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Finite-Horizon Min-Max Control of

Max-Plus-Linear Systems

Ion Necoara, Eric C. Kerrigan, Member, IEEE, Bart De Schutter, and

Ton J.J. van den Boom

Abstract

We provide a solution to a class of finite-horizon min-max control problems for uncertain

max-plus-linear systems where the uncertain parameters are assumed to lie in a given convex and

compact set, and it is required that the closed-loop input and state sequence satisfy a given set

of linear inequality constraints for all admissible uncertainty realizations. We provide sufficient

conditions such that the value function is guaranteed to be convex and continuous piecewise affine,

and such that the optimal control policy is guaranteed to be continuous and piecewise affine on a

polyhedral domain.

Index Terms

Optimal control, discrete event systems, max-plus-linear systems, min-max control.

I. INTRODUCTION

Discrete-event systems (DES) are event-driven dynamic systems, i.e. the state transitions

are driven by events, rather than a clock. In the last couple of decades there has been an

increase in the amount of research on DES that can be modeled as max-plus-linear (MPL)
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systems. MPL systems are nonlinear dynamic systems that are “linear” in the max-plus-

algebra [1] and often arise in the context of manufacturing systems, railway networks, parallel

computing, etc.

Although there are some papers on optimal control for MPL systems (see [2], [3] and

the references therein), the literature on robust control for this class of systems is relatively

sparse. Some of the contributions include open-loop min-max model predictive control [4]

and closed-loop control based on residuation theory [3], [5], [6]. This paper considers the

MPL versions of the finite-horizon robust optimal control problem [7] for uncertain dynamic

systems using the min-max paradigm. The main advantage of this paper compared to ex-

isting results on robust control of MPL systems [3]–[6] is the fact that we optimize over

feedback policies, rather than open-loop input sequences, and that we incorporate state and

input constraints directly into the problem formulation. In general, this results in increased

feasibility and a better performance.

We use a dynamic programming approach similar to the one used in [8], [9] for finite-

horizon min-max control of uncertain linear systems with constraints. One of the key contri-

butions of this paper is to provide sufficient conditions such that we can employ results from

convex analysis to compute robust optimal controllers for MPL systems. Note that we require

the stage cost to have a particular representation in which the coefficients corresponding to the

state vector are non-negative, and that the matrix associated with the state constraints should

also be non-negative. However, these conditions are not restrictive for practical applications

(see Section I-B).

This section proceeds by introducing some notation and defining the min-max control

problem of interest. In Section II we present the exact solution of the problem via parametric

programming based on a dynamic programming approach. We conclude with an example in

Section III.

A. Definitions and Notation

Define ε := −∞ and Rε := R ∪ {ε}. The max-plus-algebraic (MPA) addition (⊕) and

multiplication (⊗) are defined as [1]: x ⊕ y := max{x, y}, x ⊗ y := x + y for x, y ∈ Rε.

For matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε we define: [A⊕ B]ij := Aij ⊕ Bij , [A⊗ C]ij :=

n
⊕

k=1

Aik ⊗ Ckj for all i,j. For a positive integer N , let N := {1, 2, . . . , N}. Given a matrix

H = [Hij], by H ≥ 0 we mean that Hij ≥ 0 for all i, j. Given a set Z ⊆ R
n × R

m, let

ProjnZ := {x ∈ R
n : ∃y ∈ R

m s. t. (x, y) ∈ Z}. A polyhedron is the intersection of a finite
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number of closed half-spaces. A closed half-space is defined by {x ∈ R
n : αT

i x ≤ βi} for

some αi ∈ R
n, βi ∈ R. A function g :Rn→R ∪{+∞,−∞} is proper if {x ∈ R

n :−∞ <

g(x) < +∞} 6= ∅ [10]. The epigraph of a function g : X → R with X ⊆ R
n is defined

as epi g := {(x, t) ∈ X × R : g(x) ≤ t}. A function g(·) is piecewise affine (PWA) if its

epigraph is a finite union of polyhedra [10]. Let Fmps denote the set of max-plus-scaling

functions, i.e. g : X → R, x 7→ g(x) = maxj∈l{α
T
j x + βj}, where X ⊆ R

q, αj ∈ R
q

and βj ∈ R. Note that a max-plus-scaling function is another representation for a convex

PWA function [10]. Let F+
mps denote the set of max-plus-non-negative-scaling functions, i.e.

functions g(x) = maxj∈l{α
T
j x+ βj} with αj ≥ 0 for all j ∈ l.

