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Abstract

In this paper we consider the modelling and control of discrete event systems using switch-

ing max-plus-linear systems. In switching max-plus-linear systems we can switch between

different modes of operation. In each mode the discrete event system is described by a max-

plus-linear state space model with different system matrices for each mode. The switching

allows us to change the structure of the system, to break synchronization and to change the

order of events. We will give some examples of this type of systems.

We define the model predictive control design problem for this type of discrete event

system, and we show that solving this problem in general leads to a mixed integer opti-

mization problem.

Key words: discrete event systems, max-plus-linear systems, modeling, model predictive

control

1 Introduction

The class of discrete event systems essentially consists of man-made systems that

contain a finite number of resources (such as machines, communications channels,

or processors) that are shared by several users (such as product types, informa-

tion packets, or jobs) all of which contribute to the achievement of some common

goal (the assembly of products, the end-to-end transmission of a set of information

packets, or a parallel computation) (Baccelli et al., 1992). In general, models that

describe the behavior of a discrete event system are nonlinear in conventional al-

gebra. However, there is a class of discrete event systems — the max-plus-linear
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discrete event systems — that can be described by a model that is “linear” in the

max-plus algebra (Baccelli et al., 1992; Cuninghame-Green, 1979), which has max-

imization and addition as its basic operations. The max-plus-linear discrete event

systems can be characterized as the class of discrete event systems in which only

synchronization and no concurrency or choice occurs.

In this paper we will consider discrete event systems that can switch between differ-

ent modes of operation. In each mode the system is described by a max-plus-linear

state space model with different system matrices for each mode. The switching

changes the structure of the system, and so allows us to break synchronization and

to change the order of events. We define a model predictive control design problem

for such a system to optimize the system’s behavior. In general this will lead to

a mixed integer optimization problem, which can be solved using reliable solvers

(Fletcher and Leyffer, 1998).

2 Max-plus algebra and switching max-plus-linear systems

In this section we present some basics in max-plus algebra and max-plus linear

systems, and we will introduce the concept of switching max-plus linear systems.

2.1 Max-plus algebra and max-plus-linear systems

In this section we define ε = −∞ and Rmax = R∪ {ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as follows (Baccelli et al., 1992;

Cuninghame-Green, 1979):

x⊕ y = max(x,y) x⊗ y = x+ y

for numbers x,y ∈ Rmax, and

[A⊕B]i j = ai j ⊕bi j = max(ai j,bi j)

[A⊗C]i j =
n
⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j)

for matrices A,B ∈ R
m×n
max and C ∈ R

n×p
max .

In Baccelli et al. (1992) it has been shown that discrete event systems in which

there is synchronization but no concurrency or choice can be described by a model

of the form
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x(k) = A(k)⊗ x(k−1)⊕B(k)⊗u(k) . (1)

with A ∈ R
n×n
max , B ∈ R

n×m
max and C ∈ R

m×n
max , where n is the number of states and m

the number of inputs. Systems that can be described by this model will be called

max-plus-linear systems. The index k is called the event counter. The matrices A,

B, and C usually consist of sums or maximizations of internal process times, trans-

portation times, etc. For discrete event systems the state x(k) typically contains the

time instants at which the internal events occur for the kth time, and the input u(k)
contains the time instants at which the input events occur for the kth time.

2.2 Switching max-plus-linear systems

In this paper we will consider discrete event systems that can switch between dif-

ferent modes of operation. Let the system be in mode ℓ(k) ∈ {1, . . . ,nm} for event

step k, then the system is described by a max-plus-linear state space model

x(k) = A(ℓ(k))⊗ x(k−1)⊕B(ℓ(k))⊗u(k) (2)

in which the matrices A(ℓ(k)), B(ℓ(k)) are the system matrices for mode ℓ(k). The

switching allows us to model a change in the structure of the system, such as break-

ing a synchronization or changing the order of events. Note that each mode ℓ cor-

responds to a set of required synchronizations and an event order schedule, which

leads to a model (2) with system matrices (A(ℓ(k)),B(ℓ(k))) for the ℓ-th model (see

also the examples in Section 3).

The moments of switching are determined by a switching mechanism. We define

the switching variable z(k), which may depend on the previous state x(k− 1), the

previous mode ℓ(k−1), the input variable u(k) and an (additional) control variable

v(k):
z(k) = Φ(x(k−1), ℓ(k−1),u(k),v(k)) ∈ R

nz
max . (3)

We partition R
nz
max in nm subsets Z (i), i = 1, . . . ,nm. The mode ℓ(k) is now ob-

tained by determining in which set z(k) is for event step k. So if z(k) ∈ Z (i), then

ℓ(k) = i. In some systems the switching mechanism will completely depend on the

state x(k−1) and input u(k), in other examples z(k) will be equal to v(k) and so we

can control the switching by choosing an appropriate v(k).

Apart from the elegance of the switching MPL system, there is a clear motivation

for studying this class of systems in more detail. Note that the basic idea of switch-

ing MPL systems in the event-driven domain is parallel to that of piece-wise-affine

(PWA) systems in the time-driven domain. In the analysis of PWA systems, the

properties of the linear subsystems are often employed to derive properties for the
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PWA system (Chua and Deng, 1988; Leenaerts and van Bokhoven, 1998). Anal-

ogously, we will be able to use the properties of the MPL subsystems (i.e. the

max-plus-algebraic eigenvalues, the eigenvectors, cycle time, the communication

graph, etc.), for the analysis of the switching MPL system.

Note that to some extent the class of switching MPL systems is related to (max,+)

automata (Gaubert, 1995), which can also be characterized as non-stationary au-

tonomous max-plus-linear systems with finitely valued dynamics (i.e., systems of

the form x(k) = A(k)⊗ x(k − 1), y(k) = Cx(k) where A(k) takes its values in a

finite set {A(1), . . . ,A(N)}. The main differences are that in the class of systems

considered in this paper an additional input (u(k)) is present, and that the switching

mechanism is specified completely and explicitly for the switching max-plus-linear

systems, whereas for (max,+) automata this is not the case.

3 Examples of switching max-plus-linear systems

3.1 A scheduling problem

Consider a production system with 6 machines M1 to M6. In order to produce a

product, a job should be completed. A job consists of a number of operations that

may be carried out on specific machines in a given order.

