2.1 and the accompanying
exposition already explained how the basic MDP components fit into DMAS. What we need
to investigate deeper is the place of the elements specific to Q-learning: the Q-table and the
update rule (2.18).

In the DMAS interpretation, the Q-table is part of the agent’s knowledge – that is, of its
internal state. So, the Q-table corresponds to a part of the agent’s internal state vector s (since
there is only one agent, we omit the agent index). Denote this “flat” Q-vector by q ∈ R

m,
where m = |X| · |U |. Denote its value at step k by qk.

In order to bring forth the agent dynamics in the temporal difference update rules, we
introduce the selector function:

J : X × U → R
m, Ji(x, u) =

{
1 if i = j

0 otherwise
, i = 1, . . . ,m (2.19)

where j is the position of the element corresponding to x and u in q. So, given x and u, the
multiplication JT(x, u)q produces a scalar equal to the Q-value of the pair (x, u). Also, J(x, u)
multiplied by a scalar produces a vector with 0 on all positions except that corresponding to
the pair (x, u) where the scalar is placed.

Let us first rewrite the SARSA update rule (2.17) using J :

qk+1 ← qk + αJ(xk, uk)
[
rk+1 + γJT(xk+1, uk+1)qk − J

T(xk, uk)qk
]

= qk + αγJ(xk, uk)J
T(xk+1, uk+1)qk − αJ(xk, uk)J

T(xk, uk)qk + αJ(xk, uk)rk+1

=
[
I + αγJ(xk, uk)J

T(xk+1, uk+1)− αJ(xk, uk)J
T(xk, uk)

]
qk + αJ(xk, uk)rk+1

(2.20)

where I is the m×m identity matrix.

31

MULTIAGENT REINFORCEMENT LEARNING

These learning dynamics are linear in q. The agent needs to remember the previous state
of the environment xk and its previous action uk. It does that by storing them on its internal
state. The state of the agent is then composed of the Q-vector together with the previous
environment state and chosen action: sk+1 = [qk, xk, uk]

T. The index shift appears because
of the notation convention in the DMAS model: the knowledge qk on the basis of which the
agent decides at time step k is already updated with the observation yk; hence, it is denoted
by index k + 1 (see Section 1.2 for the detailed discussion of this aspect).

Therefore, (2.20) is not linear in the agent internal state, but the nonlinearity appears in
elements that only serve the purpose of short-term memory. Remembering that the observation
of the agent has the form yk = [xk, rk]

T, (2.20) can be written (considering the explained index
shift):

qk+1 ← Φ(sk+1, yk+1)qk + Γ(sk+1, yk+1). (2.21)

This equation describes the learning dynamics of the agent, which form a part of the
agent’s internal dynamics:

sk+2 ← p(sk+1, yk+1). (2.22)

The interpretation of the Q-learning dynamics is very similar, but the learning dynamics
are nonlinear in q and would involve messy notation. We give here just the rewritten version
of the Q-learning update rule (2.18):

qk+1 ← qk + αJ(xk, uk)

[
rk+1 + γmax

u′∈U
JT(xk+1, u

′)qk − J
T(xk, uk)qk

]
. (2.23)

The Q-learning update rule (2.18) propagates information one step back along the trajec-
tory of the agent in the state space. In our maze example, this means that when the mouse
reaches the cheese for the first time, information about the large obtained reward is propa-
gated only to the visited state nearest to the cheese, say denoted by x. If the mouse is then
put back in some other position in the maze, it will have no idea of the way to the cheese,
until it somehow reaches a state near x and then moves into x. At this point, information
is propagated back another step, and so on. Clearly this is quite inefficient. This issue is
actually an instantiation of the temporal credit assignment problem.

There is actually a much more efficient way of propagating value information. The agent
marks its trajectory with a so-called “eligibility trace” E as it passes, and updates at each step
not only the last Q-value but an entire set of Q-values along its path, proportionally to their
eligibility values. The trace decays exponentially by a factor of λ called the recency factor.
The resulting algorithm is called Q(λ) and is presented in Algorithm 2.4.

“Accumulating” refers to the fact that the trace is not reset to 1, but incremented by 1
in line 11. Line 7 resets the trace whenever an exploratory action is taken, because at that
step the causality in the agent’s path is interrupted. Credit should not be assigned to actions
preceding the exploratory move, as their influence was cut at that moment. A version of Q(λ)
that avoids this issue is given by Peng and Williams (1996).

Another model-free method, related to the above but more complex and heuristic in nature,
is the learning classifier system. We introduce it here as it is used by some of the work surveyed
later in the chapter.

32

2.2. THE SINGLE-AGENT CASE

Algorithm 2.4 Q(λ) (with accumulating trace)

Input: learning rate α, discount factor γ, recency factor λ
1: Q(x, u)← 0, E(x, u)← 0, ∀x ∈ X,u ∈ U
2: observe initial state x
3: loop
4: u← argmaxu′∈U Q(x, u′)
5: modify u to exploratory move if and as indicated by the exploration strategy
6: if u 6= argmaxu′∈U Q(x, u′) then
7: E(x, u)← 0, ∀x ∈ X,u ∈ U ⊲ reset trace
8: end if
9: apply u, observe r and x′

10: δ ← r + γmaxu′∈U Q(x′, u′)−Q(x, u) ⊲ compute temporal difference
11: E(x, u)← E(x, u) + 1 ⊲ mark trace
12: for all x̃ ∈ X, ũ ∈ U do
13: Q(x̃, ũ)← Q(x̃, ũ) + αδE(x̃, ũ)
14: E(x̃, ũ)← λE(x̃, ũ) ⊲ decay trace
15: end for
16: x← x′

17: end loop

A learning classifier system is a “parallel, message-passing, rule-based systems designed to
permit nontrivial modifications and reorganizations of its knowledge as it performs a task”
(Booker, 1988). A population of classifier rules represents the knowledge of the classifier
system. Each of the classifiers consists of a condition part and an message part. The condition
part is in the basic variant of the learning classifier system a bit string where each bit can
take values in the set {0, 1,#}, the latter with the meaning of “don’t care”. The behaviour of
the classifier system is given by three subsystems: performance, credit assignment, and rule
discovery. A messages list circulates information within the system.

At each iteration, the environmental state is processed via an input interface to produce
a set of binary messages, that are placed on the messages list. The messages on the list are
matched with the condition input strings of the classifier population. The performance module
then probabilistically chooses a set of classifiers for activation, based on their matching degree
with the messages and their strength. The strength measures the overall value of the classifier
for the system.

The classifiers chosen for activation generate their corresponding messages, which are
placed on a new messages list that replaces the old one. The messages list is processed
via an output interface to produce the actions of the learning classifier system. Some of the
messages may remain on the list after processing and be fed back to the classifiers directly
without passing through the environment, thus endowing the system with memory.

The credit assignment system, in the “bucket brigade” version, works in the following way:
each classifier bids a fraction of its strength for the purpose of activation. If it is activated,
it pays this bid to the classifiers that were active at the previous time step, and it receives
the bids of the classifiers that are activated at the next time step. Direct reward from the
environment is distributed to the classifiers that were activated prior to its receival.

The rule discovery system is responsible with generating new classifiers that should enhance
the performance of the system, typically by genetic algorithms.

33

MULTIAGENT REINFORCEMENT LEARNING

The credit assignment system is similar to the temporal difference update rule (2.17). The
classifier strengths are similar to action values, with classifiers encoding relations between
states (processed by the input interface to obtain messages) and actions (obtained from mes-
sages by the output interface). Bids play the role of value increments, with rewards being
used in the updates as well when they are received from the environment.

An example will clarify. For the very simple classifier system introduced by (Dorigo and
Bersini, 1994), where messages are identified with overt actions, a classifier exists for each
state-action combination, and exactly one classifier is active at each time step, the bucket
brigade strength redistribution reduces to:

S(ck,mk)← S(ck,mk) + rk+1 + α [S(ck+1,mk+1)− S(ck,mk)] , (2.24)

where c and m denote respectively the condition and message parts, and the time indices
implicity point to the corresponding active classifiers. The relation clearly bears a strong
resemblance to (2.17). In fact, (Dorigo and Bersini, 1994) argued that, with certain modifica-
tions, the very simple classifier system is equivalent to Q-learning.

The general version of the learning classifier system has some important advantages over
temporal difference learning. The presence of “don’t care” symbols offers generalization abili-
ties. The system natively incorporates memory via direct message passing from one iteration
to another, and memory helps in situations where the learning task does not satisfy the
Markov property. Learning classifier systems also natively perform structural adaptation, via
the rule discovery mechanism. However, due to their complexity, a mathematical formulation
of the learning classifier systems that could provide theoretical convergence and optimality
guarantees has not yet been found.

Mixing model-based with model-free methods

Sutton (1991) introduced the Dyna architecture (from Dynamic programming). This architec-
ture uses experience in a much more efficient way than model-free methods. Besides using the
conventional Q-learning rule (2.18) to perform model-free updates, Dyna constructs a model
of the environment from experience and uses it to perform model-based updates in between
interactions with the real world. Thus, Dyna combines Q-learning with value iteration ideas,
resulting in less experiences in the real world necessary to reach a good behaviour. The com-
putational cost of Dyna is, however, greater than that incurred by model-free methods. As
such, it should be used when computation is cheap and interaction with the real world is
expensive.

The model-based updates of Dyna are performed on randomly chosen state-action pairs. A
further improvement can be obtained if the state-action pairs are queued in decreasing order of
the impact their update may have on their predecessors. At each iteration, a few state-action
pairs are popped from the top of the queue and updated. From the sweeps performed by
value iteration through the state space, this algorithm is called prioritized sweeping (Moore
and Atkeson, 1993).

Direct policy search

Another important class of methods for solving RL problems is direct search in the policy
space. These methods do not use the dynamic programming machinery introduced above,

34

2.3. THE MULTIAGENT CASE

relying instead on finding an appropriate policy directly. This is typically done by gradient
ascent or genetic algorithms.

The main advantage is, of course, greater generality. A disadvantage is that policy search
takes more time than the classical methods. Gradient methods were introduced that converge
in situations where dynamic programming was shown to diverge due to violation of its con-
vergence assumptions (Baird, 1995; Baird and Moore, 1998). On the other hand, gradient
methods can be shown to converge only to local optima, which do not necessarily give good
policies. The locality problem can be alleviated by the use of global optimization techniques
such as genetic algorithms (see Section 3.1 for a brief description), but the complexity of this
method makes theoretical results very difficult. Also, genetic algorithms are more computa-
tionally intensive than gradient methods.

2.3 The multiagent case

The RL field is a mature one, with well understood theoretical results and proven practical
applications. Due to this, and to the relaxed assumptions it makes on the learning task, RL

seems a very attractive solution to the multiagent learning problem.

The extension from single-agent RL to multiagent reinforcement learning (MA-RL) is, how-
ever, not trivial. The main difficulty comes from the fact that, from the viewpoint of any
agent in the MAS, the environment is not any longer Markovian. This is because the other
agents are part of this environment, and each agent is a dynamic system that changes its
behaviour as it learns (as explained in Section 2.2.1 and exemplified for SARSA and Q-learning
in Section 2.2.6). It is not, therefore, sufficient to know the state of the environment to reason,
even in principle, on how it will evolve. Stated differently, the difficulty is that the results of
an agent’s action depend not only on the state of the environment when the action is taken,
but also on the actions of the other agents performed at the same time.

This violation of the Markov assumption destroys the theoretical convergence guarantees
of single-agent RL. In order to achieve results, an agent needs to reason explicitly on the
behaviour of the other agents as it learns – their action choices and the mechanisms that led
to those choices. This is, unfortunately, not an easy thing to do, and it will take the rest of
this chapter and the next one to present the difficulties that arise and their explored solutions.

The Markov assumption violation is not the only problem of MA-RL. Another important
problem is the exponential explosion of the state space in the number of agents. This ren-
ders simple, tabular representations of value functions completely impractical for all but the
simplest of problems. The credit assignment problem is also more difficult in MAS than for a
single agent. This follows from the interdependence between the agents’ actions.

There are also benefits to agents learning in a MAS. These come mainly from knowledge
sharing. For instance, if several agents learn to perform similar tasks, they can share their
experience to speed up learning (Tan, 1993). Or, when a new agent arrives, “older”, more
skilled agents may serve as teachers (Clouse, 1995). If teaching is not desirable, the newcomer
might learn by watching and imitating the skilled agents as they perform their tasks (Price
and Boutilier, 2003).

The behaviour of multiple rational agents in interaction has been extensively studied in
game theory. In consequence, much of the research in MA-RL is based on game theoretic
notions. In fact, the influence of game theory extends beyond MA-RL to general multiagent
learning and coordination methods.

35

MULTIAGENT REINFORCEMENT LEARNING

In this section, we present the formal model of the MA-RL task, detailing its stateless
version which bears relevance for game-theoretic techniques. We then review the controversy
in the literature regarding the MA-RL learning goal. In the following sections, we review the
solutions to the MA-RL task explored by the literature. We start with the direct application
of single-agent RL, continue with special cases of the multiagent setting (fully cooperative,
followed by stateless MAS), and then present techniques for dealing with the general MA-RL

case.

2.3.1 Formal model

Many of the notions introduced below are denoted by several names in the literature. When
this is the case, we give the alternatives in parentheses after the chosen notion name.

The concept of Markov game stands at the basis of most MA-RL task models. Prior to
defining a Markov game, we define its stateless version, the strategic game.

Definition 2.5 A strategic game (matrix game) is a tuple 〈A, {Ui}i∈A , {ρi}i∈A〉 where A is
the set of agents, |A| = n being their number, {Ui}i∈A are the discrete sets of actions available
to each agent, yielding the joint action set U = ×i∈AUi, and ρi : U → R, i ∈ A, are the
reward functions of the agents.

Agents take actions as indicated by their strategies σi : Ui → [0, 1], and receive rewards
on the basis of the joint action u = [u1, . . . , un]

T: ri = ρi(u). Strategies can be stochastic
(also called “randomized”) or deterministic (also called “pure”). We denote the joint strategy
of the agents by σ = (σ1, . . . , σn), σ ∈ Π(U), where Π(·) denotes the space of probability
distributions over the set given as argument.

Any reward function ρi can be written as an n-dimensional matrix with discrete actions
as indices and reward values as content – hence the alias “matrix-game”. We sometimes refer
to rewards in strategic games by the game-theoretic term “payoff”.

Some problems in multiagent learning and coordination are modeled by repeated strategic
games. They are strategic games that are played repeatedly by the same agents. These agents
incrementally learn how to solve the strategic game.

Definition 2.6 A Markov game (stochastic game) is a tuple 〈A,X, {Ui}i∈A , f, {ρi}i∈A〉 where:

• A is the set of agents, |A| = n being their number.

• X is the discrete set of states.

• {Ui}i∈A are the discrete sets of actions available to each agent, yielding the joint action
set U =×i∈AUi.

• f : X ×U ×X → [0, 1] is the state transition probability distribution.

• ρi : X ×U ×X ×R→ [0, 1], i ∈ A are the reward probability distributions of the agents.

At each time step k, each agent i observes the state xk and takes action ui,k as indicated by
its policy hi : X × Ui → [0, 1]. As a result of the joint agent action uk = [u1,k, . . . , un,k]

T, the
world changes state to xk+1 with probability P (xk+1 |xk,uk) = f(xk,uk, xk+1) and each agent
i receives a reward ri,k+1 with probability P (ri,k+1 |xk,uk, xk+1) = ρi(xk,uk, xk+1, ri,k+1).
Similarly, policies can be stochastic or deterministic (also called “pure”). A “stationary”

36

2.3. THE MULTIAGENT CASE

policy is one that does not change its action selection probabilities over time. We denote the
joint policy of the agents by h = (h1, . . . , hn).

The Markov game is an extension of the strategic game to multiple states, and also to
stochastic rewards. Each state of the Markov game is a different strategic game with stochas-
tic rewards played by the same agents A. In fact, many multiagent reinforcement learning
algorithms deal with stochastic games by separately solving the strategic games that arise in
each state of the stochastic game.

Similarly, a policy is an extension of a strategy to multiple states, and conversely, a strategy
is the reduction of a policy to a single state.

A Markov game is an extension of an MDP; conversely, an MDP is a Markov game with
n = 1.

The Markov game is also a special case of a DMAS (Definition 1.2). A similar argument
to that presented in Section 2.2.1 holds: the DMAS environment is fully measurable, and the
rewards are included in the agents’ observations. The correspondences between the Markov
game and the DMAS elements are summarized in Table 2.2.

Markov game DMAS

state space X environment state space X
action space Ui action space Ui

transition distribution f transition distribution f
reward distribution ρi (implicit in) the observation distribution ωi

policy hi policy hi

Table 2.2: Correspondences between the Markov game and the DMAS elements

We sometimes use the game-theoretic term “play” to denote the evolution of an agent
within a Markov game. If the agents are homogeneous (Section 1.3), i.e., they use the same
learning algorithm, we call the learning process taking place in the Markov game self-play.
Homogeneity is equivalent to identical learning algorithms because the agents already have a
common perspective, due to the complete measurability assumed by the Markov game. Self-
play is typically defined by the literature in the context of (repeated) strategic games, but the
definition above includes those as special cases.

We are particularly interested in two special cases of Markov games: when the agents have
a common goal (i.e., the same reward functions), and when two agents act one against the
other. We use deterministic reward functions following the literature, but the extension to
stochastic rewards is trivial.

Definition 2.7 A multiagent Markov decision process (MMDP) (fully cooperative game, col-
laborative multiagent MDP, team Markov game) is a Markov game 〈A,X, {Ui}i∈A , f, ρ〉, where
all agents share the same reward function ρ.

Definition 2.8 A fully competitive game (zero-sum game) is two-players Markov game
〈{a1, a2} , X, U1, U2, f, ρ1, ρ2〉, where ρ1(x, u1, u2) = −ρ2(x, u1, u2), ∀x ∈ X,u1 ∈ U2, u2 ∈ U2.

The name “multiagent Markov decision process” is justified as follows: if all the agents are
considered together as a centralized decision maker (the control is centralized – see Section 1.3),
then the MMDP reduces to an MDP with an action space given by the joint action space of the
MMDP. A significant part of the work on multiagent learning and coordination focuses on this
type of Markov game.

37

MULTIAGENT REINFORCEMENT LEARNING

Kok et al. (2005b) use a slightly different version of multiagent Markov decision process:

Definition 2.9 A multiagent Markov decision process is a stochastic game 〈A,X, {Ui}i∈A , f,
{ρi}i∈A , ρ〉, where ρ is the global reward function and is given by ρ(x,u) =

∑
i∈A ρi(x,u), ∀x ∈

X,u ∈ U .

The agents in this version of MMDP attempt to maximize the global return at each step,
so this definition is equivalent to Definition 2.7.

The fully competitive game is also called “zero-sum” because the rewards of the two
agents always sum to 0. When discussing fully competitive games, and also two-agent games
in general, from the perspective of one agent, we sometimes refer to the other agent by
the game-theoretic term “opponent”, and to the agent whose perspective we assume as the
“player”.

2.3.2 Solution concepts

Currently, there does not exist a consensus in the literature as to the learning goal of MA-RL

agents. We summarize the controversy developed around this issue in Section 2.3.3. For now,
we simply present the building blocks used in defining the various learning goals proposed by
researchers and reviewed in this chapter. Many of these building blocks are game-theoretic
equilibria.

The basic concept standing at the basis of MA-RL solution concepts is, similarly to single-
agent RL, the value function. The state and action value functions are defined similarly to the
single-agent case, but taking into account the policies (and, for the action value function, the
actions) of all the agents. We give the definitions directly in terms of the expected discounted
return (2.2).