B. Problem Definition

The system matrices of a DES modeled as an MPL system usually consist of sums or

maximization of internal process times, transportation times, etc. Therefore, we consider the

following uncertain MPL system [4]:

x(k) = A(w(k))⊗ x(k − 1)⊕ B(w(k))⊗ u(k), y(k) = C(w(k))⊗ x(k), (1)

where A(·) ∈ Fn×n
mps , B(·) ∈ Fn×m

mps and C(·) ∈ Fp×n
mps (note that these matrix functions are

nonlinear). Here, k is an event counter while x(k) ∈ R
n
ε , y(k) ∈ R

p
ε, and u(k) ∈ R

m
ε

represent event occurrence times [1]. For a manufacturing system, u(k) would represent the

time instants at which raw material is fed to the system for the kth time, x(k) the time instants

at which the machines start processing the kth batch of intermediate products, and y(k) the

time instants at which the kth batch of finished products leaves the system. We gather in the

vector w(k) ∈ R
q all the uncertainty caused by disturbances and errors in the estimation

of process and event times. The (unknown) disturbance signal w(k) is assumed to be time-

varying and to take on values from a compact and convex set W ⊂ R
q. For a manufacturing

system the components of w(k) would represent the uncertain transportation and processing

times of the plant (see e.g. [4]). We also consider a reference signal {r(k) ∈ R
p}k≥0 which

the system (1) is required to track.

We frequently use the short-hand notation f(x, u, w) := A(w) ⊗ x ⊕ B(w) ⊗ u, and

it is easy to verify that f(·) ∈ Fn
mps and f(·, ·, w) ∈ (F+

mps)
n for any fixed w (because

[f(x, u, w)]i = [maxj,l{Aij(w) + xj, Bil(w) + ul}]i according to Lemma 1 below). Since

f(·, w) is a max expression of affine terms in (x, u), each component of f(·, w) is convex

[10].
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A typical stage cost used in the optimal control literature for MPL systems is [4]:

ℓ(x, u, r, w) =

p
∑

j=1

max{[C(w)⊗ x− r]j, 0} − γ

m
∑

j=1

uj, (2)

where 0 ≤ γ. For a manufacturing systems this stage cost has the interpretation that the first

term penalizes the delay of the finishing times y = C(w) ⊗ x with respect to the due date

signal r, while the second term tries to maximize the feeding times u. Typical constraints

for a DES are of the form:

y(k) ≤ r(k)+hyr(k), ui(k)−uj(k) ≤ hu
ij(k), xi(k)−uj(k) ≤ hxu

ij (k), u(k+1)−u(k) ≥ 0,

(3)

where the h variables define bounds on the differences in times. Since the input represents

times, the signal u(·) should be non-decreasing, i.e. u(k + 1) − u(k) ≥ 0. However, by

remodeling the system as in Appendix A, this constraint can be removed.

For the min-max problem to be defined below, the constraints (3) and the stage cost (2)

considered will be generalized. We therefore assume that the system is subject to input and

state constraints over a finite horizon of length N :

Hkx(k) +Gku(k) + Fkr(k) + Ekw(k) ≤ hk, k = 1, 2, . . . , N (4)

where Hk ∈ R
nHk

×n, Gk ∈ R
nHk

×m, Fk ∈ R
nHk

×p, Ek ∈ R
nHk

×q and hk ∈ R
nHk .

Effective control in the presence of disturbance requires optimization over feedback poli-

cies [7], [11], rather than open-loop input sequences. Therefore, we will define the decision

variable in the optimal control problem for a given initial condition x and the reference

signal r := [rT1 , r
T
2 , . . . , r

T
N ]

T , as a control policy π := (µ1(·), µ2(·), . . . , µN(·)), where each

µi : R
n × R

pN → R
m is a state feedback control law (recall that p is the dimension of the

output and N is the prediction horizon). Let w := [wT
1 , w

T
2 , . . . , w

T
N ]