Machine Machine Machine Machine Machine Machine

Product Recipe 1 2 3 4 5 6

A 1 start τ1 τ1 +1 τ1 +2

end τ1 +2 τ1 +3 τ1 +3

A 2 start τ2 +2 τ2 +1 τ2

end τ2 +3 τ2 +3 τ2 +2

B 3 start τ3 τ3 +1 τ3 +3

end τ3 +2 τ3 +5 τ3 +5

C 4 start τ4 τ4 +3

end τ4 +4 τ4 +5

Table 1

The nominal starting and stopping times for 4 types of recipes, where τi, i = 1, . . . ,4 is the

starting time of a job using recipe i.

We can make 3 types of products. For product A we can use either recipe 1 or 2, for

product B and C we use recipe 3 and 4, respectively. Table 1 gives the scheduling

table with nominal starting and stopping times for the 4 types of recipes. For ex-

ample, the production of product A following recipe 1 starts at time τ1 on machine

1, where it is processed for 2 time units. At time τ1 + 1 machine 2 starts to take
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over the production, and also there the processing time is 2 time units. Machine 3

finalizes the product in time interval [τ1 +2,τ1 +3].

Now let us consider the synchronization between jobs, and let xi(k) be the time

instant at which machine i is ready after k jobs 1 . This means that if machine i is

idle during job k, we have xi(k) = xi(k− 1). For recipe 1 we have that the job can

only start if the previous task in machine 1 has finished, so if we denote τ1(k) as the

starting time of job k following recipe 1, we find τ1(k) ≥ x1(k− 1). Furthermore,

from table 1 we see that job k may start 1 time unit before the previous task in

machine 2 has finished, so τ1(k) ≥ x2(k− 1)− 1. Finally, job k may start 2 time

units before the previous task in machine 3 has finished, so τ1(k) ≥ x3(k− 1)− 2.

If we assume that the job starts as soon as possible we find τ1(k) = max(x1(k −
1),x2(k−1)−1,x3(k−1)−2), and thus

x1(k)= τ1(k)+2 = max(x1(k−1)+2,x2(k−1)+1,x3(k−1))

x2(k)= τ1(k)+3 = max(x1(k−1)+3,x2(k−1)+2,x3(k−1)+1)

x3(k)= τ1(k)+3 = max(x1(k−1)+3,x2(k−1)+2,x3(k−1)+1)

x4(k)= x4(k−1), x5(k) = x5(k−1), x6(k) = x6(k−1)

For recipe 2 we have that the job may be started at time τ2(k) = max(x3(k− 1)−
2,x4(k−1)−1,x5(k−1)), and thus

x3(k)= τ2(k)+3 = max(x3(k−1)+1,x4(k−1)+2,x5(k−1)+3)

x4(k)= τ2(k)+3 = max(x3(k−1)+1,x4(k−1)+2,x5(k−1)+3)

x5(k)= τ2(k)+2 = max(x3(k−1),x4(k−1)+1,x5(k−1)+2)

x1(k)= x1(k−1), x2(k) = x2(k−1), x6(k) = x6(k−1)

For recipe 3 we have that the job may be started at time τ3(k) = max(x1(k −
1),x2(k−1)−1,x6(k−1)−3), and thus

x1(k)= τ3(k)+2 = max(x1(k−1)+2,x2(k−1)+1,x6(k−1)−1)

x2(k)= τ3(k)+5 = max(x1(k−1)+5,x2(k−1)+4,x6(k−1)+2)

x6(k)= τ3(k)+5 = max(x1(k−1)+5,x2(k−1)+4,x6(k−1)+2)

x3(k)= x3(k−1), x4(k) = x4(k−1), x5(k) = x5(k−1)

For recipe 4 we have that the job may be started at time τ4(k) = max(x5(k −
1),x6(k−1)−3), and thus

1 Note that this is different from most applications, where xi denotes the starting time of

operation i.
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x5(k)= τ4(k)+4 = max(x5(k−1)+4,x6(k−1)+1)

x6(k)= τ4(k)+5 = max(x5(k−1)+5,x6(k−1)+2)

x1(k)= x1(k−1), x2(k) = x2(k−1),

x3(k)= x3(k−1), x4(k) = x4(k−1)

or in matrix form:

x(k) = A(ℓ(k))⊗ x(k−1)

where for recipe i = 1, . . . ,4 the system matrices A(i) are defined as

A(1) =





























2 1 0 ε ε ε

3 2 1 ε ε ε

3 2 1 ε ε ε

ε ε ε 0 ε ε

ε ε ε ε 0 ε

ε ε ε ε ε 0





























, A(2) =





























0 ε ε ε ε ε

ε 0 ε ε ε ε

ε ε 1 2 3 ε

ε ε 1 2 3 ε

ε ε 0 1 2 ε

ε ε ε ε ε 0





























A(3) =





























2 1 ε ε ε −1

5 4 ε ε ε 2

ε ε 0 ε ε ε

ε ε ε 0 ε ε

ε ε ε ε 0 ε

5 4 ε ε ε 2





























, A(4) =





























0 ε ε ε ε ε

ε 0 ε ε ε ε

ε ε 0 ε ε ε

ε ε ε 0 ε ε

ε ε ε ε 4 1

ε ε ε ε 5 2





























Note that the i, j-th element of A(ℓ) gives the relation between xi(k− 1) and x j(k)

for the ℓ-th mode. We have the relation x j(k)≥ xi(k−1)+a
(ℓ)
i, j . Recall that ε =−∞.

If a
(ℓ)
i, j = ε = −∞ it means that there is no synchronization between xi(k− 1) and

x j(k) (we have x j(k)≥ xi(k−1)−∞, which is always true).

Figure 1 gives a graphical representation of the evolution of the scheduling system

when
(

ℓ(1), ℓ(2), ℓ(3), ℓ(4)
)

= (1,4,3,2)

and x(0) =
[

0 0 0 0 0 0

]T

. From the figure it can be seen that we start the produc-

tion at time 0 with recipe 1, which starts with machine 1 at time t = 0, as indicated

by row A of Table 1. For t = 1 machine 2 starts and at time t = 2 machine 3 starts.

Machine 1 has finished with recipe 1 at t = 2, machines 2 and 3 have finished with

recipe 1 at t = 3. The recipe 4 is the next recipe in the schedule. For recipe 1 we

do not use machines 5 and 6, necessary for recipe 4, and so we can immediately

start at time t = 0 with machine 5, which runs until t = 4. Machine 6 will run from
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R2

R3

1 2 3 4 5 6

1

2

3

4

7

6

5

machines

time units

R3

R1

R4

Figure 1. A scheduling system.

t = 3 to t = 5. Now recipe 3 is next. We can start recipe 3 after machines 1 and 2

are ready with recipe 1, and so at t = 2 machine 1 starts to operate for recipe 3, and

machine 2 at time t = 3. Finally we will start recipe 2 at time t = 4 on machine 4.