Definition 2.10 The value of a state x for agent i under a joint policy h is the expected
return of agent i when the environment starts in x and the agents follow h thereafter:

V h

i (x) = Eh

{
∞∑

l=0

γlri,k+l+1

∣∣∣xk = x

}
. (2.25)

Definition 2.11 The value of the joint action u in state x for agent i under a joint policy
h is the expected return when the environment starts in x, the agents take u and follow h

thereafter:

Qh

i (x,u) = Eh

{
∞∑

l=0

γlri,k+l+1

∣∣∣xk = x,uk = u

}
. (2.26)

As noted in Section 2.3.1, many multiagent learning algorithms work by solving the strate-
gic games given by each state of the Markov game. We therefore give the formalization below
in terms of stateless games. The state values under joint policies V h

i (x) (i.e., expected returns)
become then, simply, values under joint strategies V σ

i (i.e., expected rewards), as the concept
of state loses its meaning:

V σ

i = Eσ {ri} . (2.27)

The extension to the multi-state case is formally straightforward: simply solve for the joint
action in state values V h

i (x) instead of strategy values V σ

i .

38

2.3. THE MULTIAGENT CASE

The joint strategy of the agents σ is also known as a “strategy profile”. We denote
the joint strategy of all the agents except agent i (the “reduced strategy profile”) by σ−i =
(σ1, . . . , σi−1, σi+1, . . . , σn). We say σ∗i is a “best response” of agent i to the reduced strategy

profile σ−i if V
(σi,σ−i)
i ≤ V

(σ∗

i ,σ−i)
i , ∀σi ∈ Π(Ui).

The most widely used game-theoretic solution concept for multiagent learning is the Nash
equilibrium.

Definition 2.12 A Nash equilibrium is a joint strategy σ∗ such that ∀i ∈ A, σ∗i is a best
response for σ∗

−i.

In fully competitive games, the Nash equilibrium takes a special meaning: each strategy
σ1 is evaluated with respect to the opponent strategy σ2 that, in combination with σ1, yields
the least value. The agent will behave so that it maximizes its payoff in the worst case:

σ∗1 = arg max
σ1∈Π(U1)

min
σ2∈Π(U2)

V
(σ1,σ2)
1 . (2.28)

This principle is called minimax (Littman, 2001b).
It is unknown whether Nash equilibria can be computed in polynomial time. The strategies

forming a Nash equilibrium are uncorrelated, in the sense that the probability distributions
σi, i ∈ A are mutually independent. By removing the independence requirement, a more gen-
eral class of equilibria called correlated equilibria is obtained. The set of correlated equilibria
is convex and contains the set of Nash equilibria. An advantage is that, being convex, the set
of correlated equilibria is computable in polynomial time by linear programming.

In their general definition, Markov games are symmetric: no agents are favoured over
others. If we allow some agents (“leaders”) to possess information on how other agents (“fol-
lowers”) will act, then a new notion of equilibrium arises. We restrict the definition to two
agents, for simplicity (Başar, 1985).

Definition 2.13 A pair of strategies (σ∗1, σ
∗
2) is a Stackelberg equilibrium (leader-follower

equilibrium) with unique follower responses of the two-players strategic game 〈{a1, a2} , U1, U2,
ρ1, ρ2〉 if there exists a unique mapping T : Π(U1)→ Π(U2) satisfying:

V
(σ1,T (σ1))
2 ≥ V

(σ1,σ2)
2 , ∀σ1 ∈ Π(U1), σ2 ∈ Π(U2) (2.29)

V
(σ∗

1 ,T (σ∗

1))
1 ≥ V

(σ1,T (σ1))
1 , ∀σ1 ∈ Π(U1) (2.30)

with σ∗2 = T (σ∗1).

Agent 1 is the leader, agent 2 the follower, and the mapping T describes how the follower
reacts to the actions of the leader. Condition (2.29) ensures that the rational follower agent
will obey the mapping T ; (2.30) is the equilibrium condition.

Another type of solution concept is regret. Regret measures the difference between the
maximum total reward that could have been achieved by any fixed, deterministic policy, and
the actual reward obtained by the agent:

Ri,k = max
hi

k−1∑

l=0

[
ρi(xl, hi(xl))− ri,l+1

]
, (2.31)

where we assumed deterministic rewards to keep the notation simple.
A good agent performance is associated with low (or negative) regret.

39

MULTIAGENT REINFORCEMENT LEARNING

2.3.3 Learning goal

Many MA-RL algorithms set as goal for the learning agent, convergence to a game-theoretic
equilibrium, most often the Nash equilibrium (e.g., Littman, 2001b; Hu and Wellman, 2003;
Greenwald and Hall, 2003). An explanation for this is that the Nash equilibrium is self-
enforcing – i.e., seems to be the “natural” long-term consequence of the best-response play of
rational agents.

However, Shoham et al. (2003) put forth a tough criticism on the focus on game-theoretic
equilibria in general, and on the Nash equilibrium in special. They argued that the Nash
equilibrium presents important problems:

• In general, a strategic game can have multiple Nash equilibria. This leads to awkward
convergence guarantees, requiring that the agents somehow coordinate their selection
among these equilibria, perhaps by an external mechanism.

• The meaning and desirability of the Nash equilibrium, defined in terms of stateless
games, are doubtful in the full Markov game setting, where delayed reward has an
important role.

It is important to note that these objections extend to other equilibrium notions, as well.
The problem of the agents consistently selecting the same equilibrium when multiple equilibria
exist in a state of the Markov game is a recurring theme in MA-RL, and is known as the
equilibrium selection problem.

Shoham et al. (2003) interpreted this unjustified focus on Nash equilibria as a symptom
of a missing clearly defined problem statement in the MA-RL field.

A first attempt at a problem definition had already been done by Bowling and Veloso
(2002), in their definition of the rationality and convergence criteria. A learning algorithm
is “rational” if, given that all other agents converge to stationary policies, the learning agent
converges to a policy that is a best response to those stationary policies. A learning algorithm
is “convergent” if, given that the other agents use learning algorithms from a given set, the
learning agent will necessarily converge to a stationary policy. In the authors’ interpretation,
it is desirable that learning algorithms are both rational and convergent.

However, Powers and Shoham (2004) argued that these criteria are dissatisfying, for the
following reasons:

• They unjustifiably require that both the learner and the other agents converge to sta-
tionary policies, whereas non-stationary policies might very well be interesting for the
designer of the multiagent system.

• Both rationality and convergence are required to hold in the limit, without offering any
guarantees of a reasonable performance in finite time.

Moreover, the authors argued, both properties are defined in terms of the policy of the
agent, rather than of its actual performance measure, the reward; they address the effect
instead of going directly to the cause.

The authors then defined three new criteria as a learning goal for MA-RL algorithms. In
terms of repeated games, the learning agent must, with arbitrarily high probability and in
finite time, achieve the following:

• Targeted optimality : when the learning algorithms of other agents are in a given set, an
average reward that is arbitrarily close to the best-response value.

40

2.4. SINGLE AGENT TECHNIQUES IN MA-RL

• Compatibility : in self-play, an average reward that is arbitrarily close to the value of the
“best”1 Nash equilibrium.

• Safety : when the other agents use any other learning algorithms, an average reward that
is arbitrarily close to the minimax value (worst-case value).

These criteria completely drop the convergence requirements from the learning goal. They
do, however, have a shortcoming: they only impose requirements on the average reward. This
means that, at any given moment in time, the performance of the agent may be arbitrarily
poor.

In order to avoid this shortcoming, Bowling (2004) introduced the requirement of no regret:
if an agent does not converge to a stationary policy, then its regret (2.31) should be negative
or zero. Convergence was still deemed a desirable characteristic of the learning algorithm,
because it leads to the stability of the Markov game evolution, and stability allows for accuracy
in estimating value functions. When delayed reward is involved, from a practical point of view
the ability of properly estimating value functions is critical for the RL agent.

It seems, therefore, that converging and achieving good rewards are not two mutually
exclusive goals. Instead, a tradeoff between these two properties may exist. In order to obtain
high rewards, an agent needs to predict the value function accurately; but to do that, stability
is required, and thus the agent’s learning process must convergence, sacrificing reward!

In any case, the debate on the issue of the multiagent reinforcement learning goal is still
open, and no definitive answers have been given yet.

2.4 Application of single agent techniques to multiagent rein-

forcement learning

The easiest way of dealing with the consequences of the presence of other agents in the RL task
is, of course, to disregard them. Some good results have been reported with this approach in
certain problems ranging from simple simulations to real, complex tasks.

The work of Sen et al. (1994) lies at the first end of the spectrum. In this study, two agents
using Q-learning learned complementary policies for pushing a block on a two-dimensional
surface. The authors used a very specific type of problem where the goal state had the same
horizontal coordinate with the start state. They were thus able to quantify the position
information in vertical “stripes” and to provide instantaneous reinforcement to the agents on
the basis of the horizontal distance between the block and the goal position. This particularity
simplified the RL problem in two ways: first, the number of dimensions of the state space was
halved (from two to one), and second, the problem of delayed reward was eliminated.

The specificity of this learning problem does not allow us to conclude whether the approach
would extend to general settings. This issue is representative for the work with single-agent
learning in simple multiagent simulations.

A large part of the body of work in complex settings comes from the field of multirobot
systems. E.g., Matarić (1996) presented results on a multirobot foraging task, where the
robots learned to collect pucks scattered in the world and bring them to a designated home
region. The state and action space of the agents were highly abstracted, such that they

1The technical statement of this condition is slightly more complicated; see (Powers and Shoham, 2004) for
its exact form.

41

MULTIAGENT REINFORCEMENT LEARNING

only needed to learn a mapping from a small number of high-level conditions (such as have-
puck) to a small number of high-level behaviours (such as homing). The reinforcement signal
was composed in a complex way from several separate goals and instantaneous parts called
progress estimators (e.g., an intruder avoidance estimator rewarded an agent for maintaining
an appropriate distance from its teammates).

Another representative work is the simulated robotic soccer application of a fuzzy learning
classifier system by Bonarini and Trianni (2001). In this work state information was abstracted
as fuzzy linguistic variables. For example, the agent knows whether there are zero, one, or
more teammates in his vicinity, with the closest being close to the right and the farthest far
to the left (with “zero”, “one”, “more”, “close”, “far”, “left”, “right” linguistic values). This
information is repeated for agents from the opponent team. Similar fuzzy values were defined
for the ball and the internal agent state (containing for instance stamina). The latter is in the
view of our DMAS model only a part of the internal agent state, which also contains learned
knowledge. Other complex tools such as heterogeneous reinforcement with progress estimators
and high-level behaviours were used.

Crites and Barto (1998) applied reinforcement learning to the task of elevator scheduling.
The model of this task is a discrete event system with continuous time. Though the reinforce-
ment signal is global, yielding a common-goal task, different RL controllers are allocated to
each elevator, so the system is indeed a DMAS. Further complexities arise from the partial
observability of the environment (some parts of the state are hidden, e.g., the destinations
of the passengers waiting at each floor). The researchers used returns defined as continuous
time integrals and neural networks to represent the value function. The results obtained in
simulations outperformed commercial scheduling algorithms.

It is characteristic of these realistic multiagent applications to make use of empirical and
heuristic machinery in order to make the complex considered problems learnable. This ma-
chinery makes difficult the analysis of the techniques and their usefulness in other settings.

2.5 Fully cooperative multiagent teams

The theoretical model that describes the fully cooperative setting is the multiagent Markov
decision process (Definition 2.7). In an MMDP, the optimal solution can in principle be found
by treating the multiagent system as a single agent, as noted in Section 2.3.1, and by esti-
mating the optimal joint action values with Q-learning. For n agents, a Q-table of the form
Q(x, u1, . . . , un) is learned. This approach then yields the optimal policy by simple greedy
action choice.

The problem is, of course, that in a multiagent system the agents always have a certain
degree of autonomy in choosing their actions (if the MAS is decentralized, they have complete
autonomy). A solution might be to duplicate the value function and the learning algorithm
in each agent. This is possible as long as the actions are measurable among the agents. The
algorithm relying on this solution has been called “team-Q” or “friend-Q” in the literature
(Littman, 2001b). There is one further difficulty coming from the distributed nature of the
decision making process. For some world state, there might be several joint actions yielding
the best Q-value. The classical greedy action choice would break ties randomly. However, if
each agent breaks the tie randomly, different agents may break the tie in different ways. This
would lead the agents to select different joint actions and execute their part, with the actual
resulting joint action being suboptimal! This is a special case of the equilibrium selection

42

2.5. FULLY COOPERATIVE MULTIAGENT TEAMS

problem.

In fact, Littman (2001b) offered team-Q convergence guarantees only for the value function:
the Q-functions maintained by the agents will converge to the optimal Q∗. This guarantee
is complemented by convergence of policies only when the optimal joint actions achieving Q∗

(termed in his work “coordination equilibria”) are unique in every state.

In summary, team-Q requires the following assumptions:

(i) the Markov game is fully cooperative (it is an MMDP).

(ii) the actions are measurable among the agents.

(iii) the optimal joint actions are unique in every state of the world

Lauer and Riedmiller (2000) gave an algorithm they call “distributed Q-learning” that
removes assumption (ii). An agent i maintains a Q-table indexed only on its own action –
Qi(x, ui), and uses a modified temporal difference update rule:

Qi(xk, ui,k)← max

{
Qi(xk, ui,k), rk+1 + γ max

u′

i∈Ui

Qi(xk+1, u
′
i)

}
. (2.32)

This update rule moves the estimate Qi(xk, ui,k) all the way to the new estimate [rk+1 +
γmaxu′

i∈Ui
Qi(xk+1, u

′
i)] (in contrast with (2.18), that moves it only a fraction α of the way),

but only if the update leads to an increase in the value of the estimate.

The authors proved that with this update rule, under the assumptions that the reward
function is positive and all Q-values are initialized to 0, the Q-values the agents learn are the
maxima of the joint Q-values:

Qi(x, ui) = max
u=[u1,...,un]T

uj∈Uj ,j 6=i

Q(x,u), ∀x ∈ X, ui ∈ Ui. (2.33)

Though requiring the reward function to be positive seems strange, it actually does not
restrict the generality of the algorithm. This is because in RL agents always act on the basis
of relative differences in the value estimates, and not on the basis of the absolute values of
these estimates: an agent compares the Q-values of its actions and takes the action with the
highest Q-value.

The agents maintain explicit estimates h̃i of the optimal policy. By modifying the greedy
policy so that modifications are allowed only when they lead to improvements in the Q-values:

h̃i(xk)←




h̃i(xk) if max

ui∈Ui

Qi(xk, ui) has not changed by (2.32)

ui,k otherwise
(2.34)

the authors showed that the joint policy h̃ = (h̃1, . . . , h̃n) always attains the greedy value with
respect to the joint Q-table. In (2.34), ui,k is the action actually taken by the agent at time
step k. Since distributed Q-learning is off-policy and the agents need to follow exploratory
policies, this action need not always be taken according to h̃i, and learning does take place in
(2.34).

Using the greediness of the joint policy with respect to the joint Q-table, the authors show
that the convergence of distributed Q-learning follows from that of basic Q-learning.

43

MULTIAGENT REINFORCEMENT LEARNING

2.6 General multiagent systems

The full cooperation assumption is in many cases too restrictive. This is true especially for self-
interested agents, but even cooperating teams of agents may sometimes encounter situations
where the immediate interests of some of the agents are in conflict. An example is a shared
resource: though the high-level goals of the agents might be the same, if they all need at some
point a resource that is too expensive to be multiplied for each agent, they will compete to
obtain that resource. The theoretical model describing this type of tasks is the Markov game
(Definition 2.6).

Algorithms for handling such cases typically make several assumptions:

(i) The actions are measurable among the agents.

(ii) The rewards are measurable among the agents.

Sometimes, algorithms make additional assumptions. We state these assumptions explicitly
wherever such is the case.

Most of the times the agents learn value functions on the basis of the joint action and use
stochastic policies. The latter is motivated by the existence of Markov games for which the
targeted solutions cannot be expressed by deterministic policies.

Many approaches dealing with general multiagent systems come from the field of game
theory.

2.6.1 Stateless problems

There existMA-RL approaches stemming from game theory that handle only repeated, strategic
games (Definition 2.5). As such, they do not possess the concept of state, and lose one of the
main characteristics of RL: delayed reward. Nevertheless, these approaches are relevant for
our discussion on MA-RL, and one of them (infinitesimal gradient ascent) forms the basis for
a more general method we review in Section 2.7.

All the algorithms presented in this section strengthen assumption (ii) to:

(iii) The reward functions of the agents are common knowledge (formally, common knowledge
means that all agents know the fact, all the agents know that all the agents know the
fact, and so on indefinitely).

They also add an extra assumption:

(iv) The agents play a repeated strategic game (no world states).

Moreover, almost all such approaches are designed for games with only two agents.

Littman and Stone (2001) focused on two agent repeated games and introduced two ag-
gressive “leader” strategies that attempt to induce follower behaviour in the opponent. By
using these strategies, the agent tries to create an asymmetric, Stackelberg situation in an origi-
nally symmetric game (see Section 2.3.2). The authors’ motivation was that the best-responses
usually considered in game-theoretic approaches to multiagent learning are essentially follower
strategies, and that important benefits might be achieved by employing aggressive leader-like
strategies that implicitly induce cooperation in the opponent.

44

2.6. GENERAL MULTIAGENT SYSTEMS

The two strategies are called “Bully” and “Godfather”, and rely respectively on stubborn-
ness and threats. We look at the game from the perspective of the first agent. Bully is a
deterministic strategy choosing its action by:

u1,k = arg max
u1∈U1

ρ1(u1, arg max
u2∈U2

ρ2(u1, u2)), ∀k ≥ 0. (2.35)

So, Bully assumes the opponent will play a best response to its strategy and plays so that
it will maximize its reward under this assumption.

The Godfather strategy chooses a joint action that yields to both agents more than their
minimax (“security-level”) payoffs. It then executes its part of this joint action. If the oppo-
nent doesn’t execute its corresponding component, Godfather takes the action that will reduce
the payoff of the opponent to its security level, basically telling it “play your half, or no matter
what you do you will not obtain more than your security level”. Formally, if [u∗1, u

∗
2]
T is the

joint action chosen by Godfather:

u1,k =

{
u∗1 if k = 0 or u2,k−1 = u∗2

arg min
u1∈U1

max
u2∈U2

ρ2(u1, u2) otherwise
(2.36)

The authors tested the leader strategies in several repeated games showing they work
better than best-response strategies when paired with follower opponents.

Conitzer and Sandholm (2003) targeted the rationality and convergence learning goals de-
fined by Bowling and Veloso (2002) (Section 2.3.3). The algorithm presented by the authors
is called AWESOME, from “adapt when everybody is stationary, otherwise move to equilib-
rium” . The agent switches between the equilibrium and best-response strategies on the basis
of its experience. It acts according to its beliefs in two hypotheses: (i) that all other agents
are stationary, and (ii) that all other agents play their part of a precomputed equilibrium.
The beliefs are updated on the basis of the analysis of changes in empirical distributions of
the other agents’ actions over consecutive epochs of learning iterations.

The method was shown to (asymptotically) learn a best response against stationary agents
and converge in self-play for all repeated games.

In addition to defining targeted optimality, compatibility and safety (Section 2.3.3), Powers
and Shoham (2004) also gave an algorithm that according to the authors provably meets the
three requirements. The algorithm was thoroughly tested on stateless games against a broad
set of reinforcement learning techniques, and fared well against all of them in asymptotic
performance.