T denote a realization

of the disturbance over the horizon k = 1, . . . , N . Also, let φ(i; x, π,w) denote the state

solution of (1) at step i when the initial state is x, the control is determined by the policy

π, i.e. u(i) = µi(φ(i − 1; x, π,w), r), and the disturbance sequence is w. By definition,

φ(0; x, π,w) := x. The cost is defined as:

VN(x, π, r,w) :=
N
∑

i=1

ℓi(xi, ui, ri, wi), (5)

where xi := φ(i; x, π,w) (and thus x0 = x), ui := µi(xi−1, r), and ℓi is the stage cost. The

following assumptions will be used throughout the paper:

A1: The matrices Hk in (4) are non-negative for all k ∈ N (recall that N = {1, 2, · · · , N}).
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A2: The stage costs ℓi(·) satisfy: ℓi(·) ∈ Fmps and ℓi(·, u, r, w) ∈ F
+
mps for all (u, r, w).

Note that the constraints (3) and the stage cost (2) satisfy Assumptions A1 and A2.

For each initial condition x and due dates r we define the set of feasible policies π:

ΠN(x, r) :={π : Hiφ(i; x, π,w)+Giµi(φ(i−1; x, π,w), r)+Firi+Eiwi≤hi, ∀w∈W , i∈N},

(6)

where W := WN . Also, let XN denote the set of initial states and reference signals for

which a feasible policy exists, i.e. XN := {(x, r) : ΠN(x, r) 6= ∅}. The following min-max

problem will be referred to as the finite-horizon robust optimal control problem:

PN(x, r) : V 0
N(x, r) := inf

π∈Π
N
(x,r)

max
w∈W

VN(x, π, r,w). (7)

Let π0
N(x, r)=:(µ0

1(x, r), µ0
2(·), . . . , µ

0
N(·)) denote a minimizer of the worst-case problem PN(x, r)

whenever the infimum is attained, i.e. π0
N(x, r) ∈ argminπ∈Π

N
(x,r) maxw∈W VN(x, π, r,w).

Remark 1: MPL systems are DES and they thus differ from conventional time-driven

systems in the sense that the event counter k is not directly related to a specific time where

in practice the optimization problem PN(x, r) has to be solved at some given time t. For a

detailed description of how to deal with these timing issues the interested reader is referred

to [12].

II. DYNAMIC PROGRAMMING SOLUTION VIA PARAMETRIC PROGRAMMING

Dynamic programming (DP) [7], [11], [13] is a well-known method for solving sequential,

or multi-stage, decision problems. More specifically, for the control problem considered in

this paper the problem is split into N stages and for each stage s (starting from the last stage

and going backwards to the first stage, i.e. s ∈ N denotes the “time-to-go”) we can compute

sequentially the partial return functions V 0
s (·), the associated set-valued optimal control laws

κs(·) (such that µ0
N−s+1(x, r) ∈ κs(x, r) for any (x, r) ∈ Xs) and their domains Xs. If we

define

Js(x, r, u) := max
w∈W
{ℓN−s+1(f(x, u, w), u, rN−s+1, w) + V 0

s−1(f(x, u, w), r)}, ∀(x, r, u)∈Zs,

(8a)

Zs := {(x, r, u) : HN−s+1f(x, u, w) +GN−s+1u+FN−s+1rN−s+1 + EN−s+1w ≤ hN−s+1,

(f(x, u, w), r) ∈ Xs−1, ∀w ∈ W}, (8b)
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then using the optimality principle we can compute {V 0
s (·), κs(·), Xs}

N
s=1 recursively:

V 0
s (x, r) = min

u
{Js(x, r, u) : (x, r, u) ∈ Zs}, ∀(x, r) ∈ Xs, (8c)

κs(x, r) = argmin
u
{Js(x, r, u) : (x, r, u) ∈ Zs} ∀(x, r) ∈ Xs, Xs = Projn+pNZs, (8d)

with the boundary conditions X0 = R
n × R

pN , V 0
0 (x, r) = 0, ∀(x, r) ∈ R

n × R
pN .