In the end, machine 1 is ready at time t = 4, machine 5 at time t = 6 and all

other machines have finished at time t = 7. This means that after 4 jobs we find

x(4) =
[

4 7 7 7 6 7

]T

.

3.2 Railway network

Consider the railroad network of Figure 2 (see also van den Boom and De Schutter

(2004b)). There are 4 stations in this railroad network (A, B, C and D) that are

connected by 5 single tracks (1/7, 2/4, 3, 5, 9) and one double track (tracks 6 & 8).

There are three trains available. The first train follows the route D → A → B → D,

the second train follows the route A → B → C → A, and the third train follows

the route D → A → C → D. We assume that there exists a periodic timetable that

schedules the earliest departure times of the trains. The period of the timetable is

T = 60 minutes. So if a departure of a train from station B is scheduled at 5.30

a.m., then there is also scheduled a departure of a train from station B at 6.30 a.m.,

7.30 a.m., and so on.

Each track of the railway network has a number and a train allocated to it. For the

sake of simplicity we will say “(virtual) train j” to denote the (physical) train on

a specific track. The number of tracks in the network is equal to 7, the number of

physical trains in the network is equal to 3, and the number of virtual trains in the

network is equal to 9. Let x j(k), j = 1, . . . ,9 be the time instant at which train j
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departs from its station for the kth time. Let d j(k) be the departure time for this

train according to the time schedule, and let a j(k) be the transportation time for

this train j.

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✡✣ ❏

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❏❫

✛

✑
✑

✑
✑

✑
✑

✑✑✰ ◗
◗

◗
◗

◗
◗

◗◗❦

❄

✻

♠
D

♠
A

♠

C

♠
B

1/7 2/4

3

5

68

9

Figure 2. The railroad network of the example of Subsection 3.2.

Table 2 summarizes the information in connection with the nominal traveling times

and the departure times. All the times are measured in minutes. The indicated depar-

ture times are the earliest departure times in the initial station of the track expressed

in minutes after the hour. The first period starts at time t = 0. At the beginning of

the first period the first physical train is in station D, the second physical train is in

station A, and the third physical train is in station D.

train from travel dep constraints

-to time -arr

1 D-A 12 00-12 same train as 3−,connects to 9−,follows 7−

2 A-B 12 15-27 same train as 1, connects to 6−, follows 4−

3 B-D 20 30-50 same train as 2

4 A-B 12 19-31 same train as 6−, follows 2, connects to 7

5 B-C 10 34-44 same train as 4

6 C-A 25 47-12 same train as 5

7 D-A 12 04-16 same train as 9−, follows 1

8 A-C 25 19-44 same train as 7

9 C-D 10 47-57 same train as 8, connects to 5

Note: 3− denotes train 3 in the previous cycle

Table 2

The nominal traveling times and the departure times for the railroad network.

The continuity constraints are that the trains on tracks 1, 2 and 3 are physically the

same train, and the same holds for the trains on tracks 4, 5 and 6 and for the trains

on tracks 7, 8 and 9.
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Connection constraints are introduced to allow the passengers to change trains. In

this network, train 1 has to wait for train 9 in the previous cycle with minimum

connection time cmin = 3. In the same way, train 2 waits for train 6 in the previous

cycle, train 4 waits for train 7, and train 9 waits for train 5. The minimum stopping

time of train j at station j to allow passenger to get off or on the train is fixed at

smin = 1.

Follow constraints are introduced to guarantee sufficient separation time between

two trains on the same track (moving in the same direction). In this network, train

4 is scheduled behind train 2 (train 4 follows train 2) with a minimum separation

time f min = 4. In the same way, train 2 follows train 4 in the previous cycle, train 7

follows train 1, and train 1 follows train 7 in the previous cycle.

Each train departs as soon as all the connections are guaranteed (except for a con-

nection when it is broken), the passengers have gotten the opportunity to change

over and the earliest departure time indicated in the timetable has passed. We as-

sume that in the first period all the trains depart according to schedule. The j-th

state x j(k) is the time instant at which the train on track j departs from the initial

station of the track for the kth time.

Now we write down the equations that describe the evolution of the x j(k)’s. First

we consider the train on track 1 and we determine x1(k), the time instant at which

this train departs from station D for the kth time. The train has to wait at least until

the train has arrived in station D for the (k− 1)th time 2 and the passengers have

got the time to get out of the train so we have x1(k)≥ x3(k−1)+a3(k−1)+ smin.

Furthermore, the train on track 1 has to wait for the passengers of the train on track 9

in the (k−1)th cycle, which arrives in station D at time instant x9(k−1)+a9(k−1).
The passengers have cmin = 3 minutes to change trains. Further, the train on track 1

has to follow the train on track 7 in the previous cycle with a minimum separation

time f min = 4. According to the timetable 3 the train on track 1 can only depart

after time instant 00+ k 60. Hence, we have

2 Under nominal operations the kth train on track 1 (e.g., the one that departs from station

D at 10.00 a.m.) proceeds to the (k−1)th train on track 3 (which has departed from station

B at 9.30 a.m.) and not to the kth train on track 3 (which will depart from station B at 10.30

a.m.).
3 Note that in a undisturbed, well-defined time schedule the term di(k) will be the largest.

However, if due to unforeseen circumstances (an incident, a late departure, etc.) one of the

trains has a delay, the corresponding term can become larger than the others, train i will

depart later than the scheduled departure time di(k) and will therefore also be delayed.
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x1(k)=max( x3(k−1)+a3(k−1)+ smin , x7(k−1)+ f min ,

x9(k−1)+a9(k−1)+ cmin ,d1(k) )

=max( x3(k−1)+21 ,x7(k−1)+4 , x9(k−1)+13 ,k 60 )

for k = 1,2, . . . with x3(0) = x9(0) = ε .

Using a similar reasoning, we find that the other departure times are given by

x2(k)=max(x1(k)+13,x4(k−1)+4,x6(k−1)+28,15+ k 60)

x3(k)=max(x2(k)+13,30+ k 60)

x4(k)=max(x2(k)+4,x6(k−1)+26,x7(k)+15,19+ k 60)

x5(k)=max(x4(k)+13,34+ k 60)

x6(k)=max(x5(k)+11,47+ k 60)

x7(k)=max(x9(k−1)+11,x1(k)+4,4+ k 60)

x8(k)=max(x7(k)+13,19+ k 60)

x9(k)=max(x8(k)+26,x5(k)+13,47+ k 60)

for k = 1,2, . . . with x j(0) = ε for j = 1,2, . . . ,9.