An important result for our forthcoming investigation on adaptive MA-RL falls in the area
of direct policy search. Singh et al. (2000b) focused on gradient ascent incremental policy
update in two-agents, two-actions, repeated strategic games. In such games, the stochastic
strategy of an agent can be modeled by a real number in the interval [0, 1]. Say, the strategy
of agent 1 is represented by α ∈ [0, 1], then the agent chooses its first action with probability α
and its second action with probability 1−α. Similarly, the second agent’s stochastic strategy
is described by a parameter β ∈ [0, 1]. The gradient ascent update rule is then:





αk+1 = αk + δ
∂V1(αk, βk)

∂α

βk+1 = βk + δ
∂V2(αk, βk)

∂β

(2.37)

45

MULTIAGENT REINFORCEMENT LEARNING

where Vi(αk, βk) is the expected payoff of agent i given that the agents play strategies αk, βk
and δ is the gradient ascent step size.

The main result proven by the authors was that assuming an infinitesimal step size (limδ→0)
the payoffs of the agents converge in the limit to the Nash payoffs.

2.6.2 Multiple-state problems

In order to be of practical interest, a MA-RL algorithm must handle problems with a non-empty
state space and delayed reward, i.e., full-blown Markov games. Such algorithms typically make
an extra requirement beside the assumptions (i) – (ii) listed in the beginning of Section 2.6:

(v) All the agents use the same learning algorithm (a self-play situation exists).

Many MA-RL algorithms for the Markov games are derived from Q-learning, and share a
common skeleton. This skeleton is given in Algorithm 2.5 for one agent, identified as agent i.

Algorithm 2.5 Generic multiagent Q-learning for agent i

Input: learning rate α, discount factor γ
1: Qi(x,u)← 0, ∀x ∈ X,u ∈ U , where U =×j∈AUj

2: hi(x, ui) = 1/ |Ui| , ∀ui ∈ Ui

3: observe initial state x
4: loop
5: hi(x, ·)← solvei (Q1(x, ·), . . . , Qn(x, ·))
6: draw ui according to hi(x, ui)
7: apply ui, with suitable exploration
8: observe other actions uj , j ∈ A, j 6= i, rewards rj , j ∈ A and next state x′

9: Qi(x,u)← Qi(x,u) + α [ri + γ · evali (Q1(x
′, ·), . . . , Qn(x

′, ·))−Qi(x,u)]
10: for j ∈ A, j 6= i do
11: Qj(x,u)← Qj(x,u) + α [rj + γ · evalj (Q1(x

′, ·), . . . , Qn(x
′, ·))−Qj(x,u)]

12: end for
13: x← x′

14: end loop

The dots “·” stand for “all values of the corresponding argument”. Algorithm 2.5 is
clearly similar to basic Q-learning in Algorithm 2.3. Several very important differences exist.
We analyze them in turn.

Line 5 updates the policy of the agent in state x, hi(x, ·), with the strategy computed
by solvei from the Q-tables of all the agents. So, instead of the usual greedy policy, an
agent maintains and uses an explicit stochastic policy computed on the basis of all the agents’
Q-tables.

Line 9 is a temporal difference update, but the next state value used in the update target
is not the value of the greedy action in that state, as in basic Q-learning. Instead, this value is
given by an evaluation function evali that takes into account the Q-tables of the other agents.

Both steps described above need the Q-tables of all the agents in the MAS. So, an agent
needs to maintain the Q-tables of the other agents along with its own Q-table. This is done
by the modeling step in lines 10–12. The necessity of the measurable rewards (ii) and self-play
(v) assumptions is obvious in line 11: the rewards of the other agents are needed to perform

46

2.6. GENERAL MULTIAGENT SYSTEMS

the update, and the other agents must use the same learning algorithm so that the update
reflects the reality.

Line 7 also deserves some comments. This is where the agent acts using its stochastic
policy. The action of the agent is applied to the environment simultaneously with the other
agents’ actions. The agent follows the strategy for state x computed by solve, but sometimes
takes exploratory actions. It is important to note that exploration is still necessary, though
in the general case the policies of the agents are stochastic. This is because nothing stops any
of the strategies returned by solve to assign zero probability weight to some (or all except
one) of the actions. A suitable exploratory policy, on the other hand, may never assign zero
probability weight to any action, except perhaps in the limit.

Many times, solve searches for a certain type of game theoretic equilibrium (a joint strat-
egy) for the strategic game given by state x′ of the Markov game, and eval gives the value
of this solution. The two functions are in such cases closely interrelated, and we may regard
them as a single subroutine returning a strategy in the game state and the value of the state
under that strategy. Moreover, in these cases the separate strategy and state value solutions
of the agents should form a consistent joint solution, so the subroutine can be thought of as
running identically and in parallel in all the agents, but returning to each agent its part of
the solution. The equilibrium selection problem arises when the solution is not unique, and
in this context is the necessity of the solve and eval returning complementary parts of the
same, consistent solution to all the agents.

Many multiagent learning algorithms can be understood as instantiations of the skeleton
in Algorithm 2.5.

If the game is fully competitive (Definition 2.8), the minimax principle (2.28) can be
applied (Littman, 2001b). In this case, the first agent (the player) chooses the strategy that
maximizes its benefit under the assumption that the other agent (the opponent) will act so as
to minimize this benefit. The value of the next state used in the update is also assumed to be
the worst-case value. That is, from the perspective of the player and assuming deterministic
action selection for the opponent:





eval1 (Q(x, ·)) = max
h1(x,·)∈Π(U1)

min
u2∈U2

∑

u1∈U1

h1(x, u1)Q(x, u1, u2)

solve1 (Q(x, ·)) = arg max
h1(x,·)∈Π(U1)

min
u2∈U2

∑

u1∈U1

h1(x, u1)Q(x, u1, u2)
(2.38)

Note that, due to the fact that ρ1 = −ρ2, Q1 = −Q2 and an agent needs to store a single
Q-table, denoted in (2.38) simply by Q. Modeling the opponent’s Q-table is not necessary.

The minimax optimization problem can be solved by a linear program. The algorithm
converges to the minimax values of the fully competitive game and the resulting policy attains
at least the learned values regardless of the opponent’s policy. The author experimented with
the algorithm on a simulated soccer game between two agents on a 5 × 4 two-dimensional
gridworld (see Section 5.2).

The minimax algorithm can be extended to more than two agents by assuming that all
other agents will act against the learner, and minimizing over their joint action instead of u2
in (2.38). This situation was formalized by Littman (2001a).

The same work integrated minimax-Q and team-Q (Section 2.5) into a single algorithm
called “friend-or-foe” Q-learning and presented the convergence conditions for this algorithm in
the specific classes of Markov games where it does converge (Littman, 2001a). The name of the

47

MULTIAGENT REINFORCEMENT LEARNING

algorithm reflects the fact that some of the agents are designated “friends” (and maximization
is consequently applied for their action terms in the value computation) and others “foes” (with
minimax consequently applied for their action terms). We do not give the actual intricate
formulae for computing the value and the policy here.

Both team Q-learning and friend-or-foe Q-learning are instantiations of the generic multi-
agent Q-learning algorithm. E.g., team-Q uses plain maximization for its eval function, and
the deterministic action choice achieving this maximum value as solve. Since the game is
fully cooperative, the Q-tables of the agents are identical and modeling is not required.

The Nash Q-learning algorithm works in a more general class of Markov games (Hu and
Wellman, 2003). As its name suggests, this algorithm computes a Nash equilibrium in every
state of the Markov game and uses it for the temporal difference and policy updates:

{
evali (Q1(x, ·), . . . , Qn(x, ·)) = V

NE[Q1(x,·),...,Qn(x,·)]
i (x)

solvei (Q1(x, ·), . . . , Qn(x, ·)) = NEi [Q1(x, ·), . . . , Qn(x, ·)]
(2.39)

The expression NEi represents the strategy component of the Nash equilibrium corre-
sponding to agent i. We have slightly abused the notation to keep the formula simple; the
value Vi(x) should in fact be conditioned by the joint policy whose component in state x is
the Nash equilibrium strategy.

The estimated value Vi of a state for an agent i under a joint stochastic policy is the
summation of the agent’s Q-tables weighted by the probability of the corresponding joint
actions, assigned by the joint policy in that state:

V
(h1,...,hn)
i (x) =

∑

u1∈U1,...,un∈Un

h1(x, u1) . . . hn(x, un)Qi(x, u1, . . . , un). (2.40)

In Nash Q-learning, each agent needs to model the Q-tables of all the others. The algorithm
was proven to converge given that the agents consistently use the same Nash equilibria to
compute eval in all states of the game. So, Nash Q-learning suffers from the equilibrium
selection problem, along with the other issues described in Section 2.3.3.

By replacing the Nash equilibrium in (2.39) with a correlated equilibrium, we obtain cor-
related equilibrium Q-learning (Greenwald and Hall, 2003). We do not give the modified
formulae, as they are identical to (2.39) in all respects except the type of equilibrium. The
advantage is that a correlated equilibrium is computable via linear programming (see Sec-
tion 2.3.2). The authors experimented with four types of equilibria, with the correlations
between agent policies expressed in the linear programming objective function: utilitarian,
maximizing the sum of the agents’ rewards; egalitarian, maximizing the minimum of the
agents’ rewards; republican, maximizing the maximum of the agents’ rewards; and libertar-
ian, independently maximizing the maximum of each agent’s reward. The experiments were
run on a small 3× 3 gridworld and on a 2× 2 grid soccer game.

The authors circumvented the need of modeling the Q-tables of other agents and the
equilibrium selection problem by centralizing the learning process. This is, of course, not
a feasible solution if this method is to be applied in a realistic multiagent system, so the
equilibrium selection problem remains intact.

Similarly, by using the Stackelberg equilibrium (see Section 2.3.2) in the updates we obtain
asymmetric multiagent RL (Könönen, 2003). This algorithm addresses situations where leader
agents are able to enforce action selections onto follower agents. The author experimented with
a simple grid world obtaining marginally better results in the asymmetric case with respect

48

2.7. ADAPTIVE TECHNIQUES

to the symmetric one. Though the agents do not use identical algorithms, it is necessary that
they follow their complementary parts in the asymmetric learning process, so, in a sense, the
assumption of self-play is still necessary.

One variant of multiagent Q-learning that does give up the self-play assumption is the so-
called “extended optimal response” algorithm (Suematsu and Hayashi, 2002). The algorithm
was designed for games with two agents. We describe it from the first agent’s perspective.
The goal of the algorithm is to reach a Nash equilibrium when the second agent is learning,
but exploit it using a best response when it exhibits stationary behaviour; this is the extended
optimal response. The agent uses the following heuristic solve function:

solve1 (Q1(x, ·), Q2(x, ·)) = arg max
h1(x,·)∈Π(U1)

[
V

(h1,ĥ2)
1 (x)− ς ̺ (x,Q2(x, ·), h1)

]
, (2.41)

where ς is a tuning parameter, ĥ2 is an estimate of the second agent’s policy, and ̺ a distance
function that approximates the increase in return that the second agent could achieve by
changing its policy given the policy h1:

̺ (x,Q2(x, ·), h1) = max
h2(x,·)∈Π(U2)

V
(h1,h2)
2 (x)− V

(h1,ĥ2)
2 (x).

The values V of joint policies are computed by (2.40). The actual temporal difference
update used by the agent is the SARSA update (2.17), so that eval is simply the Q-value of
the next taken joint action.

The first part of the maximization argument in (2.41) accounts for the “best-response” part
of the agent behaviour, whereas the second part drives the system towards a Nash equilibrium
by indirectly reducing the opponent’s desire to deviate from its policy.

The extended optimal algorithm was empirically tested on simple, stateless games such as
matching pennies and battle of the sexes. When the second agent was learning, the policies
learned by the first agent kept on oscillating slightly without converging, most likely due to
the heterogeneous nature of the criterion (2.41).

2.7 Adaptive techniques

Though the adaptive multiagent reinforcement learning thread is not very well represented, a
few researchers have investigated some of the possibilities. The approaches fall under the head-
ing of either parametric adaptation (Definition 1.8) or structural adaptation (Definition 1.9).

2.7.1 Parametric adaptation

The Win-or-Learn-Fast policy hill-climbing (WoLF-PHC) algorithm performs parametric adap-
tation of the learning process (Bowling and Veloso, 2002). The approach combines basic
Q-learning with the policy gradient ascent idea outlined in Section 2.6.1 (Singh et al., 2000b).

More precisely, in the simple two-agent, two-action setting, the step size parameter in
(2.37) is allowed to take one of two values (“adapt” in a coarse sense) on the basis of the
analysis of the agent’s behaviour:





αk+1 = αk + δ1,k
∂V1(αk, βk)

∂α

βk+1 = βk + δ2,k
∂V2(αk, βk)

∂β

(2.42)

49

MULTIAGENT REINFORCEMENT LEARNING

where:

δ1,k =

{
δ · δwin if V1(αk, βk) > V1(α

∗, βk)

δ · δlose otherwise

δ2,k =

{
δ · δwin if V2(αk, βk) > V2(αk, β

∗)

δ · δlose otherwise

(2.43)

Here, α∗ and β∗ are equilibrium strategies independently selected by the two agents. If
δwin < δlose and under the infinitesimal step size assumption (limδ→0), the strategies of the
agents were shown to converge to a Nash equilibrium, enhancing the result of Singh et al.
(2000b), that only proved convergence of the average payoffs to Nash payoffs.

The intuition behind (2.42) is that the agent should change its policy cautiously when
winning (as the opponent is likely to take strong measures to remedy the situation), and
boldly when losing, to improve its chances of escaping the losing situation. This should
encourage convergence, and the effect should extend beyond self-play, i.e., when just one
of the agents uses (2.42), and the other one uses some other learning rule. The goals of
the researchers in designing the algorithm were the rationality and convergence properties
described in Section 2.3.3.

A practical version of the algorithm was given by authors, supporting problems with
multiple states, any number of agents, and discrete action spaces of any finite size. This
practical version is given in Algorithm 2.6. It uses a heuristic average performance criterion
to assess whether the agent is winning or losing (line 11).

Note that the algorithm does not depend directly on the knowledge of, or on the interaction
with other agents.

The policy update in line 12 is given in a simplified form; the actual update used ensures
the validity of the probability distribution.

Algorithm 2.6 WoLF-PHC for one agent

Input: learning rate α, discount factor γ, step sizes δwin, δlose
1: Q(x, u)← 0, h(x, u)← 1

|U | , ∀x ∈ X,u ∈ U

2: C(x)← 0, ∀x ∈ X ⊲ state visits counter
3: h̄(x, u)← 1

|U | , ∀x ∈ X,u ∈ U ⊲ average policy
4: observe initial state x
5: loop
6: draw u according to h(x, u)
7: apply u with suitable exploration, observe r and x′

8: Q(x, u)← Q(x, u) + α [r + γmaxu′∈U Q(x′, u′)−Q(x, u)]
9: C(x)← C(x) + 1 ⊲ increment visits counter

10: h̄(x, ũ)← h̄(x, ũ) + 1
C(x)

(
h(x, ũ)− h̄(x, ũ)

)
, ∀ũ ∈ U ⊲ update average policy

11: δ ←

{
δwin if

∑
ũ∈U h(x,ũ)Q(x,ũ)>

∑
ũ∈U h̄(x,ũ)Q(x,ũ)

δlose otherwise
⊲ adapt step size

12: h(x, ũ)← h(x, ũ) +

{
δ if ũ = argmaxũ′∈U Q(x, ũ′)

− δ
|U |−1 otherwise

, ∀ũ ∈ U ⊲ policy

13: x← x′

14: end loop

50

2.7. ADAPTIVE TECHNIQUES

The algorithm was empirically tested on two simple, stateless games: matching pennies
and rock-paper-scissors, and on two games with small state spaces: a 3× 3 gridworld and the
gridworld soccer game in Littman (2001a). Convergence was achieved in all cases, but only
after extremely large numbers of learning iterations: around 1 million for matching pennies,
on the order of 100, 000 for the 3× 3 gridworld, and above 1 million for the gridworld soccer.

The averaging nature of the heuristic adaptation criterion gives the algorithm a certain
amount of inertia, which may be at least part of the reason for the very slow convergence.
Banerjee and Peng (2003) propose an instantaneous performance criterion instead of (2.43),
expressed in terms of the first and second order difference of the agent strategy. Using this
criterion, the adaptation rule for the first agent is:

δ1,k =

{
δ · δwin if dαk · d

2αk < 0

δ · δlose otherwise
(2.44)

where dαk = αk − αk−1 and d2αk = dαk − dαk−1.
The validity of the criterion was proven and a practical algorithm was demonstrated both

in simple games and in a two-dimensional block pushing task with continuous state. The
results were encouraging: the algorithm converged on the simple tasks significantly faster
than WoLF-PHC, by factors of around 2 to 4 in the various problems. On the continuous-state
task, the comparison was not so favourable in terms of convergence speed, but the quality of
the learned policy was more than around 2 times better, in terms of average path length to
the goal position.

2.7.2 Structural adaptation

Existing work on structural adaptation in multiagent RL focuses on the adaptation of the action
dimensions of the state-action space (Fulda and Ventura, 2003; Kok et al., 2005b). This is
closely related to the empirical study of the concept of awareness in cooperative multirobot
teams. Awareness was defined by Touzet (2000) as “the perception of other robots locations
and actions”. In the MA-RL setting, “location” should be replaced by the more generic term
“state”.

Structural adaptation in MA-RL takes the awareness concept one step further, discrimi-
nating the awareness needs of the agents on the basis of state. We can relate the need of
awareness to the degree of coupling between agents. If in some region X̃ ∈ X of the state
space the reward function of agent i depends significantly only on its own action choice:

∃ρ̂i : X × Ui → R such that ρi(x, u1, . . . , ui, . . . , un) ≈ ρ̂i(x, ui),

∀x ∈ X̃, uj ∈ Uj , j ∈ A, j 6= i (2.45)

we can say that in that region agent i is “loosely coupled” with other agents. In this situation,
it is likely that the agent can learn well and achieve good performance without being aware
of the other agents.

On the other hand, if (2.45) is not satisfied over the region X̃, meaning that the reward
function of agent i depends significantly on several components of the joint action, we can say
that agent i is “tightly coupled” with the corresponding agents in that region, and we can
conclude that it needs to be aware of these agents in order to perform well.

The important questions here are, of course, how to identify the regions of space where
the agent is loosely coupled with the other agents, and, for those regions where it is not,

51

MULTIAGENT REINFORCEMENT LEARNING

to determine with which of the agents it is tightly coupled. The literature takes heuristic
approaches to answering these questions.

Fulda and Ventura (2003) use a tree structure where every node contains Q-values. Ini-
tially, the Q-values are discriminated only on the basis of the agent’s own action. There exists
a node for each state, and each node contains a vector of Q-values discriminated by the agent’s
action. Take as example the node for some given state x, containing the Q-table with one
dimension Qi(x, ui). Such a node has as children a set of n−1 fringe nodes, each corresponding
to one of the other agents’ action variable. Inside a fringe node, a more detailed Q-table is
stored, discriminating values by the action of the agent corresponding to that node: in our
example, the fringe node for agent j, child of node for state x, would contain a two-dimensional
Q-table of the form Qi(x, ui, uj).

After a given number of learning steps elapses, the fringe children of each node are exam-
ined, to determine which of them could lead to the greatest increase in returns if Q-values
were discriminated on the action variable in that node. The node is then expanded along
that action, becoming a branch node with a regular node as child for each action. If, say, the
fringe node for agent j were chosen for expansion, it would spawn a set of |Uj | nodes, each
corresponding to some fixed uj ∈ Uj and containing a one-dimensional Q-table of the form
Qi(x, ui, uj), where only ui varies over Ui. Each such child receives its own set of fringe nodes,
n − 2 to be precise, since one of the action variables was expanded: one fringe node for each
agent different from i and j. The process then continues until either a maximum expansion
depth has been reached, or the increase in returns that could be gained by expanding nodes
drops below a specified threshold.