To simplify notation in the rest of the paper, we first define two prototype problems. Next,

we will study their properties. The prototype maximization problem Pmax(x, r, u) is defined

as:

Pmax(x, r, u) : J(x, r, u) := max
w∈W
{ℓ(f(x, u, w), u, r, w)+V (f(x, u, w), r)}, ∀(x, r, u)∈Z,

(9)

where ℓ : Rn+m+p+q → R, V : Ω→ R, r is a sub-block of r (i.e. ∃s ∈ N : rs = r) and

Z := {(x, r, u) : Hf(x, u, w) +Gu+ Fr + Ew ≤ h, (f(x, u, w), r) ∈ Ω, ∀w ∈ W}, (10a)

X := Projn+pNZ. (10b)

The prototype minimization problem Pmin(x, r) is defined as:

Pmin(x, r) : V 0(x, r) := min
u
{J(x, r, u) : (x, r, u) ∈ Z}, ∀(x, r) ∈ X (11a)

κ(x, r) := argmin
u
{J(x, r, u) : (x, r, u) ∈ Z}, ∀(x, r) ∈ X. (11b)

In terms of these prototype problems, it is easy to identify the DP recursion (8) by setting

r ← rN−s+1, ℓ← ℓN−s+1, V ← V 0
s−1, V 0 ← V 0

s , J ← Js, X ← Xs, Z ← Zs, Ω← Xs−1, and

by identifying H,G, F,E, h with HN−s+1, GN−s+1, FN−s+1, EN−s+1, hN−s+1, respectively.

Clearly, we can now proceed to prove, via induction, that a certain set of properties is

possessed by each element in the sequence {V 0
s (·), κs(·), Xs}

N
s=1 by showing that if {V (·),Ω}

has a given set of properties, then {V 0(·), X} also has these properties, with the properties

of κ(·) being the same as those of each of the elements in the sequence {κs(·)}
N
s=1. In the

sequel, constructive proofs of the main results are presented, so that the reader can develop

a prototype algorithm for computing the sequence {V 0
s (·), κs(·), Xs}

N
s=1.

A. Properties of X

The first result states that some properties of max-plus-scaling functions are preserved

under addition, composition, and multiplication with a non-negative scalar.
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Lemma 1: Suppose the functions g1, g2 and g3 = [g31, . . . , g3n]
T with g1, g2, g3j of the

form g : Z ×W → R : (z, w) 7→ g(z, w) have the property that for each w ∈ W , gi(·, w),

g3j(·, w) ∈ F
+
mps and for each z ∈ Z, gi(z, ·), g3j(z, ·) ∈ Fmps, for all i, j. Then, for any

scalar λ ≥ 0, (λg1)(·, w), (g1 + g2)(·, w), g1(g3(·, w), w) ∈ F
+
mps for any fixed w ∈ W , and

(λg1)(z, ·), (g1 + g2)(z, ·), g1(g3(z, ·), ·) ∈ Fmps for any fixed z ∈ Z.

Proof: This follows from the fact that λmax{a, b} = max{λa, λb} if λ ≥ 0, max{a, b}

+max{c, d} = max{a+ c, a+ d, b+ c, b+ d}, and max{max{a, b}, c} = max{a, b, c}.

Lemma 2: The set Z = {(x, u) : H̄f(x, u, w)+ Ḡu+ Ēw ≤ h̄, ∀w ∈ W} with H̄ ≥ 0 (cf.

Assumption A1), can be written equivalently as Z = {(x, u) : H̃x+ G̃u ≤ h̃} with H̃ ≥ 0.

Proof: Since H̄ ≥ 0 and f(·, w) ∈ (F+
mps)

n for each w, the function x 7→ H̄f(x, u, w) is

in (F+
mps)

n for any (u, w) by Lemma 1. Recall that {z : maxj∈l{ϕj(z)} ≤ α} = {z : ϕj(z) ≤

α, ∀j ∈ l}. Then, Z has the equivalent representation Z = {(x, u) : H̃x+G̃u+F̃w ≤ h, ∀w ∈

W}, where H̃ ≥ 0. Define f ∗
j := maxw∈W{F̃jw}, where F̃j denotes the j th row of F̃ . Then

the result follows by letting h̃ := h − f ∗, where f ∗ := (f ∗
1 , f

∗
2 , . . .). Note that f ∗ can be

computed by solving a set of convex optimization problems (recall that W is a compact,

convex set).