Using successive substitution we can eliminate all right-hand terms with index k.

By defining the appropriate matrix A(1) and by using the (⊗,⊕)-notation, we can

rewrite the state equations as:

x(k) = A(1)⊗ x(k−1)⊕d(k) . (4)

In the nominal operation we have assumed that some trains should give pre-defined

connections to other trains, and the order of trains on the same track is fixed. How-

ever, if one of the preceding trains has a too large delay, then it is sometimes better

— from a global performance viewpoint — to let a connecting train depart anyway

or to change the departure order on a specific track. This is done in order to prevent

an accumulation of delays in the network. In this paper we consider the switching

between different operation modes, where each mode corresponds to a different

set of pre-defined or broken connections and a specific order of train departures.

We allow the system to switch between different modes, allowing us to break train

connections and to change the order of trains. Note that any broken connection or

change of train order leads to a new model, similar to the nominal equation (4), but

now with adapted system matrix A(ℓ(k)) for the ℓ-th model. We have the following

system equation for the perturbed operation for ℓ(k) ∈ {2, . . . ,nm}:

x(k) = A(ℓ(k))⊗ x(k−1)⊕d(k) . (5)

In this railway network the switching variable z(k) is equal to the control vector

v(k), and each entry of v(k) corresponds to a specific control action, so a specific

(scheduled) synchronization or specific (scheduled) event order. We assume v(k)
to be binary, where vi(k) = 0 corresponds to the nominal case, and vi(k) = 1 to a

perturbed case (a synchronization is broken or the order of two events is switched).
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Each combination v1(k),. . . ,vm(k) corresponds to a fixed routing schedule with a

specific train order and specific connections.

3.3 Production system with concurrency

M1

M2

Sw

M3

M4

M5

d1 = 1

d2 = 3

d3 = 6

d4 = 4

d5 = 0
x1(k)

x2(k)

x3(k)

x4(k)

❩
❩
❩
❩

❩❩⑦

✚
✚
✚
✚

✚✚❃

✚
✚
✚
✚

✚✚❃

❩
❩
❩
❩

❩❩⑦
❩

❩
❩
❩

❩❩⑦

✚
✚
✚
✚

✚✚❃

✚
✚
✚
✚

✚✚❃

❩
❩
❩
❩

❩❩⑦ ✲
u(k)

t1=4

t2=1

t3=0

t4=0

t5=0

t6=0

t7=0

t8=1

Figure 3. A production system.

Consider the production system of Figure 3. This system consists of five machines

M1, M2, M3, M4 and M5. The raw material is fed to machine M1 and M2, where

preprocessing is done. Both intermediate products now have to be finished in either

unit M3 and M4, which basically perform the same task, but the processing time of

M3 is longer than M4. Therefore, the products coming from machine M1 and M2 are

directed to a switching device Sw, that feeds the first product in the kth cycle to the

slower machine M3 and the second product to the faster machine M4. Finally, the

products are assembled (instantaneously 4 ) in machine M5 and become available.

We assume that each machine starts working as soon as possible on each batch, i.e.,

as soon as the raw material or the required intermediate products are available, and

as soon as the machine is idle (i.e., the previous batch has been finished and has

left the machine). We define u(k) as the time instant at which the system is fed for

the kth time, and xi(k) as the time instant at which machine i starts for the kth time.

The variable t j for j = 1, . . . ,8 is the transportation time, and di for i = 1, . . . ,5 is

the processing time on machine i. The system equations for x1 and x2 are given by

x1(k) = max(x1(k−1)+d1,u(k)+ t1) (6)

x2(k) = max(x2(k−1)+d2,u(k)+ t2) (7)

Equation (6) can be explained as follows: machine 1 will start with job k when

i) the previous job is finished, indicated by x1(k−1)+d1 (=the start of the previous

job x1(k−1) + the production time d1), and

ii) the raw material has arrived at the machine at time u(k)+ t1 (=the time the raw

material is put into the system u(k) + the transportation time t1).

4 i.e. with a negligible processing time.
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For Equation (7) we have that machine 2 will start when

i) the previous job is finished at time x2(k−1)+d2 (=the start of the previous job

x2(k−1) + the production time d2) and

ii) the raw material has arrived at the machine u(k)+ t2 (=the time the raw material

is put into the system u(k) + the transportation time t2).

If x1(k)+ d1 ≤ x2(k)+ d2 (i.e. machine 1 finishes first, machine 2 finishes later),

the product of M1 will be directed to M3 and the product of M2 will be directed to

M4. Machine 3 will start when

i) the previous job is finished x3(k−1)+d3 (=the start of the previous job x3(k−1)
+ the production time d3), and

ii) the intermediate product has arrived from machine 1: x1(k)+ d1 (=the start of

the job x1(k) + the production time d1 + transportation time t3 = 0).

So

x3(k) = max(x1(k)+d1,x3(k−1)+d3).

By substitution of (6) we obtain:

x3(k) = max(x1(k−1)+2d1,x3(k−1)+d3,u(k)+d1 + t1).

In a similar way we derive

x4(k) = max(x2(k)+d2,x4(k−1)+d4)

= max(x2(k−1)+2d2,x4(k−1)+d4,u(k)+d2 + t2),

x5(k) = max(x3(k)+d3,x4(k)+d4 + t8)

= max(x1(k−1)+2d1 +d3,x2(k−1)+2d2 +d4 + t8,x3(k−1)+2d3,

x4(k−1)+2d4 + t8,u(k)+d1 + t1 +d3,u(k)+d2 + t2 +d4 + t8).

Note that t3, . . . , t7 = 0, and therefore they do not appear in the equations. For this

first mode (x1(k)+d1 ≤ x2(k)+d2, so machine 1 finishes first, machine 2 finishes

later) we obtain the system matrices

A(1)=























1 ε ε ε ε

ε 3 ε ε ε

2 ε 6 ε ε

ε 6 ε 4 ε

8 11 12 9 ε























B(1) =























4

1

5

4

11























.
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Similarly, for the second mode (x1(k)+d1 > x2(k)+d2, so machine 2 finishes first,

machine 1 finishes later) we obtain the system matrices

A(2)=























1 ε ε ε ε

ε 3 ε ε ε

ε 6 6 ε ε

2 ε ε 4 ε

7 12 12 9 ε























B(2) =























4

1

4

5

10























.