The algorithm was tested on a stateless game with four players (an extended version
of matching pennies), where it achieved a performance close to that of an algorithm that
considered the complete joint action u from the start, while storing a less number of Q-values.

Kok et al. (2005b) introduced a more structured approach that uses of a model able to
explicitly represent the awareness needs of the agents. This model is the coordination graph,
described in detail in Section 4.7. In brief, a coordination graph has agents as nodes, and
relationships between agents as arcs. An agent needs to be aware of all the agents it is directly
connected with. A variable elimination algorithm can be used to choose a coordinated joint
action given that the graph structure and the value functions of the agents are known. The
authors present a method of learning the structure of the coordination graph, based on the
statistical analysis of expected returns for hypothetical relationships.

The method was empirically evaluated on a simple example problem and in the predator-
prey domain, where it is able to reach the performance of team Q-learning, after a longer time
needed for discovering the value rules.

2.8 Issues in realistic RL

When MA-RL (and RL in general) are applied to real-life tasks or realistic simulations, a number
of issues arise that, for the sake of brevity, haven’t been discussed above. We briefly make
some remarks on the most relevant of these issues in what follows.

Large and / or continuous state and action spaces

When the state and action spaces of the agents are large and / or have continuous dimensions,
tabular representations of the value functions cannot be used. Function approximation tech-

52

2.8. REALISTIC RL

niques from supervised learning can help in these situations. Linear approximators such as tile
coding, or nonlinear approximators such as neural networks, can be used (Sutton and Barto,
1998).

The problem is that many theoretical convergence guarantees no longer hold for most
function approximators. One class of methods that does retain its convergence properties
when function approximators are used is direct policy search by gradient descent. These
methods, however, are typically slow and can get stuck in local optima (Baird, 1995; Baird
and Moore, 1998).

Partial measurability

When the state of the environment is not completely measurable, the Markov assumption is
violated. Depending on the severity of this violation, it may or may not be safely ignored
by the learning agents. When it needs to be accounted for, the literature uses one of two
classes of solutions. The first is to maintain probabilistic distributions of beliefs on the state
of the underlying Markov task, and update these beliefs with observations using a Bayesian
framework. This incurs high computational costs. The second class of solutions endows the
agent with the ability to remember sequences of states, in the hope that these sequences will
retain sufficient information to satisfy the Markov property (Whitehead and Lin, 1995).

Prior knowledge

In realistic problems, tabula rasa model-free RL is not effective: exploration of a huge state-
action space, delayed reinforcement, and uncertainty, slow down learning or make it impossible.
While it is unlikely that accurate models of the task will be available, prior knowledge can
still be used to help the agents learn, by incorporating bias into the learning solution. This
can be done in many ways, among which:

• Initialization. The value function can be initialized so as to contain prior knowledge.
This might not be a trivial task, especially when using generalizing function approxima-
tors.

• Local reinforcement signals can help alleviating the structural and temporal credit as-
signment problem. This is probably the most natural way of biasing reinforcement learn-
ing, though it is contradicting with the recommendations of Sutton and Barto (1998),
which state that the reinforcement signal should only encode the goal of the agent, and
not the path to the goal. E.g., Matarić (1996) used progress estimators, akin to error
signals in process control, to tell the agent when it is on the right path and when not.
The same work used heterogeneous reinforcement signals to encode information about
multiple agent goals.

• Teaching. A human could temporarily take control of an agent and guide it towards the
goal, afterwards relinquishing control and allowing the agent to fine-tune its behaviour.
This can speed up learning significantly, as the longest phase of model-free RL is when
the agents, having no knowledge whatsoever of their goal, roam about the state space
searching for it.

• Shaping. Start learning on very simple tasks, then progressively increase the difficulty.

53

MULTIAGENT REINFORCEMENT LEARNING

• Problem decomposition followed by layered learning (Stone and Veloso, 1998). Elemen-
tary behaviours can be learned separately and then integrated into a higher-level policy
to solve the original task.

• Reflexes provided to the agent upon inception. These can be used as building blocks for
a more complex, learned behaviour (e.g., Matarić, 1996).

2.9 Concluding remarks

The field of multiagent reinforcement learning has not yet reached maturity. The work on
extending the firm and well-understood results from single-agent RL to the multiagent case is
currently in progress. A clear sign of this is the controversy existent in the field regarding a
suitable MA-RL goal (Section 2.3.3).

Another sign is the gap between the theoretical results and the practical applications of
MA-RL.

Theoretically justified methods, strongly influenced by game theory, make very restrictive
assumptions on the learning task in order to prove their results, assumptions that do not hold
in most practical situations. E.g., some of the methods assume that the agents know each
other’s reward functions; this will rarely be the case. Other methods assume that all the
agents use the same learning algorithm, which removes heterogeneous and open multiagent
systems from the discussion.

Another problem, inherited from the single-agent case, is the requirement for an explicit
tabular representation of the state-action space. The problem is aggravated in the multiagent
context by the exponential explosion of this space with the number of agents. This implies
that learning algorithms should be very selective with the information they use, or in other
words, that they should be “local” as much as possible.

Moreover, empirical evaluations of the algorithms are typically performed on very simple
problems, some stateless, some with very small state spaces. Hints on how algorithms would
scale up to realistic problem sizes are rarely given (an exception is e.g., Banerjee and Peng,
2003).

On the other hand, practical applications mostly use direct extensions of the basic, single
agent algorithms. These extensions are placed on top of an often complex and ad-hoc ma-
chinery, designed to simplify the otherwise very difficult learning problem. E.g., features are
extracted from the environment state, and the value function is computed in terms of these
features. Local and instantaneous reward functions are used to guide the agents through the
state space (Matarić, 1996).

This machinery makes the analysis of the methods very difficult. One important reason
for this is that, many times, the machinery takes into account the other agents. Thus, the
agents learn about each other in an indirect and obscure way.

Many MA-RL algorithms are designed for stateless games. Even those that do work in
multi-state problems are biased by the stateless, game-theoretic perspective. Solving for game-
theoretic equilibria in a stage-wise fashion sits at the core of theoretically justified MA-RL

methods. However, the meaning and the suitability of stage-wise game-theoretic equilibria
are doubtful in the context of finite and infinite horizon tasks with delayed reward.

An issue with the RL framework in general is that the RL goal is focused on optimality,
disregarding other desirable properties of the agents’ behaviour, such as robustness to changes
in the environment, or an approximately monotonic increase in the performance during the

54

2.9. CONCLUDING REMARKS

learning process. Many RL algorithms offer asymptotic convergence guarantees without saying
anything at all about the transient performance of the agent.

A set of relevant research questions arises from these considerations, stemming a corre-
sponding set of possible research directions:

1. What is a suitable genericMA-RL goal? How can it incorporate performance requirements
other than optimality?

2. Are stage-wise game-theoretic methods suitable for the multiple-states, finite or infinite
horizon, delayed reward tasks?

3. How to unify the theoretically justified and the practically applied MA-RL methods?
This question implies two complementary research directions: the first attempting to
relax the assumptions of the theoretically justified methods, and the second attempting
to prove the soundness of practical methods.

4. How can a RL agent determine the minimal information on the basis of which it can
learn effectively?

A research direction related to question 4 arises in the context of partially measurable
learning tasks. If the state of the world is observable in the control-engineering sense, with-
out being directly measurable (see Section 1.3), control-engineering observers could be used
to estimate the unmeasurable components of the state. The use of observers is, however,
conditioned on the availability of (some knowledge on) a model of the environment.

Opportunities for adaptive learning

In the area of parametric adaptation, an immediate opportunity is represented by the basic
parameters of multiagent (and also single agent) RL: learning and exploration rates. The
learning performance is very sensitive to these parameters. Exploration is especially important
for the quality of learning, though most of the current approaches use very simple exploration
techniques. Good initial values and decay schedules for the learning and exploration rates are
typically obtained through a painstaking trial and error process. An automated procedure for
the online adaptation of these parameters would be of significant value.

Besides these basic parameters, many methods use other specific parameters, whose adap-
tation could lead to improvements in performance. E.g., the Win-or-Learn-Fast algorithm
step sizes δwin and δlose give a very coarse adaptation; a way of adaptively shifting the step
size between these extremes could be investigated.

As shown in Section 2.7, structural adaptation focuses on the action dimensions of the
state-action space of the learner. This is a fruitful research direction that should be pursued.
It might also be, however, that components of the environment state are irrelevant to the
learner in all but a small part of the state space. E.g., the state components referring to
some other agent might be relevant only in those regions of the state space where the learner
closely interacts with that agent. This is related to research question 4 above. Significant
reductions in computational requirements and learning time could be obtained in these cases
if the learner considers only the relevant parts of the state.

This is an aspect typically disregarded in the literature on MA-RL, where the state of the
world is regarded as monolithic and mandatory for all agents to consider. However, techniques
encountered in the action space adaptation, such as second order analysis of returns, can be

55

MULTIAGENT REINFORCEMENT LEARNING

applied to state space adaptation as well. We have already begun investigating this possibility
(Buşoniu et al., 2005).

This idea can be used as a starting point to develop techniques that would allow the agent
to discover on its own when simple learning techniques, closer to single-agent RL, suffice to
solve the problem, and switch to multiagent learning only when necessary. This would be not
just structural, but full-blown adaptation, and would be an important step towards bridging
the gap mentioned in the beginning of this section.

56

Chapter 3

Multiagent learning: other methods

While reinforcement learning is the technique most often applied to learning in multiagent
systems, there are a number of other approaches worth considering. We review some of them
here, focusing on learning as a tool of direct improvement of the agent’s behaviour in the
world, as opposed to e.g., its knowledge about other agents. This chapter is not intended to
be a comprehensive presentation of non-RL methods in multiagent systems, rather its goal is
to introduce a few illustrative approaches.

We begin by presenting evolutionary approaches to multiagent learning. We then review
heuristic learning techniques, and close the chapter with a set of brief concluding remarks.

3.1 Evolutionary techniques

Genetic algorithms and genetic programming are the most popular evolutionary computation
techniques. A genetic algorithm is a population-based heuristic search method that uses
mechanisms borrowed from biological evolution, such as mutation and recombination.

A genetic algorithm maintains a randomly initialized population of candidate solutions
represented as strings of values (e.g., binary values). These strings are called chromosomes,
and the values are called genes. A fitness function gives the quality of the solution represented
by such a chromosome as a real number. At each iteration, a genetic algorithm performs the
following operations:

1. All the chromosomes are evaluated by the fitness function.

2. A selection function is applied to the population, probabilistically choosing a set of
chromosomes to reproduce. The selection is biased towards chromosomes with higher
fitness, but does not completely remove probability weight from poor chromosomes to
maintain diversity in the population (i.e., to avoid local optima).

3. The selected chromosomes reproduce via mutation (e.g., bit flips: a chromosome 0000

might mutate to 0010) and / or crossover (e.g., two chromosomes 0000 and 1111 might
recombine via crossover to give birth to two new chromosomes 0011 and 1100). The
new chromosomes are added to the population.

The algorithm stops after a given number of iterations or when the quality of the best solution
found exceeds a given threshold.

57

MULTIAGENT LEARNING: OTHER METHODS

Genetic programming is a class of genetic algorithms that evolves programs. These pro-
grams are parse trees composed of building blocks that can be either terminals or non-
terminals. Terminals are constants, variables, or functions without arguments. Non-terminals
are functions that require arguments. In conventional genetic programming, all non-terminals
accept and return a single value of a fixed data type (e.g., float).

Evolutionary computation searches directly in the space of agent behaviours, so it is closely
related to direct policy search in MA-RL. The difference is that here the problem is not
formalized as RL.

An important thing to note is that learning is offline: for each evolved generation, the
performance of each agent on the task is tested over a number of trials, yielding the fitness
value of the agent. Then, the selection function is applied, a new population of agents is born,
and the process continues. The performance evaluation step is somewhat similar to learning
value estimates in Monte-Carlo RL.

Even if the best individual somehow survives for many generations, that individual is not
in itself significant in the evolutionary view; genetic algorithms work with populations, and
not individuals. Learning takes place not along the lifetime of the agent, but along many
generations of (hopefully improving) agents.

Haynes et al. (1995) applied an enhanced variant of genetic programming called strongly
typed genetic programming to the predator-prey domain (see Section 5.2). Strongly typed
genetic programming allows variables of any type and the definition of generic functions that
work on generic data types. The restrictions it imposes also incur a smaller search space than
that of basic genetic programming.

In order to evolve a predator program, the authors used the following set of terminals:
boolean, action (“north”, “east”, “south”, “west”, “here” – stand still), a terminal for “self”,
the current predator agent, and one for the prey agent. They used the following set of func-
tions:

– the if-then-else construct.

– a distance comparison function.

– a function computing the resulting cell position after taking a given action in a given
cell.

– a function computing the Manhattan distance between two cells given as argument (the
Manhattan distance is the sum of the horizontal and vertical offsets between the cells).

Using these functions and terminals, a predator program was evolved by strongly typed
genetic programming. The same program was used by all the four predators. The resulting
best program instructed the predators how to converge on the prey in a more efficient manner
than several previous predator algorithms from the literature.

Programs evolved with strongly typed genetic programming were more humanly under-
standable than those evolved with basic genetic programming. They were also able to gener-
alize behaviour to different world sizes, whereas the genetic programming solutions were not.
The higher quality of the strongly typed genetic programming solutions was probably due in
the most part to the smaller search space size.

Haynes and Sen (1996) attempted to improve on this solution by competitive coevolution
of predators and prey. In coevolution, evolutionary techniques are applied simultaneously to

58

3.1. EVOLUTIONARY TECHNIQUES

several agent behaviours, and the evaluation of these behaviours is based on the performance
they achieve in interaction. Nevertheless, learning is still offline as explained above.

In the setting of Haynes and Sen (1996), a predator and a prey program were developed
by competitive coevolution, in the hope of an arms race that would render the quality of
the predator behaviour progressively better as the prey became more skilled in evading it.
The results were, however, surprising: the prey quickly developed a very simple unbeatable
strategy: it chose a random direction and steadily moved in a straight line along that direction
(the world was toroidal, so the prey was able to do that indefinitely). This result casts a
shadow of doubt on the relevance of the prey behaviours typically used in the pursuit domain
as test-cases for multiagent learning and cooperation algorithms.

Cooperative coevolution was investigated by ’t Hoen and de Jong (2004) in the dispersion
game. This can be thought of as a special case of strategic game (Definition 2.5), where the
agents have the same set of actions, U1 = · · · = Un = U , and they prefer to select different
actions. Dispersion games are among others helpful in modeling task allocation problems,
where, if the tasks have equal priorities, the goal is for the agents to distribute as evenly as
possible across the set of tasks. In this context, the actions of the agents are task choices, so
each action corresponds to a task.

In the version used by the authors, the dispersion game has the same number of actions
as agents: |A| = |U | = n. Thus, the ideal situation is where no two agents select the same
action. This can be represented by the following fully cooperative reward function:

ρ(u1, . . . , un) =

{
1 if ui 6= uj , ∀i, j ∈ A, i 6= j

0 otherwise
(3.1)

The authors evolved n populations of behaviours in coevolution, one for each agent.
The behaviour of an agent was represented as a vector of preferences over actions, ũi =
[ũi,1, . . . , ũi,n]

T, where ũi,o is the preference of agent i towards selecting action uo, o = 1, . . . , n.
Each such vector is a chromosome, an individual in the population. The agent selects an action
using a softmax rule (2.16):

σi(uo) =
eũi,o/τ

n∑
õ=1

eũi,õ/τ

. (3.2)

The fitness of the agents was not computed by using the reward function (3.1), but in
the following way. Each chromosome from an agent population was paired with the fittest
chromosomes from the other agent populations. The strategies represented by these chromo-
somes were then used by the agents to select actions. When several agents chose the same
action – the same “task”, the task was assigned to one of them randomly. The fitness of the
chromosome was 1 if a task was successfully assigned to the agent using the corresponding
strategy, and 0 otherwise. Several trials were performed and the fitness values were averaged
to obtain a better estimate of the agents’ performance.

The fitness of the MAS as a whole was computed by selecting the strategies with the best
fitness from the agent populations, putting them together and executing them. The fitness of
the MAS was then the percentage of tasks that were successfully assigned.

The authors also experimented with the idea of collective intelligence. Collective intelli-
gence addresses the problem of designing utility functions for the agents so that they are both
easily learnable, and when learned give good overall performance of the multiagent system.

59

MULTIAGENT LEARNING: OTHER METHODS

E.g., the so-called “wonderful life utility” is computed by subtracting from the collective utility
of the system with the agent in place, the collective utility with the agent removed.

In the coevolution setting, the utility is measured by the fitness of the system. Then, the
wonderful life utility of an agent is the difference between the fitness of the MAS with the agent
in place, and the fitness of the MAS with the agent removed.

The authors found that using the wonderful life utility led to enhanced performance of the
agents. The process was also significantly less sensitive to the learning parameters such as the
population size, or the number of trials ran for estimating the fitness value.

3.2 Heuristic approaches

The approaches we discuss in this section are oriented toward resource management and task
allocation (see Section 5.4). They typically use a decision making algorithm that relies on a
number of parameters. These parameters are learned by observation, many of the learning
rules being similar in spirit to the temporal difference update (2.17), though the methods do
not use a RL framework.

The Learning ALLIANCE (L-ALLIANCE) framework deals with task allocation in heteroge-
neous multiagent systems (Parker, 1997). The agent actions in L-ALLIANCE are structured on
three levels. An agent (say, agent i) can perform a set of a mid-level functions Ui. When per-
forming any function ui of this set, the agent is working on a high-level task ti(ui), ti : Ui → T
where T is the set of tasks required by the system’s mission. Finally, at the lowest level the
agents can take over functions ui ∈ Ui (begin working on task ti(ui)), or give them up (stop
working on task ti(ui) before it is completed). The efficiency of the agent in performing a
function ui is evaluated via a performance metric, such as completion time, applied to the
task ti(ui).

In executing the low-level actions, the agents are driven by, respectively, motivations of
“impatience” for taking over functions and “acquiescence” for giving them up. The rate at
which they become impatient or acquiescent depends upon three control parameters:

• δfasti (ui), the rate of impatience of agent i concerning function ui, when no other agent
is working on ti(ui).

• δslowi (ui, j), the rate of impatience of agent i concerning function ui, when agent j is
working on ti(ui).

• ψi(ui), the time agent i will maintain function ui before acquiescing to another agent.

Each agent adjust these parameters by the heuristic learning mechanism, using a set Mi

of monitors, one monitor for every function it is able to perform, |Mi| = |Ui|. The monitor mi

of function ui observes all the agents performing task ti(ui) and records their performance.

The system execution is divided in two phases: a learning phase (termed “active learning”
by the authors), and a problem solving phase (though this phase is termed “adaptive learning”
by the authors, in our adaptive learning framework the name is not justified; we give the reason
below). In the learning phase, agents are maximally patient and minimally acquiescent (i.e.,
they do not take over attended tasks and do not give up tasks they began undertaking). The
purpose of this phase is to allow the agents to familiarize with the performance of the team.
In the problem solving phase, the agents become impatient and acquiescent according to their

60

3.2. HEURISTIC APPROACHES

control strategies, to achieve performance, but keep updating their monitors, so that their
contents reflect the current performance of the agents.

We do not give the actual heuristic control strategies and updates (for those see Parker,
1997). Instead, we examine how L-ALLIANCE fits into our DMAS framework (Definition 1.2).
The information contained in the monitors Mi is part of the agent’s internal state si, and is
updated on the basis of the agent’s observations of other agents yi via the dynamics pi. The
internal state si also contains the impatience and acquiescence levels of the agent, as well as
the parameters used in the alteration of these levels. These parameters are themselves altered
on the basis of the information contained in the monitors – so, state influences state, also via
the dynamics pi. The agent then decides to take over or give up tasks by the policy function
hi applied to the impatience and acquiescence components of the state.