Lemma 3: Let Z = {(x, r, t, u) ∈ R
n × R

p × R
q × R

m : H̄x + F̄ r + K̄t + Ḡu ≤ h̄}

be given, where H̄ ≥ 0 and K̄ ≤ 0. The set X := {(x, r, t) : ∃u s.t. (x, r, t, u) ∈ Z} is a

polyhedral set of the form X = {(x, r, t) : H̃x+ F̃ r + K̃t ≤ h̃}, where H̃ ≥ 0 and K̃ ≤ 0.

Proof: See Appendix B.

Proposition 1: Suppose Ω is a polyhedral set given by Ω = {(x, r) : Γx + Φr ≤ γ} with

Γ ≥ 0, and assume that H in (10a) satisfies H ≥ 0. Then, the set X defined in (10b) is a

polyhedron given by X = {(x, r) : Ĥx+ F̂ r ≤ ĥ}, where Ĥ ≥ 0.

Proof: The set Z is described as follows:

Z=







(x, r, u) :





H

Γ



 f(x, u, w)+





G

0



 u+





Fr

Φr



+





E

0



w≤





h

γ



 , ∀w∈W







,

(12)

with H,Γ ≥ 0. From Lemma 2 it follows that Z can be written as Z = {(x, r, u) : H̃x +

G̃u+ F̃ r ≤ h̃} where H̃ ≥ 0. The result follows by applying a particular case of Lemma 3.

The reason for introducing Assumption A1 is now obvious, since H ≥ 0 is crucial in the

proof of Proposition 1; it would not be possible to convert the expression for Z into a set of

linear inequalities if some components of H were negative.
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B. Properties of Pmax(x, r, u)

Proposition 2: Suppose ℓ(·) satisfies Assumption A2. If, in addition V (·, r) ∈ F+
mps for

any fixed r and V (·) ∈ Fmps, then J(·, r, u) ∈ F+
mps for any fixed (r, u) and J(·) ∈ Fmps.

Proof: Since ℓ(·), V (·) ∈ Fmps and ℓ(·, u, r, w), V (·, r) ∈ F+
mps (according to Assumption

A2), it follows from Lemma 1 that we can write ℓ(f(x, u, w), u, r, w) + V (f(x, u, w), r) =

maxj∈l{α
T
j x+ βT

j w + γT
j u+ δTj r + θ̃j}, where αj ≥ 0 for all j ∈ l, so that

J(x, r, u) =max
w∈W
{max

j∈l
{αT

j x+ βT
j w + γT

j u+ δTj r + θ̃j}} = max
j∈l
{αT

j x+ γT
j u+ δTj r + θj},

where θj := θ̃j+maxw∈W{β
T
j w} for all j ∈ l. Note that {θj}j∈l can be computed by solving

a sequence of convex optimization problems.

Note that if Assumption A2 would not hold, then one cannot guarantee that the cost

function will be a max expression of affine terms in (x, r, u,w) such that the vectors that

multiply the state (i.e. αj) are non-negative and thus J(·) would not be a max expression

with the vectors that multiply the state being non-negative, a property which will be crucial

in the next section.

C. Properties of Pmin(x, r)

Lemma 4: Suppose Ω is a polyhedral set given by Ω = {(x, r) : Γx + Φr ≤ γ} with

Γ ≥ 0, and assume that H in (10a) satisfies H ≥ 0. Suppose Z 6= ∅ and J(·) ∈ Fmps. Then,

there exists a (x̄, r̄) ∈ X such that V 0(x̄, r̄) is finite if and only if V 0(x, r) is finite for all

(x, r) ∈ X .

Proof: From the proof of Proposition 1 it follows that Z is a non-empty polyhedron:

Z = {(x, r, u) : H̃x + G̃u + F̃ r ≤ h̃} with H̃ ≥ 0. Since J(·) ∈ Fmps, we can write

J(x, r, u) = maxj∈l{α
T
j x+γT

j u+ δTj r+ θj}. The prototype minimization problem Pmin(x, r)

becomes:

V 0(x, r) =min
u
{max

j∈l
{αT

j x+ γT
j u+ δTj r + θj} : (x, r, u) ∈ Z}

=min
(ν,u)
{ν : αT

j x+ γT
j u+ δTj r + θj ≤ ν, ∀j ∈ l, H̃x+ G̃u+ F̃ r ≤ h̃}, (13)

i.e. we have obtained a feasible linear program (LP) for any fixed (x, r) ∈ X . But the feasible

set of the dual of (13) does not depend on x or r. Assume that V 0(x̄, r̄) is finite for some

(x̄, r̄) ∈ X . From strong duality for linear programs [10] it follows that the dual problem of

(13) is feasible, and independent of x and r. Using again strong duality, we conclude that
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V 0(x, r) is finite if (x, r) ∈ X and V 0(x, r) = +∞ if (x, r) /∈ X . The reverse implication is

obvious.