To decide the switching mechanism, we define the switching variable





z1(k)

z2(k)



=





x1(k)+d1

x2(k)+d2





=





max(x1(k−1)+2d1,u(k)+d1 + t1)

max(x2(k−1)+2d2,u(k)+d2 + t2)





=





max(x1(k−1)+2,u(k)+5)

max(x2(k−1)+6,u(k)+4)



 ,

and the sets

Z
(1) = {z ∈ R

2
max|z1 ≤ z2},

Z
(2) = {z ∈ R

2
max|z1 > z2}.

Note that z1(k) and z2(k) are the time instants at which machines 1 and 2, respec-

tively, finish their product in cycle k. With that in mind, it is clear that mode 1 cor-

responds to “machine 1 finishes first, machine 2 finishes later” (z1 ≤ z2) and mode

2 corresponds to “machine 2 finishes first, machine 1 finishes later” (z1 > z2). Now

the state space equation of our system is given by (2).

4 The model predictive control problem

Consider the switching max-plus-linear model (2)–(3). We have two possible in-

put signals, v(k) and u(k). Just as in conventional Model Predictive Control (MPC)

(Maciejowski, 2002) we define the input sequences ũ(k)=
[

uT (k), . . . ,uT (k+Np−1)
]T
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and ṽ(k) =
[

vT (k), . . . ,vT (k+Np −1)
]T

where Np is the prediction horizon (so it

determines how many cycles we look ahead in our control law design). Let V (k)
and U (k) be the sets of possible future control sequences ṽ(k) and ũ(k), respec-

tively. Sometimes values are predefined (e.g. in the railway system u(k) = d(k))
or not applicable (e.g. in the production system v(k) is not used). Often v(k) is as-

sumed to be binary, and each entry corresponds to a specific control action (e.g.

a specific scheduled synchronization or specific scheduled event order). In other

cases v(k) is an integer (e.g. for the scheduling problem we have v(k) = ℓ(k)).

We now aim at computing the optimal ũ(k) and ṽ(k) that minimize a cost criterion

J(k), possibly subject to linear constraints on the inputs and the states. The cost

criterion reflects the input and output cost functions (Jin and Jout, respectively) in

the event period [k,k+Np −1]:

J(k) = Jout(k)+λJin(k) , (8)

where the weight λ ≥ 0 is a tuning parameter, chosen by the user. The output cost

function is usually chosen as

Jout(k) =
Np−1

∑
j=0

‖ e(k+ j)‖ ,

where ‖ · ‖ is an appropriate norm (usually the two-norm, the one-norm or the

infinity-norm), and e is the due date error (e.g. for the production system the due

date error of a product is given by ei(k) = max(yi(k)− ri(k),0), where r(k) is the

due date of the product, and for the railway system the due date error is equal to the

delay of a train, so ei(k) = max(xi(k)−di(k),0)). The input cost function consists

of two parts, Jin = Jin,u + Jin,v. The first part Jin,u depends on ũ(k) and is usually

chosen as

Jin,u(k) =−
Np−1

∑
j=0

‖u(k+ j)‖ ,

(see also De Schutter and van den Boom (2001)). The second part Jin,v is a func-

tion of ṽ(k). For different applications, Jin,v will have different appearances (e.g. for

the production system Jin,v(k) = 0 and for the railway system we choose Jin,v(k) =

∑
Np−1

j=0 ∑
nv

i=1 αivi(k+ j), where αi ≥ 0 are weights to punish any action correspond-

ing to the ith variable).

The parameter λ makes a trade-off between the output cost function and the input

cost function. For λ = 0 the input cost function is not taken into account, for λ →∞
the output function will not be taken into account. The time interval [1,Np] should

contain the crucial dynamics of the process, and important information of the due

date sequence.

Since the input signals u(k) correspond to consecutive event occurrence times, we

have the additional condition for j = 0, . . . ,Np −1:

∆u(k+ j) = u(k+ j)−u(k+ j−1)≥ 0 , (9)
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which means that the start of the (k+ j)th event (i.e. at time u(k+ j)) will always be

later than the start of the (k+ j−1)th event (i.e. at time u(k+ j−1)). Furthermore,

in order to reduce the number of decision variables and the corresponding compu-

tational complexity we introduce a control horizon Nc (≤ Np) and we impose the

additional condition that the input rate should be constant from the point k+Nc−1

on, so

∆u(k+m) = ∆u(k+Nc −1) , (10)

for m = Nc, . . . ,Np − 1. So, instead of allowing the future control actions to be

“free”, the increments of ∆u(k) are assumed to become constant after event step

(k+Nc − 1), i.e. we have a constant feeding rate. The parameter control horizon

Nc can be chosen between 1 and Np. The same procedure is often followed for the

control variable v(k), which will be assumed to be constant beyond control horizon

Nc. This results in the constraint v(k+m) = v(k+Nc − 1) for m = Nc, . . . ,Np − 1,

or equivalently

∆v(k+m) = v(k+m)− v(k+m−1) = 0 , (11)

for m = Nc, . . . ,Np − 1. Now the MPC control problem for event step k can be

defined as:

min
{ũ(k)∈U ,ṽ(k)∈V (k)}

J(k) (12)

subject to

x(k+ j) = A(ℓ(k))(k)⊗x(k+ j−1)⊕B(ℓ(k))(k)⊗u(k+ j), for j = 0, . . . ,Np−1,
(13)

Φ(k+ j−1), ℓ(k+ j−1),u(k+ j),v(k+ j)) ∈ Z
(ℓ(k+j)), for j = 0, . . . ,Np−1,

(14)

∆u(k+ j)≥ 0, for j = 0, . . . ,Np−1,
(15)

∆v(k+m) = 0, for m = Nc, . . . ,Np−1,
(16)

∆u(k+m)−∆u(k+Nc−1) = 0, for m = Nc, . . . ,Np−1,
(17)

Ac(k)ũ(k)+Bc(k)ỹ(k)≤ cc(k) (18)

where (12) is the cost function we want to minimize, (13) represents the system

dynamics we have to take into account, (14) represents the switching mechanism,

(15) guarantees a non-decreasing input sequence (cf. (9)), (16) and (17) introduce

the control horizon for the signals ∆u and v, respectively (cf. (10) and (11)), and

(18) represents possible additional linear constraints on the inputs and the outputs.