We see then why in this view the term “adaptive learning” does not apply to the monitor
and parameter updates occurring during the problem solving phase. In fact, these processes
are still simply learning, though online, as opposed to the learning phase that can be considered
in a sense off-line, because the performance of the system is not relevant then.

The relationship between L-ALLIANCE and DMAS is summarized in Table 3.1. Note that
the control parameters δfasti (ui), δ

slow
i (ui, j), and ψi(ui) are not a part of the internal state of

the agent; they are only constant coefficients in the internal dynamics pi.

L-ALLIANCE DMAS

set of agents A set of agents A
tasks Ti, functions Ui, low-level actions action space Ui

set of monitors Mi part of the internal state space Si
impatience and acquiescence levels part of the internal state si

monitors, impatience and acquiescence levels updating internal dynamics pi
low-level action execution rules policy hi

Table 3.1: Correspondences between the L-ALLIANCE and DMAS elements

Schaerf et al. (1995) approach the load balancing problem from a perspective closely related
to RL. It is instructive to study their formal model of a load balancing multiagent system:

Definition 3.1 A multiagent multi-resource stochastic system is a tuple 〈A,R, p, δ, ζ, L〉 where:

• A is the set of agents, |A| = n being their number.

• R is the set of resources, |R| = m being their number.

• p : A× N → [0, 1] is a probabilistic job submission function; p(i, k) gives the probability
with which the idle agent i submits a new job at time step k. An agent is idle at time
step k if all the jobs it submitted have been completed prior to time step k.

• δ : A×N×R→ [0, 1] is a probabilistic job size function; δ(i, k, d) is the probability that
the job submitted by agent i at time step k has size d.

• ζ : R × N × R → [0, 1] is a probabilistic resource capacity function; ζ(r, k, c) is the
probability that resource r has capacity c at time step k.

• L is the resource selection rule, instructing the agents which resource to choose when
they submit a new job.

61

MULTIAGENT LEARNING: OTHER METHODS

The notation has been slightly altered to accommodate our notational conventions. The
goal of the system is to minimize (i) the processing time per unitary job size, averaged over
all jobs, and (ii) the standard deviation of this quantity. A small average job processing time
yields efficiency, whereas a small standard deviation yields fairness, i.e., no jobs are processed
significantly faster or slower than the others.

We discuss the selection rule L in more detail. The rule dictates how agents choose the
resources to which they submit their jobs. Besides some fixed selection rules, the authors also
study a learning selection rule they term “adaptive”. This rule uses efficiency estimators e
and counters for completed jobs b maintained by every agent for each resource r. The vectors
e and b are initialized to 0.

In the spirit of RL, the information used for learning is local. It comes in form of experiences
(r, kstart, kstop, d) for each completed job. An experience contains, in order, the resource where
the job was submitted, the start and completion times, and the size of the job. At the receival
of each such experience, the agent (say agent i) updates its efficiency estimators and job
counters by:

ei(r)← ei(r) + α

(
kstop − kstart

d
− ei(r)

)
(3.3)

bi(r)← bi(r) + 1, (3.4)

where:

α = β +
1− β

bi(r)
, (3.5)

with β a positive constant.
The probability of an agent for selecting a resource r is given by the roulette wheel:

hi(r) =
h̃i(r)∑

r̃∈R

h̃i(r̃)
, (3.6)

where:

h̃i(r) =

{
ei(r)

−ν if bi(r) > 0

E {ei}
−ν otherwise

(3.7)

with ν a positive constant.
The relation (3.3) can be seen as a temporal difference update (2.17): the old estimate of

ei(r) is moved a fraction α of the distance towards the target
kstop−kstart

d .
We investigate how this learning process and the formal model given by Definition 3.1 fits

in the DMAS framework. The set of resources R is not represented explicitly in the DMAS, but
it is part of the environment, and the state of the resources is part of the environment state
x. The capacity function ζ is part of the environment dynamics f .

The experience tuples (r, kstart, kstop, d) of the agent are its observations yi. The efficiency
estimators ei and the counters bi are components of the internal state si, and the update
formulae (3.3 – 3.5) are part of the agent dynamics pi.

The job submission and size functions p(i, ·) and δ(i, ·) can be interpreted as part of the
agent i’s policy hi; resource choices and sizes of submitted jobs are then part of the stochastic

62

3.3. CONCLUDING REMARKS

agent actions u. The dependence of p(i, ·) and δ(i, ·) on time is captured in DMAS by the
dependence of the agent’s policy on its internal state si. Together with (3.6 – 3.7), the job
submission and size functions completely specify the policy of the agent.

These correspondences are summarized in Table 3.2.

L-ALLIANCE DMAS

set of resources R environment state space X
resource choices, job sizes for submitted jobs action space Ui

experience tuples (r, kstart, kstop, d) agent observations yi
resource capacity functions ζ part of the environment dynamics f

efficiency estimators ei, counters bi agent internal state si
update rules (3.3 – 3.5) agent dynamics pi

p(i, ·), δ(i, ·), resource selection strategy hi agent policy hi

Table 3.2: Correspondences between the load balancing model and the DMAS elements

Now, is α in (3.3) an adaptive parameter or not? This question illustrates the difficulty of
distinguishing between adaptive learning and “static”, non-adaptive learning in some situa-
tions. Since (3.5) only trivially corrects β via the internal state to obtain the learning rate α,
we choose not to consider this parametric adaptation. This distinction is, of course, slightly
arbitrary, and might be more difficult to make out for more complex learning algorithms.

There are a number of approaches in the literature that do not regard multiagent learning
as the highly interactive and proactive process considered in MA-RL and the methods described
above. E.g., Plaza and Ontañón (2003) present a multiagent approach to case-based reasoning
that is probably best described as distributed learning. The case base is divided among the
agents, either in disjoint or partially overlapping subsets. When receiving a new problem to
solve, an agent first attempts to solve the problem by itself, and assesses the quality of the
solution (using e.g., a confidence measure). If the solution is deemed good, it is considered
the final solution. If, on the other hand, the agent finds that the solution is not reliable,
it proceeds to ask other agents about their opinion on the problem. This querying process
continues until a termination condition is satisfied (e.g., a majority is realized).

This situation could arise in real-life if, for instance, each a group of organizations desire
to maintain the privacy of their case bases, but nevertheless wish to collaborate in finding
solutions.

Note that here the MAS is seen as a tool to facilitate a machine learning technique by
decentralizing the learning process. This view is opposite to what has been encountered so
far: in the other methods presented here and in Chapter 2, learning is a tool used by the MAS

to improve its decision making process.

3.3 Concluding remarks

Some of the approaches presented in this chapter take a different view on learning than that
introduced in Chapter 1, where learning is a process that improves the decision making abilities
of an agent along its lifetime.

Evolutionary approaches use many generations of short-lived individuals to perform learn-
ing. For such approaches to work, the interaction between the agents and the environment

63

MULTIAGENT LEARNING: OTHER METHODS

needs to be simulated very efficiently. This is because the fitness evaluation requires a large
number of trials to be executed. Executing them in the real world seems to be out of the
question. Also, it is unclear how the agents could adapt in an online fashion to changes in
the environment, after a behaviour has been learned by evolutionary computation and loaded
into the agents.

One of the approaches in Section 3.2 looked at the MAS as a tool for distributed learning.
Our research does not focus on this perspective, because it appears to have little relevance to
multiagent control.

The heuristic, and sometimes complex nature of the learning methods reviewed in Sec-
tion 3.2 makes them difficult to analyze, and to judge whether adaptation of parameters or
structure could be useful.

64

Chapter 4

Coordination

4.1 Introduction

The problem of coordination arises in multiagent systems due to the distributed nature of
the control exercised by the agents. Coordination is defined by Vlassis (2003) as the process
by which the individual decisions of the agents result in good overall decisions for the group.
The problem is more stringent in cooperative multiagent systems, but also appears when the
agents are self-interested.

An example of coordination in a cooperative setting is a team of agents controlling traffic
lights in a busy city. If they do not properly synchronize their decisions of switching the
colour of the traffic signals, traffic jams will probably result and the likelihood of accidents
will increase. Another example is a network of controllers in a plant: two locally good control
decisions might be harmful to the plant, leading it into a dangerous regime where both the
installations and the people are at risk. When the agents are self-interested, they might still
need to coordinate in certain situations: a police car and an ambulance driving to different
emergencies still have to coordinate their entrance if they meet at an intersection, or they will
crash and neither of the two emergencies will be serviced.

Formally, coordination can be defined in the context of a dynamic multiagent system
(Definition 1.2) as follows.

Definition 4.1 Coordination in a DMAS 〈A,X, f, x0〉 is the problem of consistent selection
by the agents, at each time step k, of a joint action uk = [u1,k, . . . , un,k]

T ∈ U that does not
jeopardize the performance of any agent i ∈ A.

The definition is necessarily vague; any coordination technique is good as long as the agents’
opportunity to reach their respective goals is not eliminated by incorrect action selections. The
definition does not imply that the goals of all the agents are achievable; it says only that they
will remain achievable if they were so before the joint action selection. It also does not say how
easy it will be for the agents to reach their goals after the action selection; some coordination
techniques will be better than others.

An important thing to note is the tight interconnection between learning and coordination.
Effective learning requires coordination between agent actions, though up to some point agents
can learn useful things from miscoordination. Conversely, coordination can be assisted in many
ways by learning.

The first aspect was already mentioned in Chapters 2 and 3, sometimes under disguise
names such as “consistent joint action selection” or “equilibrium selection”. This chapter

65

COORDINATION

treats it in detail, reviewing frameworks and techniques used in achieving coordination. In
order to investigate how learning can help coordination, for each of the discussed techniques,
we differentiate between designed and learned coordination, and focus the exposition on the
latter.

The chapter is structured in the following way. We classify coordination techniques along
several dimensions, after which we review the coordination frameworks encountered in the
literature. Then, we discuss some of the possible alternatives for coordination in a multiagent
system, including all of those mentioned above: learning of coordination, social conventions,
roles, and coordination graphs. We close with some concluding remarks and research oppor-
tunities.

4.2 Taxonomy

Degree of information sharing

Coordination techniques differ perhaps most significantly along the dimension of information
sharing: how much information is shared among the agents, and how this information comes
to be shared.

At one end of the spectrum lie coordination methods that do not require the agents to
explicitly share any information. Agents using such methods must rely on learning, in one
way or another, to develop coordination skills (e.g., Boutilier, 1996; Kok et al., 2005a). At
the other end, agents exchange rich information via communication (e.g., Tambe, 1997). In
between sit techniques relying on prior domain knowledge.

The distinction between these categories is not clear-cut. For instance, roles can rely
exclusively on prior knowledge, or they might require communication to some extent in order
to be properly assigned (Spaan et al., 2002).

Offline design vs. learned coordination

Coordination methods may be designed offline and hardwired into the agents, or learned by
the agents from interactions, during their lifetime. The first approach is typically simpler; the
second is more flexible and is beneficial in open or complex multiagent systems (Walker and
Wooldridge, 1995).

At the very former end of the spectrum lie methods that view coordination as an offline
phase of planning. In this view, the coordination phase is followed by an execution phase when
the formed plans are actually pursued. It is unlikely that this type of offline coordination can
handle the activity of the multiagent systems we focus on. This is because, first, it is unlikely
that an accurate enough model of the problem is available beforehand, and second, even if
the plans were initially satisfactory, their suitability is likely to degrade as the environment
evolves. Therefore, we do not discuss such approaches further.

Along these taxonomy dimensions, we are interested in:

1. all degrees of information sharing;

2. both offline designed and learned coordination, especially the latter.

66

4.3. COORDINATION FRAMEWORKS

4.3 Coordination frameworks

The Markov game (Definition 2.6) and its stateless version, the strategic game (Definition 2.5)
are popular formal models for the coordination problem in the non-communicative setting. The
coordination problem in this setting is interpreted as the consistent selection by the agents
of their part in a joint action. This joint action is somehow deemed good by the agents,
and is many times a game-theoretic equilibrium such as the Nash equilibrium. Hence, the
coordination problem in a Markov game is many times interpreted as the equilibrium selection
problem, introduced in Section 2.6. Note, however, that game-theoretic equilibria are currently
not accepted as the indisputable goal of the multiagent learning problem (Section 2.3.3).

Since we already discussed the strategic and Markov games, we proceed to a different
formal model used in the non-communicative context by Walker and Wooldridge (1995) to
describe the emergence of social conventions. This model is interesting because it is among
the few that explicitly acknowledges the existence of an internal agent state – albeit this state
is a simple memory.

The model consists of the following elements:

• The set of agents A.

• A common set of “strategies” U . The term “strategy” does not have the same meaning
here as that described in Chapter 2: each of the strategies represents a possible con-
vention the agents may agree upon. These can in fact be entire policies or constraints
on policies, e.g., dictating that robotic agents should always yield the right-of-way to
the robot coming from the right (see Section 4.5). However, for modeling the learning
process it suffices if we identify them with primitive actions.

• A set of possible interactions I = U×U . An interaction occurs when two agents meet and
compare their strategies. This is in fact a special structure of the observation functions
ωi, pairing agents at each time step and allowing them to observe each other’s action.
Hence, the common observation space of the agents has the structure Y = A × U , and
an observation yi = [j, uj]

T identifies the agent j with whom agent i interacted together
with the strategy it was observed to use.

• A “memory” si for each agent i. This memory consists of a finite sequence of past
interactions to which agent i participated. Hence, the memory space is Si = Y m, where
m is the length of the memory.

• A “strategy update function” hi : S → U that, given the agent’s memory, chooses the
strategy the agent will follow: ui = hi(si).

The goal is for the agents to eventually settle on the same strategy.

The update is in fact a policy, or a “meta-policy” since it switches among strategies. The
update of the internal memory, though not explicitly present in the model, forms the internal
agent dynamics pi. Similarly, the memory of the agent is its internal state. The notations have
been intentionally altered to bring forth these similarities. The similarities are summarized in
Table 4.1. Note that the agents are homogeneous.

What we see, then, in this model, is a primitive form of learning where the learning process
is a simple transfer of observations to the internal state.

67

COORDINATION

Social conventions model DMAS

set of strategies (conventions) U action space Ui = U, ∀i ∈ A
interactions I observation space Yi = A× U = Y, ∀i ∈ A

memory space Si, of length m internal state space Si = Y m

memory update function pi internal dynamics pi
strategy update function hi policy hi

Table 4.1: Correspondences between the social conventions emergence framework and the
DMAS elements

From the coordination frameworks using communication, we illustrate the Shell for TEAM-
work (STEAM) model (Tambe, 1997). The STEAM model relies, typically for its class, on vast
domain knowledge shared among the agents. This knowledge is specified in operational form
inside each agent, as an operator hierarchy. The operator is the building block of the agents’
behaviour. A portion of an example operator hierarchy for a helicopter attack domain is
presented in Figure 4.1 (taken from Tambe, 1997).

[EXECUTE MISSION]

[Engage] [Wait while battle position scouted]

Wait for scoutingEmploy Weapons [Mask & Observe]* [Scout forward]*

Figure 4.1: An example STEAM operator hierarchy.

Operators are of two types: individual operators, that require a single agent to be executed,
and team operators, requiring the whole team or a subteam for execution. The team operators
are enclosed in square brackets in Figure 4.1, and those involving subteams are marked by an
asterisk.

The core notion of STEAM is the team joint intention. A joint intention to do an action is
a mental state of a team of agents where all members of the team are jointly committed to do
that action, and they mutually believe that they are committed to do it. Informally, the joint
commitment ensures that the action is either taken to the end or terminated jointly by all the
involved agents. In order to execute a team operator in STEAM, the corresponding team or
subteam instantiates a team joint intention to execute it.

A STEAM agent also has a private state that includes information on the application of its
individual operators, and also a team state including beliefs on the team and subteams it par-
ticipates in (such as the team members, the team leader, available communication channels).
The goal of the STEAM agent team is to achieve the top-level team operator (in Figure 4.1,
[EXECUTE MISSION]).

Whenever a team operator is found to be unachievable by the team, a special team operator
called [repair] is invoked, that attempts to reassign agents within the team so that the failed
operator becomes achievable again.

The role of communication in STEAM is to ensure the correct application of the team oper-
ators, by communicating beliefs. This can lead, however, to a large number of messages being
exchanged. In order to limit the communication overhead, STEAM implements a selective

68

4.3. COORDINATION FRAMEWORKS

communication mechanism. More precisely, for every message it is about to send, the agent
heuristically balances the cost of communication with the estimated cost of miscoordination,
taking into consideration the utility of achieving the goal of the team operator and the possi-
bility that the team already knows the information contained in the message. The agent then
sends the message only if the miscoordination cost exceeds the communication cost.

It is not easy to precisely fit this highly complex and expressive framework into the more
general DMAS model. An approximate correspondence is given in Table 4.2.

STEAM Communicative DMAS

individual operator domain-level policy hei
team operator domain-level and message sending policies hei , h

snd
i

private and team state agent internal state si
selective communication message sending policy hsndi

Table 4.2: Correspondences between the STEAM and the communicative DMAS elements

The Communicative Multiagent Team Decision Problem (COM-MTDP) is a framework in-
troduced with the goal of analyzing the optimality / complexity tradeoff in multiagent co-
ordination (Pynadath and Tambe, 2002). We have already introduced and analyzed this
framework as an example in Section 1.4.3.

We illustrated a few representative approaches to modeling coordination in multiagent
systems. We mention here a few other interesting ideas, without going into details. Stone
and Veloso (1999) introduced the periodical team synchronization domains as time-critical
environments in which agents act autonomously with low communication, but in which they
can periodically synchronize in a free-communication setting. In these periods of free com-
munication, the agents establish so-called “locker room agreements”, consisting of role forma-
tions together with environmental triggers for switching between formations. The agents then
move into the low-communication periods, where they apply the previously set agreements,
and are also allowed a limited amount of communication. This is a combination of off-line
and on-line coordination. The authors applied this approach to robotic soccer, where the
free-communication period was the mid-game break. A more relevant example is perhaps a
robotic search and rescue team, that would have the opportunity of establishing locker-room
agreements before starting a mission, and possibly in periods of less intensive activity during
the mission.

Another interesting view is that coordination can be mediated by specialized entities ex-
isting in the environment, called coordination artifacts (Ricci et al., 2005). Such an artifact
consists of a usage interface operable by agents via domain-level actions, a set of operating
instructions describing the interface, and a specification of the coordination behaviour imple-
mented by the artifact. One can think of a semaphore system in an intersection, with green
light request buttons for pedestrians and bikers, in order to form an image about such an
artifact. This type of coordination falls into the online category, and offers a compromise
along the information sharing dimension, in the following way. The agents no longer need to
share extensive domain knowledge, which is integrated into the coordination artifact; instead
they only need to know how to read the operating instructions.

69

COORDINATION

4.4 Learning coordination

The most popular model for learning coordination is the Markov game (Definition 2.6). As
noted in Section 4.3, the coordination problem in this context is many times interpreted as
the equilibrium selection problem.

Learning of coordination is typically studied on homogeneous, non-communicative mul-
tiagent systems endowed with full measurability. Many times, further assumptions such as
measurable actions, or known reward functions, are necessary for the learning algorithms.

These are all characteristics of the game-theoretic approaches to multiagent learning. For
a multiagent learning approach to classify as learning coordination, we further require that
the agents reason explicitly on coordination. This means that the agents acknowledge the fact
that the action choices of other agents are not necessarily part of the desired joint action; and
that, reasoning explicitly in terms of the other agent’s actions and using learning mechanisms,
the agents strive to minimize the negative impact of this issue on their performance.