Proposition 3: Suppose Ω is a polyhedral set given by Ω = {(x, r) : Γx + Φr ≤ γ} with

Γ ≥ 0, and assume that H in (10a) satisfies H ≥ 0. Suppose also that Z 6= ∅, J(·) ∈ Fmps,

and V 0(·) is proper. Then, the value function V 0(·) is in Fmps and has domain X , where X is

a polyhedral set. The (set-valued) control law κ(x, r) is a polyhedron for a given (x, r) ∈ X .

Moreover, it is always possible to select a continuous and PWA control law ν(·) such that

ν(x, r) ∈ κ(x, r) for all (x, r) ∈ X .

Proof: It follows from (13) that Pmin(x, r) is a parametric LP of the type minz{c
T z :

H̄φ + Ḡz ≤ h̄}, where the vector of parameters is φ and the optimization variable is z

(in our case, from (13) we conclude that φ = [xT
r
T ]T and z = [ν uT ]T ). The properties

stated above then follow from the properties of a parametric LP (see [14]–[16]). In particular,

since the value function of a parametric LP is a convex PWA function [14] and using the

equivalence between convex PWA functions and max-plus-scaling functions [10], it follows

that V 0(·) ∈ Fmps.

Theorem 1: Suppose that the same assumptions as in Proposition 3 hold. If, in addition,

J(·, r, u) ∈ F+
mps for any (r, u), then the value function V 0(·, r) ∈ F+

mps for each fixed r.

Proof: See Appendix B.

D. Main result

Based on the invariance properties of the two prototype problems Pmax and Pmin, we can

now derive the properties of V 0
s (·), κs(·) and Xs for all s ∈ N . The main result of this paper

follows by applying Propositions 1–3 and Theorem 1 to the DP equations (8):

Theorem 2: Suppose that Assumptions A1 and A2 (see Section I-B) hold, Zs is non-

empty and V 0
s (·) is proper for all s ∈ N . Then, V 0

s (·) is a max-plus-scaling function having

the non-empty polyhedral domain Xs. Furthermore, there exists a continuous PWA function

µ0
N−s+1(·) such that µ0

N−s+1(x, r) ∈ κs(x, r) for all (x, r) ∈ Xs.

Since the proofs of all the above results are constructive, the sequences {V 0
s (·), κs(·), Xs}

N
s=1

and {µ0
s(·)}

N
s=1 can be computed iteratively, without gridding, by noting the following:

• Given Xs−1, compute Xs by first computing Zs, as in the proof of Proposition 1, followed

by a projection operation,

• Given V 0
s−1(·), a max-plus-scaling expression of Js(·) can be computed by referring to

the proof of Proposition 2,
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TABLE I

NUMBER OF REGIONS nR AS A FUNCTION OF THE PREDICTION HORIZON N .

N 1 2 3 4 5 6 7 8 9 10

nR 2 7 7 10 13 15 19 23 25 25

• Given Js(·) and Zs, compute V 0
s (·), κs(·) and µ0

N−s+1(·) as in the proof of Proposition 3

or Theorem 1, by using parametric LP algorithms [14]–[16].

III. EXAMPLE

We consider the following example:

x(k)=





−w1(k)+w2(k)+2 ε

−w1(k)−w2(k)+5 w1(k)−2



⊗x(k−1)⊕





−w1(k)+3

−w2(k)+2



⊗ u(k), y(k) = [0 ε]⊗x(k)

We assume a bounded disturbance: W =
{

[w1 w2]
T : 2 ≤ w1 ≤ 3, 1 ≤ w2 ≤ 2, w1 + w2 ≤ 4

}

.