Note that for Nc = Np, equations (16) and (17) vanish.

MPC uses a receding horizon principle. This means that after computation of the

optimal future control sequences ũ(k) and ṽ(k), only the first control samples u(k)
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and v(k) will be implemented, subsequently the horizon is shifted one sample, and

the optimization is restarted with new information of the measurements.

In principle we have all elements to solve the receding horizon control problem

(12)–(18). In general we will have an optimal control problem with both real pa-

rameters and integer parameters. Sometimes (e.g. the production system) the prob-

lem can be recast as an Extended Linear Complementary Problem (ELCP) and can

be solved efficiently (De Schutter and van den Boom, 2002). If the optimization is

over a binary valued v(k) (e.g. the railway problem) we obtain an integer optimiza-

tion problem (without any real valued variables), which can be solved using genetic

algorithms (Davis, 1991), tabu search (Glover and Laguna, 1997), or a branch-and-

bound method (Cordier et al., 1999). In some particular cases the problem can be re-

cast as a Mixed Integer Linear Programming (MILP) or a Mixed Integer Quadratic

Programming (MIQP), for which reliable algorithms are available (Bemporad and

Morari, 1999; Fletcher and Leyffer, 1998).

The application of the derived controller design method to a railway network is

given in van den Boom and De Schutter (2004b).

Timing

MPC for (switching) MPL systems is different from conventional MPC in the sense

that the event counter k is not directly related to a specific time (van den Boom and

De Schutter, 2002). So far we have assumed that x(k − 1) is available when we

optimize over the future control sequence. However, not all components of x(k−1)
are known at the same time instant 5 . Therefore, we will now present a method to

address the timing issues of the controller.

We consider the case of full state information 6 . Let [xtrue(k − 1)]i be the mea-

sured (true) occurrence time of the (k−1)th occurrence of internal event i, and let

[xest(k−1|t)]i be an estimation of the (k−1)th occurrence time of this event at time

t. The estimation can be done using the following procedure: Let m(t) be the small-

est integer such that [xtrue(k−m(t))]i < t for all i= 1, . . . ,n. Hence, [xtrue(k−m(t))]i
is completely known at time t. If we define xest(k−m(t)|t) = xtrue(k−m(t)), we

can reconstruct the unknown state components using the recursion

xest(k− j|t) = A(ℓ(k|t))⊗ xest(k− j−1|t)⊕B(ℓ(k|t))⊗u(k− j|t)

Φ(xest(k− j−1|t), ℓ(k− j−1|t),u(k− j|t),v(k− j|t)) ∈ Z
(ℓ(k− j|t))

5 Recall that x(k−1) contains the time instants at which the internal activities or processes

of the system start for the (k−1)th time.
6 Since the components of x correspond to event times, they are in general easy to measure.

Also note that measurements of occurrence times of events are in general not as susceptible

to noise and measurement errors as measurements of continuous-time signals involving

variables such as temperature, speed, pressure, etc.
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for j = 1, . . . ,m(t)−1, where for the components of u(k−m(t)+ j|t) that are less

than t we take the actually applied input times, and for the other components we

take the computed values. Finally, the value of the state x(k) that can be used to

compute the MPC controller at time t is given by x(k−1|t) with components [x(k−
1|t)]i for i = 1, . . . ,n such that

[x(k−1|t)]i =











[xtrue(k−1)]i if [xtrue(k−1)]i is known at time t

(so [xtrue(k−1)]i ≤ t)

[xest(k−1|t)]i otherwise.

Finally, before the implementation of the controller can be done, one has to de-

termine at what time instants a new optimization should be done. In principle, the

appropriate input sequences ũ(k) and ṽ(k) should be recomputed, as soon as a new

measurement of state [xtrue(k−1)]i comes available. If the measured [xtrue(k−1)]i
is equal to the estimated [xest(k− 1|t)]i, an optimization is superfluous and the al-

ready computed input sequences will be optimal.

If we have multiple inputs, (and so u(k) is a vector), we will implement ui(k) as

soon as it is equal to time t. Let ui(k) = t0 and let us consider an optimization of

u(k) for t > t0. An event in the past cannot be changed any more, and so we will do

the optimization of ũ(k) subject to an an additional equality constraint ui(k) = t0.

5 Examples of controlled switching max-plus-linear systems

5.1 A scheduling problem

Consider the scheduling example from Section 3.1. The control variable in this

example is equal to the chosen recipe, so v(k) = ℓ(k) ∈ {1,2,3,4} is an integer

variable (u is not applicable in this example).

Let nX(k), X∈ {A,B,C}, denote the number of products X produced until cycle k.

Then nA(k), nB(k), and nC(k) can be written as

nA(k)=
k

∑
j=−∞

δ
(

ℓ( j)−1
)

+δ
(

ℓ( j)−2
)

nB(k)=
k

∑
j=−∞

δ
(

ℓ( j)−3
)

nC(k)=
k

∑
j=−∞

δ
(

ℓ( j)−4
)
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where δ (n) is given by

δ (n) =







1 for n = 0

0 elsewhere

The goal in this scheduling example is to produce products according to some pro-

duction rate

∆g(k) =
[

∆gA(k) ∆gB(k) ∆gC(k)
]

=
[

0.5 0.25 0.25

]

.

which means that (on the average) we aim to deliver a product A in two production

steps, and a product B and a product C in four production steps.
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Figure 4. Product rate error for a scheduling system

The desired number of products X, that is in stock after cycle k, is equal to

gX(k) =
k

∑
j=−∞

∆gX( j), X ∈ {A,B,C}.

Our cost criterion is chosen as

J(k)=max(xi(k+Np))+λ
Np

∑
j=1

(

|nA(k+ j)−gA(k+ j)|

+|nB(k+ j)−gB(k+ j)|+ |nC(k+ j)−gC(k+ j)|
)

(19)

where the first term (max(xi(k+Np))) represents the total production time for jobs

1, . . . ,Np, and the last three terms ∑
Np

j=1 |nX(k+ j)−gX(k+ j)|, with X = A,B,C each
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represent the production rate error for products A, B, and C, respectively. Recall

Note that nX(k) is the number of products X that are actually produced after cycle

k, and gX(k) is the number of products X that should have been produced after

cycle k. The parameter λ makes a trade-off between a minimum total production

time and the sum of the errors in the production rate.