This includes learning of coordination mechanisms such as roles or social conventions. We
do not discuss them in this section, but treat them separately in more detail in the following
sections.

4.4.1 Learning about other agents

An obvious way to learn coordination is to learn how other agents behave, predict their actions
using this knowledge, and choose an appropriate response to these actions. The knowledge on
another agent’s behaviour is the model of that agent. This approach is often called “opponent
modeling” in the literature, because it was mostly used in the game-theoretic context to exploit
other agents once their model is known. It is, however, useful in cooperative settings as well,
when the agents only have access to limited information about each other, and to limited
communication. We therefore refer to learning about other agents by the broader term agent
modeling. Typically, modeled agents are assumed to be reactive, and thus reactive agent
models are maintained and updated by the learning agent.

Note that, in order to exploit the learned models, the agent has to know the effect of other
agent’s actions on its performance. In a stochastic game, that means that the agent (say agent
i) has to know, or learn a model of, its reward function ρi.

Fictitious play is one of the simplest agent modeling algorithms. It was designed for
repeated stochastic games. In fictitious play, agent i models each other agent j ∈ A, j 6= i by
a counter function Nj : Uj → N. The value Nj(uj) counts how many times agent j has been
observed taking action uj . At every game repetition, agent i estimates j’s mixed strategy by :

σ̂j(uj) =
Nj(uj)∑

ũj∈Uj

Nj(ũj)
, uj ∈ Uj . (4.1)

It then plays a best response σ∗i to the estimated reduced strategy profile σ̂−i (this reduced
strategy profile consists of the estimated strategies of all the agents except i – see Section 2.3.2).
Convergence results for fictitious play exist only in several restrictive settings, among which
fully competitive games are notable. An interesting property of fictitious play is that Nash
equilibria are absorbing: that is, if at any point the agents play a Nash equilibrium, they will
continue playing that equilibrium for all subsequent repetitions of the game.

The most important shortcomings of fictitious play are the restriction to repeated games,
and the requirement that the actions of the agents are measurable. Boutilier (1996) attempted

70

4.4. LEARNING COORDINATION

to soften these restrictions. The author argued that coordination problem in a multiagent
Markov decision process (MMDP) (Definition 2.7) can be decomposed into coordination prob-
lems at each state, and solved locally in terms of expected returns in those states. Each visit
to a state of the MMDP is one play of an embedded repeated game corresponding to that state.
An important advantage of this approach is that it allows for adding coordination overhead
only to those states where coordination problems arise – i.e., where the optimal joint action
is not uniquely determined.

The method used to learn coordination in this setting was a Bayesian extension of fictitious
play. Agent i models agent j by a prior distribution over j’s strategies. It uses this prior to
predict the actions of agent j, and updates it via Bayes’ rule using its observations. The
Dirichlet distribution was used as prior in the work. The Dirichlet distributions in the MMDP

states can be conveniently expressed with a “counter” function similar to that used in fictitious
play: Nj : X×Uj → R. The value Nj(x, uj) “counts” how many times agent j executed action
uj in state x. The meaning of the quotes will become evident immediately.

If actions are measurable, then Nj is easily updated by adding a unitary increment to the
counter of the observed action. For the case of non-measurable actions, the agents use Bayes’
rule to infer a distribution over other agents’ actions. After each time step k, Nj(xk, uj,k) is
increased with a fractional increment equal to the probability that agent j performed action
uj,k. This is why Nj is not exactly a counter function, though the meaning of its values is
similar to that of the counters in fictitious play.

To infer the posterior probability that agent j executed uj,k at time step k, agent i uses:

P (uj,k |xk, ui,k, xk+1) =
P (xk+1 |xk, uj,k, ui,k)P (uj,k |xk)

P (xk+1 |xk, ui,k)
, (4.2)

where agent i observed a transition from xk to xk+1, after it executed ui,k. The quantity
P (uj,k |xk) belongs to the estimated policy of agent j in xk, and is represented by the Dirichlet
prior, computed similarly with (4.1):

P (uj,k |xk) = ĥj(xk, uj,k) =
Nj(xk, uj,k)∑

ũj∈Uj

Nj(xk, ũj)
. (4.3)

The other two probabilities can be computed by integration from the transition function f :
P (xk+1 |xk,uk) = f(xk,uk, xk+1). Hence, (4.2) assumes that a model of the environment is
known. Though the author does not mention this, a model of the world could be learned in a
similar fashion with the agent model.

Hu and Wellman (2001) studied recursive agent models in the domain of an auction mar-
ket. For the purposes of modeling, the policy of a non-learning agent was assumed to be
deterministic and affine linear in its state:

hj(sj) = Ajsj +Bj , (4.4)

with Aj and Bj constant matrices of appropriate dimensions. This linear relation expresses
the relation between the quantities of goods sj held by the agent, and its bidding prices uj .

Note that (4.4) implies that the internal state of the modeled agent needs to be observed,
or estimated in its turn.

The modeling level of an agent was defined recursively as follows:

71

COORDINATION

• A 0-level learning agent models other agents by looking at the history data of those
agents’ actions (similarly to fictitious play).

• A 1-level learning agent models the policies of other agents, assuming these policies are
fixed (e.g., of the form (4.4)).

• An n-level learning agent models other agents as being (n− 1)-level learning agents.

Perhaps the most important conclusion of this work is that incorrect assumptions on other
agents are harmful: the 0-level algorithm (making the fewest assumptions on other agents)
performs better than higher-level algorithms if the modeling level of the other agents is under-
or overestimated.

4.4.2 The value of coordination

Most coordination techniques ask the question: “How can agents coordinate?” and then
proceed to seek for an answer, typically an optimal, coordinated joint policy of the agents.
However, if coordination is not a certain fact – which is especially the case for learning of co-
ordination, where several (perhaps many) rounds of miscoordination are required until agents
learn how to coordinate – another important issue arises. It might be that the possible misco-
ordination is so harmful that an alternate, suboptimal but safer path is preferable. So, a new
question is “When should agents strive to coordinate?” or, equivalently, “What is the value
of coordination?”

Boutilier (1999) introduced an extension of value iteration that, together with the state
of the underlying problem, explicitly considers the state of the coordination mechanism. The
actual nature of the coordination mechanism is in principle unimportant. Its state variable
can be intuitively thought of as having two values: “coordinated” and “uncoordinated”. The
discrimination along this state dimension enables the usage of the dynamic programming
engine to reason on the benefits of attempting to coordinate.

Specifically, if a certain state of the underlying Markov game requires coordination, and
the value of the coordination mechanism state at that underlying state is “uncoordinated”,
the agent may choose not to pursue the path to the uncoordinated state due to the costs of
miscoordination.

Chalkiadakis and Boutilier (2003) placed the value of coordination in a fully Bayesian
framework. The state of the agent is expanded to a belief state containing beliefs on the
model of the environment and the models of other agents. The tradeoff between exploration
(improving the model) and exploitation (using it) is resolved via Bayesian inference. The
expected return given the current state is weighed against the possible increase in knowledge
brought by taking an exploratory action. The latter component is termed “expected value of
information”. If the value of this component is high, the agent will be biased towards learning
about the world and the other agents, at the risk of losing immediate reward, so that in the
future it will be more capable to coordinate. If the value of the information is low, the agent
will prefer safer choices.

While providing methods of computing the value of coordination, these approaches do so
at high computational costs. This problem is accentuated for the second method, where exact
inference becomes intractable even for small problems, while approximate methods become
impractical for not significantly larger problems.

72

4.5. SOCIAL CONVENTIONS

4.5 Social conventions

A social convention is a recipe that places constraints on the behaviour of the agents. As
such, social conventions have two functions: (i) they strike a balance between the individual
freedom of the agents on the one hand, and the goal of the multiagent system on the other;
and (ii) they simplify the agents’ decision making process (Walker and Wooldridge, 1995).
From a coordination perspective, we are more interested in the latter function. When the
agents are faced with choosing from a set of otherwise equally good joint actions (a tie), they
can use social conventions to focus their choice on fewer of these joint actions. Ideally, after
doing that they are left with a single joint action (i.e., no the tie has been eliminated), and
coordination arises.

The typical example of a social convention in everyday life is the righthand right-of-way
rule applied by drivers when arriving at an unmarked intersection. Note that this convention
is not tie-free: if all the streets meeting at the intersection are occupied, a tie arises, which
must be somehow broken by a mechanism other than the righthand right-of-way!

Social conventions should be rational, in order to appeal to rational agents. That is, given
that the social convention is common knowledge, the agents are better off by abiding it rather
than not.

As any coordination technique, social conventions can be designed offline or be learned in
an online fashion from the interactions between agents.

Designed social conventions

If the action sets of the agents are discrete and common knowledge, a very simple social
convention called lexicographic ordering can be applied (Boutilier, 1996). This convention
requires that the set of agents is ordered, the action sets of the agents are ordered, and these
orderings are common knowledge. By using the orderings, the agents can uniquely sort the
joint actions first by agent and then by the action of each agent. Coordination is then achieved
if each agent selects the first joint action in its sorted list, and executes its part of this joint
action.

Learned social conventions

Typically, when talking about “conventions emergence”, researchers use simple learning rules
to update the agents’ choice of social conventions. So, the term “emergence” is in this context
just another name for learning. The work of Walker and Wooldridge (1995) falls along this
line. The model used by these researchers to describe conventions emergence has already
been introduced under Section 4.3. The model assumes that the set of possible conventions
is common knowledge, and that at each time step agents are paired two by two and allowed
to interact. During this interaction, the two agents have the chance to observe and memorize
each other’s current convention of choice. The memory of an agent is of finite length, and is
used to trigger changes in the convention of choice of that agent, via the policy hi.

The researchers investigated a set of policies based on majority rules, in some instances
also allowing the agents to communicate their memory contents. It turned out that there
is a tradeoff between the speed of convergence to a social convention, and the number of
convention changes incurred in the process. The number of switches is a measure of the cost
of the learning process, since every switch between conventions is likely to incur a cost for the
agent in real life.

73

COORDINATION

Matarić (1997) casted the social conventions learning problem in the reinforcement learning
framework, by interpreting social rules as actions and providing reinforcement for these actions.
The power of RL was then available for learning the social conventions.

The author used a physical domain where robotic agents had to forage for “food” (pucks)
over a limited area, and return the pucks to home base. The agents had to learn (along other
social behaviours) a social convention for yielding in one-to-one motion conflicts. Reward was
given to the agents not only for progress towards their (individual) goal, but also for:

– repeating behaviour observed in other agents – “observational reinforcement”. This is a
form of imitation;

– reinforcement obtained by other agents – “vicarious reinforcement”. This is a heuristic
solution to the structural credit assignment problem, rewarding an agent for the overall
progress of the multiagent system.

Using a weighted combination of the rewards obtained from these three sources (individual,
observational and vicarious), the agents successfully learned the yielding social rule. Due to
the small number of RL states (interpreted from environmental cues in a designed fashion) and
actions, the obtained results are not very insightful. However, the framing of learning social
conventions in the RL methodology is powerful.

4.6 Roles

A role is a constraint imposed on the action space of an agent. Roles were formalized within
the DMAS framework by Definition 1.11. In practice, roles reduce the number of actions
that agents have to consider when taking a decision. Roles are, therefore, very similar to
social conventions. The difference is that the constraints imposed by roles are applied to the
action space prior to computing the set of actions eligible for execution in the current state
(say, the set of equilibria of the stochastic game), whereas the constraints imposed by the
social conventions are applied to this set, after it was computed. Roles have then a greater
potential of simplifying the decision-making process of the agents than social conventions. This
is because they reduce the size of the input to the time-consuming, actual decision making
process of the agent. This process is illustrated in Figure 4.2.

Role constraints

eligible

space

action

action

chosen

actionsaction set

constrained

constraints

Social conventions

making

Core decision

Figure 4.2: Decision making with roles and social conventions.

Designed roles

The literature dealing with offline designed roles typically associates the following elements to
a multiagent system endowed with roles:

• a set of roles U r, containing m = |U r| roles.

• a priority ordering (preference ordering) over roles, {ur1, . . . , u
r
m}. This encodes the

importance of the roles in the task to be performed.

74

4.6. ROLES

• a utility (potential) function ρr : X ×A× U r → R. The value ρr(x, i, urj) measures how
fit agent i is to fulfil role urj in the environment state x.

• a set of formations (strategies). Every formation is associated with a different priority
ordering.

• a set of rules for switching among formations.

When the literature uses several names for an element, alternatives were given in paren-
theses (Spaan et al., 2002; Stone and Veloso, 1999).

The rules for switching among formations are typically simple. E.g., in robotic soccer, one
formation can be used when the team has possession of the ball and another when the ball is
with the opposing team (Spaan et al., 2002). A larger set of environmental cues may be used
to determine formations switching (Stone and Veloso, 1999).

If we assume that the roles and the utility function are common knowledge, and that the
action sets are discrete, roles assignment in each state can be performed by Algorithm 4.1
(Spaan et al., 2002).

Algorithm 4.1 Role assignment for agent i

Require: roles U r, utility function ρr

Input: current state x
1: Ã← ∅
2: for each role urj in the current formation {ur1, . . . , u

r
m} do

3: assign role urj to agent a∗ = argmaxĩ∈A\Ã ρ
r(x, ĩ, urj)

4: Ã← Ã ∪ a∗

5: end for

If the agents do not know each other’s utilities in performing the roles, they can exchange
them by communication before line 3.

Learned roles

When the roles assignment is learned, the literature does not consider priority orderings over
roles. This is because in the presence of learning, priority orderings become superfluous:
provided that the learning is successful, the priority orderings will be implicit in the learned
role choices. This also rules out formations and the rules for switching formations.

We are left with two elements: the set of roles, and the utility function. This yields two
types of role learning:

(i) learning both the roles and the utility function.

(ii) learning only the utility function.

Along the first line, there exists research showing that, under certain conditions, teams of
learning agents have a tendency to evolve towards behavioural diversity (Balch, 2000). That
seems to imply both that specialization in multiagent teams, i.e., roles, is beneficial in some
cases, and that it can be effectively learned by the agents.

Along the second line, Prasad et al. (1998) applied utility learning to a multiagent cooper-
ative problem solving domain. The agents learn which roles to assume in different situations,

75

COORDINATION

using the Utility, Probability and Cost (UPC) framework, described below. The activity of
the system is divided into a learning phase and a problem solving phase. During the first
phase, agents learn appropriate situation-based role assignments, which are then applied in
actual problem solving.

We will regard the problem from the perspective of one agent perspective and omit the
agent index. States are mapped into a smaller number of situations, X. The agent can fulfill
any of a set of roles U r. It maintains tables of utilities, probabilities, costs and potentials
for each role in each situation. The utility U(x, ur) is the agent’s estimate of the final state’s
expected value given that it selects role ur in situation x. The probability P (x, ur) represents
the uncertainty of the agent that the final state will be reached from x given that it chooses
role ur. The cost C(x, ur) represents the expected computational cost of reaching the final
state from x after choosing ur. The potential of a role π(x, ur) estimates the usefulness of
a role in discovering pertinent global information and constraints. This measure is strongly
related to the value of coordination: if π(x, ur) is high, it biases the agent towards discovering
new information on the problem, risking its short-term performance in the process.

An objective function g is used to evaluate a role choice given its utility, probability, cost
and potential values. This function corresponds to the role utility function ρr introduced
above. During learning, this function is used to choose roles via a roulette wheel selection
mechanism. The probability of choosing role ur in situation x is:

h(x, ur) =
g (U(x, ur), P (x, ur), C(x, ur), π(x, ur))∑

ur′∈Ur

g (U(x, ur′), P (x, ur′), C(x, ur′), π(x, ur′))
. (4.5)

An agent learns U , P , and π estimates in a Monte Carlo fashion (cost is disregarded in the
objective function in this particular work) (Prasad et al., 1998). After each problem solving
instance in the learning phase, the agent updates the estimates for all situation-role pairs
(x, ur) encountered en route to the final (solution) state F by:

U(x, ur)← U(x, ur) + α(UF − U(x, ur)) (4.6)

P (x, ur)← P (x, ur) + α(OF − P (x, u
r)) (4.7)

π(x, ur)← π(x, ur) + α(πF − π(x, u
r)), (4.8)

where UF is the utility of the final state; OF is 1 if the final state was a success and 0 if it
was a failure; and πF is 1 if conflicts between agents followed by information exchange were
encountered on the path to the solution, and 0 if not. The constant α is a learning rate.

In the problem solving phase, the agent uses greedy role choice on the learned values:

h(x) = arg max
ur∈Ur

g (U(x, ur), P (x, ur), C(x, ur), π(x, ur)) . (4.9)

This approach resembles reinforcement learning in the following ways. The learning se-
lection rule (4.5) can be thought of as an exploratory policy related to softmax, and (4.9) is,
in fact, a greedy policy in the objective function. Information about the joint utility of roles
selection is encoded in the targets used by the updates. However, the value estimates take into
account only the role choice (action) of one agent. With greedy action selection, the method
probably suffers from threats to convergence similar to those that affect basic Q-learning in
multiagent contexts, especially if couplings between agents are significant, which is typically
the case in task allocation.

76

4.7. COORDINATION GRAPHS

4.7 Coordination graphs

In almost all realistic situations, an agent does not have to consider the entire joint action
and coordinate with all other agents, in all the environment states. Rather, given the current
environment state, only a small set of the other agents influences the outcomes of the agent’s
actions. Moreover, each agent may be interested in only certain components of the environment
state vector.

Coordination graphs are a model used to represent situations where these assumptions
hold (e.g., Guestrin et al., 2002). They are typically placed on top of MMDPs as the under-
lying task model. A coordination graph has agents in the nodes, and the arcs express the
coordination relationships between agents: if two agents are connected by an arc, they need
to directly coordinate their actions. An example is given in Figure 4.3(a). Without knowing
the environment state, agent a1 knows that it needs to coordinate with a2, a3 and a4, agent
a2 needs to coordinate with a1 and a4, and so on.

a4

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✪
✪

✪

❡
❡
❡

❡
❡
❡ ✪

✪
✪

a1

a2 a3

✎
✍

☞
✌

(a) Prior to conditioning on the state.

Q3

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✪
✪

✪

❡
❡
❡

✪
✪
✪

a2 a3

a4

a1
Q1 Q2

✎
✍

☞
✌

(b) After conditioning on the state.

Figure 4.3: An example coordination graph.

After conditioning on the current environment state x, the coordination graph might reduce
to something like Figure 4.3(b) (henceforth the example is borrowed from Kok et al. (2005a)).
The functions Qi are the local expected returns (Q-functions) and specify the coordination
dependencies between agents: e.g., Q1 is the local Q-function involving only agents a1 and a2.

These local expected returns are components of the global Q-function of the MMDP in state
x. Since in an MMDP the reward of the system is the sum of the agents’ rewards, the global
Q-function is the sum of the local Q-functions:

Q(x,u) = Q1(u1, u2) +Q2(u1, u3) +Q3(u3, u4), (4.10)

where, of course, u = [u1, u2, u3, u4]
T. We omit the state variable in the local Q-functions

since they are already conditioned on the current state x.

An optimal action choice u∗ that maximizes Q can be found by variable elimination. This
proceeds as follows: at each step, an agent is chosen for elimination. This agent collects
the local Q-functions he is involved with by communication with its neighbours, and then
computes an optimal strategy that is conditioned on the action choices of the rest of these
agents. Since the overall strategy no longer depends on the chosen agent, it can be eliminated
from the graph. The process continues iteratively until only one agent remains, the action
of which can be trivially chosen to maximize the return. In reverse order of elimination,
agents choose their actions using their conditional strategies, given the actions chosen by their
predecessors.