In this example we now minimize J(k) for λ = 25, Np = Nc = 20, and we do a

simulation for k = 0, . . . ,80. To account for variations in the production time, we

add a noise-term (normal distributed with mean zero and variance one) to the real

production time of every machine. The input signal is optimized using a genetic

algorithm (Davis, 1991), and we obtain the optimal sequence ℓ(k), k > 0.

In Figure 4 the product rate error is given for each k over the first 25 cycles. We see

that the product rate error varies between −0.75 and 0.5. This is due to the fact that

the increment of gX is 0.5 or 0.25, where the increment of nX can only be 0 or 1.
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Figure 5. Variation of the production time for a scheduling system

The average predicted final production time over 80 cycles is about 2.0 time units/cycle.

Therefore Figure 5 gives the deviation between the predicted final production time

and the average production time (maxi(xi(k +N))− 2k) for each cycle k. From

the figure we see that the production time is varying about the average value. This

variation is due to the variation in the production times of the units. In the noiseless

case the average production time will decrease to 1.5, which means that the average

job time (4 cycles) is equal to 6. From Figure 1 it can easily be derived that for the

noiseless case a possible realization of the optimal sequence is given by ℓ(k) with

ℓ(4n+1) = 1, ℓ(4n+2) = 4, ℓ(4n+3) = 3, ℓ(4n+4) = 2, for n ∈ Z
+.
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Using this sequence leads to a schedule where machine 2 is never idle and works

constantly. The two operation times, related to recipe 1 and 3, together sum up to

the total job time 6, and so to reduce the total job time we need to remove either

recipe 1 or recipe 3 from the schedule. Recipe 3 cannot be removed because it is

related to product 3, which can only be produced using machine 2. This means that

we should replace operation recipe 1 by recipe 2, both related to the manufacturing

of a product 1. However, in that case we will need machine 5 during 3 recipes

(recipe 4 and twice recipe 2) giving a job time of at least 8. The same argument

can be used for machine 5, and we will conclude that the given sequence is indeed

optimal.

5.2 Railway network

Consider the railroad network of Section 3.2. We assume u(k) = d(k) is fixed and

v(k) is a binary parameter vector. Consider the cost function

J(k) =
Np−1

∑
j=0

(

n

∑
i=1

xi(k+ j)−di(k+ j)+
nv

∑
l=1

λl vl(k+ j)

)

(20)

In this function xi(k+ j)−di(k+ j) is the delay of train i in cycle j. Note that the

departure time xi(k+ j) is always larger or equal to the scheduled time according

to the time table di(k+ j), because a train is never allowed to leave too early. The

first term is the sum of all delays in the next Np cycles. The second term reflects the

costs λl we make by our control actions vl(k+ j) (breaking connections or changing

the order of trains). We solve the optimal control problem of minimizing the cost

function (20) subject to constraints (13)–(18), where Np is chosen sufficiently large.

This results in an integer optimization problem. We introduce a perturbation at time

t = 0 and let train 3, 6 and 9 arrive with a delay with 43, 20 and 32 minutes respec-

tively. We choose λl = 500 for inputs vl related to connections and λl = 10 for

the other inputs. The input signal is optimized with a branch-and-bound algorithm

and we obtain the optimal sequence (for more details, see van den Boom and De

Schutter (2004b)). To find a good initial guess for the branch-and-bound algorithm

we first solve an easier problem, in which we parameterize the input signal v(k+ j)
with two threshold values (τ,φ) and a decision mechanism. We use the thresholds

on (expected) delays to decide whether a connection should be broken or train or-

ders should be switched (see also van den Boom and De Schutter (2004b)). Loosely

speaking, the decision mechanism breaks the connection between two trains if the

expected delay exceeds a threshold value of τ , and it changes the order of two trains

moving over the same track if the expected delay exceeds a threshold value of φ .

Optimizing the threshold values (τ,φ) leads to a real-valued two-dimensional op-

timization problem, that we can solve using a Sequential Quadratic Programming

(SQP) algorithm. We find a minimum cost function Jdec = 4.09 · 106. The optimal
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Figure 6. Maximum delay for an uncontrolled railway system and a railway system using

MPC

threshold values, together with the decision mechanism, lead to a sequence v(k+ j)
that is used as an initial value for the branch-and-bound algorithm. We find a mini-

mum cost function Jb&b = 3.89 ·106.

In Figure 6 the maximum delay emax(k) = maxi(xi(k)− di(k)) in each cycle k is

given for both the uncontrolled case (so v(k+ j) = 0 for all j > 0) and for the MPC

case (with v∗(k+ j)). We see that the delay in the MPC case decays much faster

than the uncontrolled case.

5.3 Production system with concurrency

Consider the production system of Section 3.3. Input u(k) is the control variable in

this example (v is not applicable here). The cost criterion is now given by

J(k) =
Np−1

∑
j=0

max(x5(k+ j)− r(k+ j),0)−λu(k+ j) (21)

where r(k) is the due date of the product, the prediction horizon Np = 3 and λ = 0.1.

In this example we will not use a control horizon, i.e. Nc = Np.

From here we could solve the MPC control problem in the way of Section 4, and

we would end up with a mixed integer optimization problem. However, the system

in this example belongs to the class of max-min-plus (MMP) systems, which is a

subclass of the switching MPL systems. As we will show in this subsection for this

important subclass of MMP systems the MPC optimization problem can be reduced

to solving a set of linear programming problems, and so the computational burden

is reduced dramatically.
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First we will discuss the class of max-min-plus (MMP) systems.

Definition 1 An MMP expression f of the variables w1, . . . , wn is defined by the

grammar 7

f := wi +α|max( fk, fl)|min( fk, fl) (22)

with i ∈ 1, . . . ,n, α ∈ R, and where fk, fl are again MMP expressions.

Consider now a system that can be described by

x(k) = M (x(k−1),u(k)) (23)

where M is an MMP expression in terms of the components of x(k−1) and u(k).
Such a system will be called an MMP system 8 .

Lemma 1 The class of MMP systems is a subclass of the class of switching MPL

systems.

The proof of Lemma 1 is in the appendix.