77

COORDINATION

The optimal joint action found in this way does not depend on the order in which agents
are eliminated. The efficiency of the algorithm, however, does.

In the example of Figure 4.3(b), after being chosen for elimination, agent a1 in Figure 4.3(b)
collects the local Q-functions Q1 and Q2 in which he is involved, and maximizes over their
sum:

max
u

Q(x,u) = max
u2,u3,u4

[
Q3(u3, u4) + max

u1

[Q1(u1, u2) +Q2(u2, u3)]

]
. (4.11)

The conditional strategy of agent a1 corresponds to the inner maximization term:

Q4(u2, u3) = max
u1

[Q1(u1, u2) +Q2(u2, u3)] . (4.12)

The agent computes and communicates the new Q-function Q4(u2, u3), essentially committing
to execute the action that maximizes this function once a2 and a3 have chosen their actions.
The relation (4.11) can now be written as:

max
u

Q(x,u) = max
u2,u3,u4

[Q3(u3, u4) +Q4(u2, u3)] . (4.13)

Since only Q4 depends on u2, agent a2 computes Q5(u3) = maxu2
Q4(u2, u3). The relation

(4.13) can be written as:

max
u

Q(x,u) = max
u3,u4

[Q3(u3, u4) +Q5(u3)] . (4.14)

By elimination of agent a3 via Q6(u4) = maxu3
[Q3(u3, u4) +Q5(u3)], (4.14) reduces to:

max
u

Q(x,u) = max
u4

Q6(u4), (4.15)

that is a straightforward maximization.

After a4 chooses u∗4 = argmaxu4
Q6(u4), it communicates this choice to the other agents.

Agent a3, binding u4 to u∗4 in (4.14), computes u∗3 via a simple maximization, and commu-
nicates it. This backward pass continues up to agent a1, at which moment the optimal joint
action u∗ is determined.

The selective dependence on state and actions of an agent’s returns, central to the coor-
dination graphs approach, can be conveniently represented by so-called “value rules” (Kok
et al., 2005a). These rules condition the returns of the agent on the environment state and the
actions of the other agents. For instance, a rule describing that when agent a1 is very close to
a wall (say, lying along the vertical coordinate 10) and moves north, it will bump, would look
something like:

if Y1 > 9.9 and u1 = move-north then q1 = −10, (4.16)

where the vertical coordinate Y1 is a component of the environment state x. The return of the
agent can then be obtained by summing the returns of the value rules whose condition parts
are satisfied.

The variable elimination algorithm described above is used to ensure a consistent selection
of the optimal joint action given the state of the game. So, its function is similar to that of
social conventions. This means that, in a manner similar to that presented in Figure 4.2, the

78

4.7. COORDINATION GRAPHS

problem can be further simplified by combining coordination graphs with roles (Kok et al.,
2005a). Roles can be assigned to the agents by Algorithm 4.1.

If the agents are assigned roles, then a further conditioning of the coordination graph on
the role restrictions follows after that on the environment state in Figure 4.3(b). Alternatively,
we can say that a role term is added to the condition part of all the value rules of the agent.
The process is represented schematically in Figure 4.4.

Variable

reduced set

of value rulesof value rules

initial set reduced set

of value rules
Role conditioningState conditioning

elimination

chosen

action

Figure 4.4: Decision making with roles and coordination graphs.

Designed coordination graphs

If the coordination relationships between the agents are known a priori, the coordination graph
can be designed offline and wired into the agents. This is the approach taken by Guestrin
et al. (2002) and by Kok et al. (2005a).

The variable elimination algorithm presented above requires communication between the
agents. However, since the resulting joint action does not depend on the order in which agents
are eliminated, with additional assumptions variable elimination can be run in parallel at all
agents (Kok et al., 2005a). These assumptions are the following:

• There exists an lexicographic ordering of actions, and this ordering is common knowledge
among all agents. This ordering is used to break ties in a consistent manner during the
backward pass of variable elimination.

• The value rules of an agent are common knowledge among all agents connected to that
agent in the coordination graph.

• An agent observes the components of the state that appear in the condition part of the
value rules of all the agents it is connected to in the coordination graph.

Learned coordination graphs

Kok et al. (2005b) present a method for learning coordination relationships when they are not
available a priori. If no prior knowledge is available, the initial coordination graph will have
no arcs, and the agents will be independent learners. If some of the coordination relationships
can be guessed, as it will most likely be the case in many situations, then the coordination
graph can be initialized to capture them, and be afterwards extended by learning.

The agents create hypothetical arcs in the coordination graph, and store statistics of
expected returns for these hypothetical arcs. Periodically, the agents examine the stored
statistics, analyzing whether the difference between the obtained returns with the hypothetical
arc in place, and without it. If the difference is statistically significant, then there is benefit in
considering the corresponding coordination relationship, so it is inserted into the coordination
graph.

79

COORDINATION

4.8 Concluding remarks

We have reviewed in this chapter some representative frameworks and the most relevant tech-
niques for coordinating the activity of a multiagent system. Many of the approaches presented
here look at coordination as a distinct process, separate from learning or added on top of it.
Indeed, coordination issues can arise both in the presence and absence of learning. We believe
though that the two activities are tightly interrelated, being both manifestations of the effort
of rational agents towards their goals. We therefore believe that looking at them from a unified
perspective can be very helpful.

The framework of coordination graphs is an important step in this direction. Coordination
graphs are a tool for coordination, but can also be used as a representation of the multiagent
learning task (Kok and Vlassis, 2004). We hope that our DMAS framework is a complementary
step. Viewing both learning and coordination as part of an agent’s dynamics should facilitate
the interpretation and analysis of these processes and of their interconnection.

Some important research opportunities stem from the agent modeling area. Most of the
approaches have a common shortcoming: they consider the modeled agent to be a static,
reactive system. At most, recursive modeling looks considers agents that in their turn model
other agents. The static agent assumption is violated in most settings. An immediate and
common example where it fails is when a modeled agent is also a learning agent. Furthermore,
most agent modeling approaches use black-box models, with the notable exception of recursive
modeling where a simple linear policy is assumed (Hu and Wellman, 2001) (see Section 4.4.1).
This ignores cooperative situations where (perhaps rough) models might be known by the
agents.

The solution to the first problem is using a model that is able to represent agent dynamics.
The solution to the second problem is using grey-box modeling, where the model is assumed
partly known. At least two possibilities come to mind:

• If the structure of the model is known (grey-box modeling), filtering approaches could
be used.

• If nothing is known about the modeled agent (black-box modeling), dynamics might still
be captured by a neural network.

Further opportunities for learning

Coordination mechanisms always add an overhead to decision making (in terms of process-
ing, communication, or both). This overhead is more significant for techniques that share
little information between agents, such as learning of coordination (see e.g., Chalkiadakis and
Boutilier, 2003). Therefore, in many situations it is desirable that the agents ask not only (i)
“How to coordinate?” and (ii) “What is the value of coordination?”, but also (iii) “Where to
coordinate?”. Specifically, the agents should be very selective with the situations where they
apply coordination mechanisms.

One flexible way of doing this is the online discovery of coordination needs. This falls under
the term of structural adaptation, and we have seen an example in Section 4.7 (Kok et al.,
2005b). Another work in this direction is (Buşoniu et al., 2005). These are just first steps,
and the existence and form of general criteria answering question (iii) should be investigated
further.

80

Chapter 5

Multiagent application domains

5.1 Introduction

We review in this chapter the specific application domains used by the multiagent system
(MAS) literature as test-beds for learning and coordination approaches. We select the most
promising domains that could be used to validate our research into multiagent learning and
coordination. We identify the specific challenges posed by each of these domains, and investi-
gate how well it fits in the large-scale traffic incident scenario of the Interactive Collaborative
Information Systems (ICIS) project.

The task that needs to be performed by the MAS influences its position along the taxon-
omy dimensions introduced in Section 1.3. It influences, of course, the environment-related
dimensions: whether (and to what degree) communication is available, whether (and to what
degree) the environment is observable, and whether the agents have local or global perspec-
tives. Moreover, the objective of the task translates into the goals of the agents, and therefore
influences the degree of cooperation between the agents. The task might also imply design
considerations that restrict choices along the rest of the dimensions (agent heterogeneity, re-
activity vs. deliberation) but at this point we do not consider these aspects.

Since we are interested in cooperative agent teams, we will focus on cooperative tasks.
We bias the review towards partially observable tasks, but that allow in a first approximation
the assumption of complete observability. We do not impose restrictions along the other
dimensions, but mention any such restrictions implied by the reviewed domains.

5.2 Robotic teams

Robotic teams (also identified as “multi-robot systems” by the literature) are probably the
most widely used MAS application domain. Each agent is in this case a robot, and the task is
instantiated on a spatial domain, most often having two dimensions.

The multi-robot domain can be real or simulated. The most interesting advantage of the
simulated version is that the difficulty of the task is under the control of the designer. Other
advantages are the lower cost and greater speed of the experiments. The simplest abstraction
of a multi-robot domain is the two-dimensional, rectangular gridworld. It is especially popular
in the multiagent reinforcement learning literature (e.g., Hu and Wellman, 2003; Bowling and
Veloso, 2002). Many varieties and extensions exist, such as:

81

APPLICATIONS DOMAINS

– toroidal world, where advancing beyond the edge returns the agent on the opposite side
(e.g., Kok et al., 2005b);

– continuous coordinates (e.g., Sen et al., 1994);

– circular (e.g., Touzet, 2000) or arbitrarily shaped world (the latter especially useful in
multiagent localization and mapping).

In what follows, we list the most relevant multi-robot tasks studied in the literature. We
use the terms “agent” and “robot” interchangeably. Since the literature typically uses two-
dimensional tasks, we describe them in two-dimensional terminology. Extensions to three
dimensions are however possible for all these tasks.

Navigation

The goal of the navigation task is for each agent to find its way from some starting position to
some final, goal position, while avoiding harmful interference with other agents (e.g., Hu and
Wellman, 2003; Bowling and Veloso, 2002). The goal position may be fixed or may change
dynamically. The importance of the navigation task is obvious, and this task appears, either
implicitly or explicitly, as a basic building block of all other multi-robot tasks.

Area Sweeping

This task involves navigating through the multi-robot environment for either observation or
exploitation purposes. Several kinds of related area sweeping tasks exist:

• Retrieval: retrieving objects from the environment (e.g., Matarić, 1996).

• Coverage: navigating over as much surface from the environment as possible, for instance
for the purpose of harvesting resources or cleaning (e.g., Balch and Arkin, 1994).

• Exploration: observing as much surface of the environment as possible. The difference
from coverage is that the agents need not actually reach every point of the environment,
but only bring it in sensor range. Note that retrieval implicitly involves an initial (if the
objects are grouped) or permanent (if the objects are scattered) exploration component.

Both coverage and exploration have continuous variants, where the agents need to minimize
the time elapsed between two consecutive passes over (observations of) every point in the
environment.

Multi-target observation

The multi-target observation task is actually an extension of the exploration task, where the
goal of the agents is to maintain within sensor range a group of targets that are themselves in
motion (e.g., Touzet, 2000).

Object transportation

The object transportation task, as its name implies, requires the relocation of a set of objects
into given final positions and configuration. Many times the method of moving an object is
pushing it. This task is especially useful for studying coordination, since the mass or other

82

5.2. ROBOTIC TEAMS

properties of some of the objects may exceed the transportation capabilities of one agent, thus
requiring several agents to coordinate in order to bring about the objective (e.g., Matarić,
1996).

Robotic soccer

Robotic soccer is a very popular test-bed for multiagent learning and coordination approaches,
both in its simulated and real variants (Stone and Veloso, 2000). The reason is that it com-
bines all the tasks presented above, possibly adding other things as well (such as limited
communication, leading to the necessity of selectivity in exchanging messages). It involves for
instance object retrieval and transportation (intercepting the ball and leading it into the goal),
multi-target observation (keeping the adversary team under observation), and an advanced
version of coverage task – the strategic dynamic placement of the players on the field.

Lately, robotic soccer competitions are complemented by a rescue competition, where the
objective is for the team of robots to salvage victims from simulated disaster areas.

Attack and pursuit

Attack and pursuit tasks stem from research in the military field, and involve the destruction
or capture of static and / or moving enemy targets by the robotic teams. This type of task
involves a special case of foraging, where the objects are attacked upon discovery. Such
offensive tasks may also conceivably include a phase of stealth scouting, where multi-target
observation is the main component.

One example of such a task is the helicopter attack domain (Tambe, 1997). Another is
the pursuit domain, where several “predator” agents in a gridworld have to capture a moving
“prey” agent by converging on it (e.g., Kok et al., 2005b). This latter domain is a very
popular type of gridworld task. The team of predators contains either two or four predators;
and typically a single prey agent exists.

The challenges posed by robotic team domains can include (and in real domains, typically
will include):

– partial observability (due to the limited number of sensors and their limited range);

– uncertain observations and uncertain effect of robot actions (due to noisy sensors and
imperfect actuators);

– limited communication;

– time constraints on the decision-making process;

– limited resources available to a robot’s control program.

In a disaster scenario such as the ICIS large scale traffic incident, the main application of
multi-robot systems is to robotic search and rescue teams. Robotic airborne scouts may be
the first to observe the scene of the disaster; rescue robots may be the first to advance in the
dangerous area where the incident occurred. In fact, rescue robots might be the only relief
that can reach the incident area for a very long time; for instance, the Mont-Blanc tunnel fire
raised the temperature in the tunnel so much that manned rescue teams were unable to get
inside for several hours.

The following skills might be useful for the robotic search, rescue and assistance teams:

83

APPLICATIONS DOMAINS

• Navigation skills will presumably be needed in the incident area due to the agglomeration
of vehicles and debris.

• Exploration, foraging and transportation skills can be used to retrieve victims and return
them to a safe area for medical assistance.

• Multi-target observation by airborne scouts can be used to monitor and optimize the
activity of the manned and robotic rescue teams.

Though soccer and attack teams are not immediately applicable to the rescue task, they
bear strong resemblance and pose similar challenges with this task. Therefore, results of
research in these fields, with modifications, are applicable to robotic search and rescue teams.

5.3 Distributed control

Distributed control is an approach that separates the control task into lower-level subtasks
to be realized by controllers that are distinct, have a significant degree of autonomy, and are
interconnected in a network. The plant to be controlled is typically large and complex. The
control structure may be completely distributed, if all the controllers interact directly with
the plant, or it can include hierarchy. In the latter case, controllers at upper levels in the
hierarchy look at a coarser grain of the control task, and communicate coarse decisions to
lower-level controllers that carry them out.

In the multiagent context, the controllers are the agents, and the plant is the environment
(see Chapter 1). In this view, all the multiagent applications described in this chapter are, in
effect, distributed control systems. For instance, in the case of object transportation by robotic
teams, the plant is the agents’ world containing the objects to transport, and the control goal
of the agents is moving the objects in the desired final positions and configuration.

Distributed control typically places the agents at fixed locations in the topology of the
system. A representative and relevant example of distributed control is the traffic control
system. The process is in this case the flow of traffic on highways, ring roads, and streets, and
the control goal is, roughly speaking, to maintain the traffic flow as fast, smooth, and safe
as possible. The observations of the agents include e.g., traffic density, average vehicle speed,
time of day, and the control outputs include e.g., traffic signals and dynamic route information
panels. Agents may be placed e.g., at intersections or allocated to highway sectors.

Other examples of distributed control applications are power networks, communication
networks, and flexible manufacturing systems.

The challenges posed by distributed control include:

– hard real-time constraints on the control decisions;

– the need for efficient and reliable coordination mechanisms, so that coherent joint control
decisions are taken;

– the need of obtaining (at least rough) process models in order to achieve the desired
control performance.

We find traffic control to be of use in the ICIS scenario in two critical aspects:

• An efficient traffic control system can be used to prevent many of the possible traffic
incidents by avoiding dangerous situations such as traffic jams or high vehicle velocities
in bad weather.

84

5.4. LOGISTICS

• If the incident could not be avoided, traffic control can reroute the flow of traffic out of
and around the incident area, such that the size of the incident is kept under control,
and the access of relief teams is not impeded.

5.4 Logistics

Logistics is the process of controlling the flow and usage of resources within a system so that
the activities of the system are properly supplied with the needed resources. So, when applied
to logistics, agents manage resources.

We differentiate two closely related types of logistics in the multiagent context, by the
nature of the controlled resources.

• Actual resource management : the resources are passive tools used by the agents in their
work. Examples are load balancing (Schaerf et al., 1995), scheduling (Crites and Barto,
1998), and routing (Boyan and Littman, 1993).

• Workflow management : the resources are the agents themselves. They decompose the
task of the MAS into smaller subtasks and synchronize their work on the subtasks (Parker,
1997). When the decomposition into subtasks is already given, workflow management
reduces to a simpler problem called task allocation.

Typically, schedules for resource allocation are computed and enforced by a central author-
ity. MAS offer a robust alternative, by distributing the resource management process among
the agents. Moreover, all the approaches cited above use learning, so that the scheduling
agents do not require complete information on the problem.

The challenges posed by the logistics domain to multiagent systems include:

– highly-dimensional search spaces with constraints;

– the need for an efficient multiagent coordination mechanism, so that partial (agent)
solutions form a coherent combined (MAS) solution;

– incomplete information available to the agents in order to develop a solution.

MAS could control partially or completely the flow of resources (such as ambulances and
fire-trucks) around and within the incident area in the ICIS scenario. They could also use
workflow management to sequence and synchronize their own activity.

5.5 Automated information systems

An information system collects, processes, transmits and disseminates data. An agent-based
automated information system has agents controlling some or all of these stages. We can
therefore view an automated information system as a special case of distributed control system,
where the controlled process is the flow of data among the information system components.

An essential characteristic of the information system is the extensive use of communication.
The applications of automated information systems include among others purely infor-

mational systems such as database access and electronic commerce. We are however more
interested in physical applications of information systems, such as smart sensor networks
(Lewis, 2004).

85

APPLICATIONS DOMAINS

The sensing equipment in a smart sensor network not only collects the data, but also
performs some or all of the following functions:

– initial stages of data processing;

– decision making, e.g., in order to activate alarms;

– self-diagnosis;

– communication and coordination with other nodes.

These functions work towards a common goal of the sensor network (Lewis, 2004). Thus, the
sensor network can be seen as a common-goal, cooperative, and communicative multiagent
system.

The challenges posed by information systems include (Singh and Huhns, 1996):

– coping with the open and unpredictable nature of the environment (adding and removing
components is part of the normal functioning of the system);

– handling an unusually high degree of agent heterogeneity.

Smart sensor networks could be used in the ICIS traffic incident scenario to monitor the
traffic infrastructure, notably sensitive areas such as tunnels. The smart sensor network, pos-
sibly working in tandem with the traffic control system, could perform the following functions:

• Collecting and supplying data to other systems, among which the traffic control system.

• Being the first line of reaction against the incident, it would alarm relief services such
as medical and fire assistance, and take immediate countermeasures such as activating
smoke ventilation shafts.

• Collaborating with the traffic control system to quickly direct unaffected vehicles out of
the incident area.

5.6 Concluding remarks

We have reviewed in this chapter relevant applications of multiagent learning and coordina-
tion in the context of the ICIS traffic incident scenario: multirobot teams, distributed control,
logistics, and automated information systems. Other applications might also be useful. E.g.,
auctions could be used in resource management, or even the application to games could pro-
vide valuable insight. These two examples are, however, less relevant for the coordinated,
cooperative teams we focus on.

In a unified view, all the applications above could be integrated in a single distributed
system, managing and monitoring the disaster relief effort. Traffic control, using data supplied
by the smart sensor network, would monitor and regulate traffic. If an incident occurs, these
two components would collaborate in rerouting traffic out of and around the area, while
simultaneously alerting relief services. Robotic and human search and rescue teams would be
dispatched to the area, where the former would function autonomously using robotic team
skills. Their tasks and serviced areas would be assigned by the automated resource and
workflow management system.