We can now use the results of De Schutter and van den Boom (2002, 2004) to solve

the MPC problem for the production system. Define zmin(k) and zmax(k) as:

zmin(k)=min(z1(k),z2(k))

=min
(

max(x1(k−1)+2,u(k)+5),max(x2(k−1)+6,u(k)+4)
)

zmax(k)=max(z1(k),z2(k))

=max
(

max(x1(k−1)+2,u(k)+5),max(x2(k−1)+6,u(k)+4)
)

=max
(

x1(k−1)+2,x2(k−1)+6,u(k)+5
)

,

Note that zmin(k) = min(z1(k),z2(k)) can be interpreted as the time instant that the

first of the machines 1 or 2 is ready in cycle k, whereas zmax(k) = max(z1(k),z2(k))
can be interpreted as the time instant that both machines 1 and 2 are ready in cycle

k. With these definitions of zmin and zmax, we obtain

7 The symbol | stands for OR and the definition is recursive.
8 An MMP system is a special case of the more general max-min-plus-scaling (MMPS)

system as defined in De Schutter and van den Boom (2002, 2004). Note that in for MMP

systems there is no scaling necessary, because x and u denote time-instants and time does

not stretch or shrink
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x3(k)=max(zmin(k),x3(k−1)+6)

=max(min(max(x1(k−1)+2,u(k)+5),max(x2(k−1)+6,u(k)+4)),

x3(k−1)+6)

x4(k)=max(zmax(k),x4(k−1)+4)

=max(x1(k−1)+2,x2(k−1)+6,x4(k−1)+4,u(k)+5)

x5(k)=max(x3(k)+6,x4(k)+5)

=max(min(max(x1(k−1)+8,u(k)+11),max(x2(k−1)+11,u(k)+10)),

x3(k−1)+12,x1(k−1)+7,x2(k−1)+11,x4(k−1)+9,u(k)+10).

Using successive substitution we can easily derive expressions for x5(k+1), x5(k+
2) and J(k). These functions are max-min-plus (MMP) functions, and the opti-

mization problem of minimizing J(k) subject to (9) or equivalently (15) can now

be solved using a set of linear programming problems (De Schutter and van den

Boom, 2002, 2004). In our case we obtain 64 linear programming (LP) problems.
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Figure 7. Due date error for a production system with concurrency

In Figure 7 the due date error x5(k)− r(k) in each cycle k is given for r(k) =
8+ 6.5k + d(k) where d(k) is uniformly distributed zero mean white noise with

|d(k)| ≤ 1. In the cost function J we penalize the due date error for x5(k)−r(k)> 0,

which corresponds to the case where a product is ready after its due date. The case

where x5(k)−r(k)< 0 is not so bad, as long as there are no problems with a limited

output buffer (storage). Keeping that in mind we observe in Figure 7 that the due

date error is zero or negative, which means that our product is delivered in time,

and therefore the MPC controller is functioning satisfactory.
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6 Discussion

We have presented a new way to model a class of discrete event systems — the

switching max-plus-linear systems — that can operate in different modes, for which

in each mode the dynamics can be described by a model that is “linear” in the

max-plus algebra. We have discussed three examples of switching max-plus-linear

systems, namely a production system, a scheduling system, and a railway network.

An MPC design technique has been derived for switching max-plus-linear systems,

and we have applied the control design method to the three examples. In general

the resulting optimization problem requires a mixed integer optimization algorithm.

The use of switching max-plus-linear systems in modeling and controlling discrete

event systems offers some new opportunities. Where in regular max-plus-linear sys-

tems one can only model synchronization in a fixed ordering, the use of switching

max-plus-linear systems gives the possibility to include concurrency or a structure

change. In this way we can account for routing mechanisms (e.g. the switching

mechanism in the production system), we can make decisions in scheduling sys-

tems (e.g. a railway network) such as changing the order of operations, or breaking

synchronizations, and in a scheduling environment we may use the different modes

to represent different recipes for production systems.

In future research we will try to find out what conditions are needed on cost cri-

terion J, mode function Φ and mode set Z (ℓ(k)) to obtain particular optimization

problems (Extended Linear Complementary Problem, Mixed Integer Linear Pro-

gramming, Mixed Integer Quadratic Programming).

Another topic for future research is the characterization of the class of discrete-

event systems that can be modeled by a switching max-plus-linear system, and

the expanse and limits of this class. We will study in more detail the properties

of switching MPL systems in terms of the underlying MPL subsystems, each with

its own max-plus-algebraic eigenvalue, eigenvector, cycle time and communication

graph.
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Appendix

Proof of Lemma 1:

Consider the MMP system

x(k) = M (x(k−1),u(k)) (24)

where all entries of the vector function M are MMP vector functions in terms of the

vector w(k) =
[

xT (k−1)uT (k)
]T

∈ R
nw
max. Then, similar as for the MMPS systems

in De Schutter and van den Boom (2004), we can easily prove that every entry can

be written in the min-max canonical form:

fi(w) = min
ti=1,...,Ki

max
j=1,...,nw

(βi, j,ti +w j)

for i = 1, . . . ,n, where βi, j,ti ∈ Rmax.

Now we consider vectors rℓ of the form

rℓ =
[

r1,ℓ, . . . ,rn,ℓ

]T

, ℓ= 1, . . . ,nr

where ri,ℓ runs form 1 to Ki, for i = 1, . . . ,n. So we have nr = ∏n
i=1 Ki of these

vectors. For every ℓ = 1, . . . ,nr we can define a corresponding set Z (ℓ) such that

for all w ∈ Z (ℓ) the minimum of fi over ti is reached for ti = ri,ℓ. This means that

the set Z (ℓ) for ℓ= 1, . . . ,nr is given by

Z
(ℓ) = {w | max

j=1,...,nw

(βi, j,ri,ℓ
+w j)≤ max

j=1,...,nw

(βi, j,ti +w j), ∀ti, ∀i}

With this definition of Z (ℓ) we then derive that for w ∈ Z (ℓ) there holds

fi(w) = max
j=1,...,nw

(βi, j,ri,ℓ
+w j) (25)

=
[

βi,1,ri,ℓ
. . . βi,nw,ri,ℓ

]

⊗w (26)

and for w ∈ Z (ℓ) we can rewrite

f (w) = Γ(ℓ)⊗w

where the entries of Γ are given by [Γ(ℓ)]i, j = βi, j,ri,ℓ
.

By partitioning Γ(ℓ) =
[

A(ℓ) B(ℓ)
]

we obtain that for w ∈ Z (ℓ) we have

f (x(k−1),u(k)) = A(ℓ)⊗ x(k−1)⊕B(ℓ)⊗u(k)
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and the equation (24) can also be written as

x(k) = A(ℓ)⊗ x(k−1)⊕B(ℓ)⊗u(k)

This proves that the MMP system can be written as a switching MPL system.

✷
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