86

5.6. CONCLUDING REMARKS

Keeping realistic, however, we target one, or perhaps two integrated components of this
system. Other relevant applications, not foreseen at this point, are not excluded either.

As to an immediate research avenue, we have not yet encountered in the literature ex-
tensions of the gridworld to three dimensions. This extension would be useful in simulating
robotic agents such as autonomous underwater vehicles, unmanned air vehicles, and even
ground robots on uneven surfaces.

87

Chapter 6

Conclusions

We have reviewed in this work frameworks and methods for learning and coordination in
multiagent systems. In this chapter, we state our main conclusions on these topics, and
identify a set of useful research questions and directions.

Reinforcement learning is the prevalent learning technique in MAS. However, the field
of multiagent RL has not yet reached maturity. Its most important problems are the lack
of a widely accepted problem statement, and the gap between theory and practical applica-
tions. Theoretical methods are strongly influenced by game theoretical, stateless solutions,
the meaning of which is unclear in the multiple-state, delayed reward MA-RL setting. Theoret-
ical methods also make strong, restrictive assumptions that are difficult to justify in practice.
On the other hand, many practical applications are heuristic in nature, and thus difficult to
analyze. This latter statement applies to the other reviewed multiagent learning techniques,
as well.

Coordination is an essential part of learning; coordination can also be learned by the
agents. Most of the reviewed coordination techniques look at coordination as a stage-wise
activity, similarly to MA-RL methods. One consequence of this is that most agent modeling
methods consider the agents stateless, reactive entities.

It is our opinion that in order to understand multiagent learning, and its relationship with
coordination, it is essential that the dynamic nature of the agents and their environment is
taken into account. This involves considering rich state spaces, and state evolution through
time, both for the environment and for the agents. We believe that this dynamic nature, and
the effects of placing multiple dynamic agents together in a dynamic environment, are not
necessarily a daunting difficulty to overcome, as seems to be the prevailing view in the litera-
ture. Looking at the problem from this perspective could provide insight into new solutions,
where agents make use of the fact that they are part of a dynamic multiagent system, instead
of trying to circumvent it.

This issue can be stated succinctly as the following research question:

• How can a dynamic agent best make use of the fact that it is part of a dynamic multiagent
system?

We have already suggested some research directions deriving from this question. One of
them is using dynamic, black- or grey-box agent models, such as neural networks and Kalman
or particle filters (Section 4.8). Similarly, observers could be used to estimate the state of a
partially measurable, but observable environment (Section 2.9).

89

CONCLUSIONS

Another research avenue in this context is using control- and system-theoretic methods for
analyzing the properties of learning and coordination techniques, e.g., stability and robustness
to changes in the environment. Relevant approaches could be found in the area of (adaptive)
distributed control of large-scale systems.

One way of using the MAS context, explored in the MAS learning literature, is teaching and
imitation. The investigation of the suitability of stage-wise learning and coordination methods
in the DMAS is also related to this research question.

Another research question arises from the controversy in the literature with respect to
the MA-RL goal. In addition to the aspects mentioned in the literature and reviewed in
Section 2.3.3, we believe that the encountered learning goals are biased towards optimality,
without considering other aspects of the agent behaviour. Moreover, results are many times
given in terms of asymptotic or average performance, without concern for the agent’s transient
or short-term performance.

Desirable properties of the agent’s behaviour, besides optimality, include:

– robustness against disturbances and changes in the environment.

– approximate monotonicity of agent performance. We consider approximate monotonicity
because of the exploration issue: the agent may accept temporary losses in performance
in order to gain knowledge on the problem. We stress, however, that these temporary
losses should be bounded. Most of the literature is not at all concerned with this aspect.

– satisfying given lower bounds on the performance.

In brief:

• What is a suitable multiagent learning goal? How can it include performance require-
ments other than optimality?

We mentioned in Section 2.9 that an important difficulty in MA-RL is the explosion of the
state space with the number of agents. We also observed that the agents must not always
take into consideration the entire state of the world, nor the actions of all the other agents.
We concluded that learning should be focused on interesting parts of the state space – i.e., it
should be “local” as much as possible. In addition to reducing computational requirements,
this selective focus should also speed up learning, due to the smaller size of the search space.

Similarly, coordination should be restricted to the regions of the state space where it is
necessary Section 4.8. These are actually two aspects of the same question:

• Do there exist general conditions to determine whether a learning agent can perform
well while focusing on a restricted region of the state (and action) space? If they do
exist, then what are they?

These conditions, if they exist, are likely to give different answers at different moments in
time, as the agent learns and the world evolves. This implies that the agent must adapt its
focus over time (Buşoniu et al., 2005).

Focusing on restricted regions of the state space would imply in many cases that the agent
ignores a part of this sensory input. However, such conditions, when they can be analyzed
over the entire task span, could also be used the other way around: to determine whether the
agent can perform well given its limited sensory input; or, to determine what is the minimal
set of sensors with which the agent has to be endowed in order to perform well at its task.

A related research question is:

90

6.1. RESEARCH AGENDA

• How can an agent make use most effectively of incomplete and / or uncertain informa-
tion?

Many times, focusing on restricted regions of the state space will lead to incompleteness
and uncertainty in the information considered by the agent. However, incompleteness and
uncertainty might be natively present in the system, due to e.g., limited and noisy sensors.

We are especially interested in this issue in the context of modeling: an agent wishes to
construct and use models of the environment or of other agents. The literature typically takes
one of two approaches: either the uncertainty is ignored and the model output is considered
the true value of the estimated variable, or a Bayesian reasoning framework is used, and the
model outputs a distribution over all the possible variable values. Ignoring uncertainty might
be a dangerous thing to do. On the other hand, Bayesian reasoning is highly computation-
ally intensive. Intermediate methods could be investigated, e.g., models that in addition to
estimates also output confidence levels for those estimates.

The methods could be used not only in the online construction of models, but also in
conveying limited and imperfect prior knowledge to the agents, via imperfect models.

Finally, we need a framework of determining whether adaptation of “static” learning is
necessary, given the problem:

• Do general conditions exist that, given the learning problem, could be used to determine
whether adaptation of the learning processes of the agents is necessary? If they exist,
what are they?

Given that adaptive learning can always be restated as static learning, (see Section 1.2),
the answers to this question could be used to determine, given the problem, whether learning
is necessary or a static agent behaviour will suffice.

6.1 Research agenda

We conclude this work by enumerating the research questions identified above, in the order of
relevance:

1. Do general conditions exist that, given the learning problem, could be used to determine
whether adaptation of the learning processes of the agents is necessary? If they exist,
what are they?

2. What is a suitable multiagent learning goal? How can it include performance require-
ments other than optimality?

3. How can a dynamic agent best make use of the fact that it is part of a dynamic multiagent
system?

4. Do there exist general conditions to determine whether a learning agent can perform
well while focusing on a restricted region of the state (and action) space? If they do
exist, then what are they?

5. How can an agent make use most effectively of incomplete and / or uncertain informa-
tion?

91

Bibliography

Başar, T. (1985). An equilibrium theory for multiperson decision making with multiple prob-
abilistic models. IEEE Transactions on Automatic Control, 30(2):118–132.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation.
In Proceedings of the Twelfth International Conference on Machine Learning (ICML-95),
pages 30–37, Tahoe City, California, USA.

Baird, L. and Moore, A. (1998). Gradient descent for general reinforcement learning. In Ad-
vances in Neural Information Processing 11 (Neural Information Processing Systems 1998,
NIPS-98), pages 968–974, Denver, Colorado, USA.

Balch, T. R. (2000). Hierarchic social entropy: An information theoretic measure of robot
group diversity. Autonomous Robots, 8(3):209–238.

Balch, T. R. and Arkin, R. C. (1994). Communication in reactive multiagent robotic systems.
Autonomous Robots, 1(1):27–52.

Banerjee, B. and Peng, J. (2003). Adaptive policy gradient in multiagent learning. In Pro-
ceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-03), pages 686–692, Melbourne, Australia.

Bonarini, A. and Trianni, V. (2001). Learning fuzzy classifier systems for multi-agent coordi-
nation. Information Sciences, 136:215–239.

Booker, L. B. (1988). Classifier systems that learn internal world models. Machine Learning,
3:161–192.

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In
Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge
(TARK-96), pages 195–210, De Zeeuwse Stromen, The Netherlands.

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In Pro-
ceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
pages 478–485, Stockholm, Sweden.

Bowling, M. (2004). Convergence and no-regret in multiagent learning. Advances in Neural
Information Processing Systems, 17:209–216.

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning rate. Arti-
ficial Intelligence, 136(2):215–250.

93

BIBLIOGRAPHY

Boyan, J. A. and Littman, M. L. (1993). Packet routing in dynamically changing networks: A
reinforcement learning approach. In Advances in Neural Information Processing Systems 6
(Neural Information Processing Systems 1993, NIPS-93), pages 671–678, Denver, Colorado,
USA.

Buşoniu, L., De Schutter, B., and Babuška, R. (2005). Multiagent reinforcement learning
with adaptive state focus. Accepted at the 17th Belgian-Dutch Conference on Artificial
Intelligence (BNAIC-05).

Chalkiadakis, G. and Boutilier, C. (2003). Coordination in multiagent reinforcement learning:
A Bayesian approach. In Proceedings of the 2nd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-03), pages 709–716, Melbourne, Aus-
tralia.

Clouse, J. (1995). Learning from an automated training agent. In Working Notes of the
Workshop on Agents that Learn from Other Agents, Twelfth International Conference on
Machine Learning (ICML-95), Tahoe City, California, USA.

Conitzer, V. and Sandholm, T. (2003). AWESOME: A general multiagent learning algorithm
that converges in self-play and learns a best response against stationary opponents. In
Proceedings of the Twentieth International Conference on Machine Learning (ICML-03),
pages 83–90, Washington, DC, USA.

Crites, R. H. and Barto, A. G. (1998). Elevator group control using multiple reinforcement
learning agents. Machine Learning, 33(2–3):235–262.

De Jong, E. (1997). An accumulative exploration method for reinforcement learning. In
Notes of the Workshop on Multiagent Learning, The 14th National Conference on Artificial
Intelligence (AAAI-97), Providence, Rhode Island.

Dorigo, M. and Bersini, H. (1994). A comparison of Q-learning and classifier systems. In From
Animals to Animats 3. Proceedings of the 3rd International Conference on Simulation of
Adaptive Behavior (SAB-94), pages 248–255, Brighton, United Kingdom.

Fulda, N. and Ventura, D. (2003). Dynamic joint action perception for Q-learning agents. In
Proceedings of the 2003 International Conference on Machine Learning and Applications
(ICMLA-03), pages 73–79, Los Angeles, California, USA.

Greenwald, A. and Hall, K. (2003). Correlated-Q learning. In Proceedings of the Twentieth
International Conference on Machine Learning (ICML-03), pages 242–249, Washington,
DC, USA.

Guestrin, C., Lagoudakis, M. G., and Parr, R. (2002). Coordinated reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning (ICML-02),
pages 227–234, Sydney, Australia.

Haynes, T. and Sen, S. (1996). Evolving behavioral strategies in predators and prey. In Weiß,
G. and Sen, S., editors, Adaptation and Learning in Multi-Agent Systems, pages 113–126.
Springer.

94

BIBLIOGRAPHY

Haynes, T., Wainwright, R., Sen, S., and Schoenefeld, D. (1995). Strongly typed genetic
programming in evolving cooperation strategies. In Proceedings of the 6th International
Conference on Genetic Algorithms (ICGA-95), pages 271–278, Pittsburgh, Philadelphia,
USA.

Hu, J. and Wellman, M. P. (2001). Learning about other agents in a dynamic multiagent
system. Journal of Cognitive Systems Research, 1:67–79.

Hu, J. and Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic games. Journal
of Machine Learning Research, 4:1039–1069.

Jung, H., Nair, R., Tambe, M., and Marsella, S. (2002). Computational models for multiagent
coordination analysis: Extending distributed POMDP models. In Proceedings of the 2nd
International Workshop on Formal Approaches to Agent-Based Systems (FAABS-02), pages
103–114, Greenbelt, Maryland, USA.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285.

Kok, J. R., Spaan, M. T. J., and Vlassis, N. (2005a). Non-communicative multi-robot coordi-
nation in dynamic environment. Robotics and Autonomous Systems, 50(2–3):99–114.

Kok, J. R., ’t Hoen, P. J., Bakker, B., and Vlassis, N. (2005b). Utile coordination: Learning
interdependencies among cooperative agents. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games (CIG-05), pages 29–36, Colchester, United King-
dom.

Kok, J. R. and Vlassis, N. (2004). Sparse cooperative Q-learning. In Proceedings of the
Twenty-first International Conference on Machine Learning (ICML-04), pages 481–488,
Banff, Canada.

Könönen, V. (2003). Asymmetric multiagent reinforcement learning. In Proceedings of the
IEEE/WIC International Conference on Intelligent Agent Technology (IAT-03), pages 336–
342, Halifax, Canada.

Lauer, M. and Riedmiller, M. (2000). An algorithm for distributed reinforcement learning in
cooperative multi-agent systems. In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML-00), pages 535–542, Stanford University, Stanford, California,
USA.

Lewis, F. L. (2004). Smart Environments: Technologies, Protocols, and Applications, chapter
Wireless Sensor Networks. John Wiley, New York.

Littman, M. L. (2001a). Friend-or-foe Q-learning in general-sum games. In Proceedings of
the Eighteenth International Conference on Machine Learning (ICML-01), pages 322–328,
Williams College, Williamstown, Massachusets, USA.

Littman, M. L. (2001b). Value-function reinforcement learning in Markov games. Journal of
Cognitive Systems Research, 2:55–66.

95

BIBLIOGRAPHY

Littman, M. L. and Stone, P. (2001). Implicit negotiation in repeated games. In Pre-proceedings
of the 8th International Workshop on Agent Theories, Architectures, and Languages (ATAL-
2001), pages 96–105, Seattle, Washington, USA.

Matarić, M. J. (1996). Learning in multi-robot systems. In Weiß, G. and Sen, S., editors,
Adaptation and Learning in Multi–Agent Systems, pages 152–163. Springer Verlag.

Matarić, M. J. (1997). Learning social behavior. Robotics and Autonomous Systems, 20:191–
204.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with
less data and less time. Machine Learning, 13:103–130.

Parker, L. E. (1997). L-ALLIANCE: Task-oriented multi-robot learning in behavior-based
systems. Advanced Robotics, 4(11):305–322. Special Issue on Selected Papers from the 1996
International Conference on Intelligent Robots and Systems.

Peng, J. and Williams, R. J. (1996). Incremental multi-step Q-learning. Machine Learning,
22(1-3):283–290.

Plaza, E. and Ontañón, S. (2003). Cooperative multiagent learning. In Alonso, E., Ku-
denko, D., and Kazakov, D., editors, Adaptive Agents and Multi-Agent Systems, pages
1–17. Springer.

Powers, R. and Shoham, Y. (2004). New criteria and a new algorithm for learning in multi-
agent systems. In Advances in Neural Information Processing Systems 18 (Neural Informa-
tion Processing Systems 2004, NIPS-04), pages 1089–1096, Vancouver, Canada.

Prasad, M. V. N., Lesser, V. R., and Lander, S. E. (1998). Learning organizational oles
for negotiated search in a multiagent system. International Journal of Human-Computer
Studies, 48(1):51–67.

Price, B. and Boutilier, C. (2003). Accelerating reinforcement learning through implicit imi-
tation. Journal of Artificial Intelligence Research, 19:569–629.

Pynadath, D. V. and Tambe, M. (2002). The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Research,
16:389–423.

Ricci, A., Viroli, M., and Omicini, A. (2005). Environment-based coordination through coor-
dination artifacts. In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments
for MultiAgent Systems, pages 190–214. Springer-Verlag. Revised, Selected and Invited Pa-
pers from the 1st Workshop on Environments for MultiAgent Systems (E4MAS-04), New
York, USA.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, New Jersey, 2nd edition.

Schaerf, A., Shoham, Y., and Tennenholtz, M. (1995). Adaptive load balancing: A study in
multi-agent learning. Journal of Artificial Intelligence Research, 2:475–500.

96

BIBLIOGRAPHY

Sen, S., Sekaran, M., and Hale, J. (1994). Learning to coordinate without sharing information.
In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94), pages
426–431, Seattle, Washington, USA.

Sen, S. and Weiss, G. (1999). Learning in Multiagent Systems, chapter 6, pages 259–298. The
MIT Press, Cambridge, MA, USA.

Shoham, Y., Powers, R., and Grenager, T. (2003). Multi-agent reinforcement learning: A
critical survey. Technical report, Computer Science Department, Stanford University, Cali-
fornia, USA.

Singh, M. P. and Huhns, M. N. (1996). Challenges for machine learning in cooperative in-
formation systems. In Weiß, G., editor, Distributed Artificial Intelligence Meets Machine
Learning, Learning in Multi-Agent Environments, pages 11–24. Springer. Selected papers
from the ECAI’96 Workshop LDAIS, Budapest, Hungary, and the ICMAS’96 Workshop
LIOME, Kyoto, Japan.

Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000a). Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308.

Singh, S., Kearns, M., and Mansour, Y. (2000b). Nash convergence of gradient dynamics
in general-sum games. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence (UAI-00), pages 541–548, San Francisco, California, US.

Spaan, M. T. J., Vlassis, N., and Groen, F. C. A. (2002). High level coordination of agents
based on multiagent Markov decision processes with roles. In Workshop on Cooperative
Robotics, The 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS-02), pages 66–73, Lausanne, Switzerland.

Stone, P. and Veloso, M. (1998). A layered approach to learning client behaviors in the
RoboCup soccer server. Applied Artificial Intelligence, 12:165–188.

Stone, P. and Veloso, M. (1999). Task decomposition, dynamic role assignment, and
low-bandwidth communication for real-time strategic teamwork. Artificial Intelligence,
110(2):241–273.

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from the machine learning
perspective. Autonomous Robots, 8(3):345–383.

Suematsu, N. and Hayashi, A. (2002). A multiagent reinforcement learning algorithm using
extended optimal response. In Proceedings of the 1st International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-02), pages 370–377, Bologna, Italy.

Sutton, R. S. (1991). Integrated modeling and control based on reinforcement learning and
dynamic programming. In Advances in Neural Information Processing Systems 3 (The
1991 Neural Information Processing Systems Conference, NIPS-91), pages 471–478, Denver,
Colorado, USA.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, Massachusets, USA.

97

BIBLIOGRAPHY

’t Hoen, P. J. and de Jong, E. D. (2004). Evolutionary multi-agent systems. In Proceedings
of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII),
pages 872–881, Birmingham, United Kingdom.

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research,
7:83–124.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the Tenth International Conference on Machine Learning (ICML-93), pages
330–337, Amherst, Massachusets, USA.

Thrun, S. (1992). The role of exploration in learning control. In White, D. and Sofge, D.,
editors, Handbook for Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Van
Nostrand Reinhold.

Touzet, C. F. (2000). Robot awareness in cooperative mobile robot learning. Autonomous
Robots, 8(1):87–97.

Vlassis, N. (2003). A concise introduction to multiagent systems and distributed AI. Technical
report, University of Amsterdam, The Netherlands.

Walker, A. and Wooldridge, M. (1995). Understanding the emergence of conventions in multi-
agent systems. In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 384–390, San Francisco, California, USA.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note: Q-learning. Machine Learning,
8:279–292.

Whitehead, S. D. and Lin, L.-J. (1995). Reinforcement learning of non-Markov decision pro-
cesses. Artificial Intelligence, 73(1–2):271–306.

98