We consider N = 10, the due date signal is r = [5 7 9.5 11.8 14 16.7 19.4 21.6 23.8 26]T , and

the initial conditions are x(0) = [6 8]T , u(0) = 7. The system is subject to input-output con-

straints: x2(k)−u(k) ≤ 2, x1(N)+x2(N) ≤ 2rN , u(k+1)−u(k) ≥ 0,−6+rk ≤ u(k) ≤ 6+rk.

We use the stage cost defined in (2) with γ = 0.1, and a random sequence of disturbances:

w =





2.4 2.1 2 2.8 2.1 2.1 2.2 2 2.4 2.2

1 1.4 1.3 1 1.2 1.6 1.1 1.7 1.4 1.6





T

. Since r is known in advance, in

this example we do not consider it as a parameter in the parametric LPs. Algorithms for

solving parametric LPs can be found in [14]–[16].

The left plots in Figure 1 show the output y and the signal y− r for the feedback optimal

control approach presented in this paper, the open-loop optimal control approach as in [4],

and the residuation approach of [3]. As expected, the feedback optimal control approach

gives a better tracking than the open-loop and residuation approach (note that V 0
N(x, r) =

−13.8 ≪ V 0,open-loop

N (x, r) = −3.02). The right plots in Figure 1 show the input u and the

’normalized’ signal u− 2k (note that 2 is the constant slope of the residuation input signal)

for the three approaches. Note that the optimal open-loop input sequence coincides with the

residuation input sequence, except for the last sample. Table I displays the number of regions

nR of the parametric LP as a function of the prediction horizon N . Note that the number of

regions increases with the prediction horizon.
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Fig. 1. Left: y and y− r for the feedback approach (full–squares), the open-loop approach of [4] (dashed–stars), and the

residuation approach of [3] (dash-dotted–circles); the reference signal r is indicated by the full line. Right: u and u− 2k.

IV. CONCLUSIONS

We have shown that we can compute an optimal control policy over a prediction horizon

of N steps by solving N parametric LP problems. The key assumptions that allow us

to guarantee convexity of the partial return functions and their domains at each dynamic

programming iteration, were that the stage cost be a max-plus-non-negative-scaling expression

in the state and that the matrices associated with the state constraints all have non-negative

entries.

Future research topics include: in-depth investigation of the timing issues, extension of the

results to min-plus-linear systems, and relaxations for robust optimal MPL control problems.
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APPENDIX A

The m × n MPA zero matrix εm×n and the n × n MPA identity matrix En are defined

as follows: [εm×n]ij := ε for all i, j, and [En]ii := 0 for all i and [En]ij := ε for all

i 6= j. The constraint u(k + 1) − u(k) ≥ 0 does not satisfy Assumption A1. However, by

remodeling the system, this constraint can be removed. Indeed, introducing a new state vector

x̃ = [xT , ũT ]T and the dynamics:

x̃(k) =





A(w(k)) B(w(k))

εm×n Em



⊗x̃(k−1)⊕





B(w(k))

Em



⊗u(k), y(k)=[C(w(k)) εp×m]⊗x̃(k)

with the constraint ũ(k) ≤ u(k), it is clear that both systems have the same behavior. Note that

the previous constraint can be written equivalently as [0 Im]x̃(k)−Imu(k)≤0. Moreover, if the

original system is subject to constraints of the form Hx(k)+Gu(k)+Fr(k)+Ew(k) ≤ h(k),

then they can be written equivalently as [H 0]x̃(k)+ Gu(k)+ Fr(k)+ Ew(k)≤ h(k). So,

Assumption A1 still holds after performing this remodeling since [H 0] ≥ 0 if H ≥ 0 and

[0 Im] ≥ 0.

APPENDIX B

Proof of Lemma 3: X = Projn+p+qZ is clearly a polyhedron. Note that it is sufficient

to consider the case m = 1; the general case can be proved in a similar fashion, using

induction. We derive the properties of H̃, F̃ and K̃ using Fourier-Motzkin elimination. Let

H̄i, F̄i, K̄i and Ḡi be the ith row of respectively the matrices H̄, F̄ , K̄ and the vector Ḡ.

Define I+ := {i ∈ q : Ḡi > 0}, I− := {i ∈ q : Ḡi < 0} and I0 := {i ∈ q : Ḡi = 0}. We have

three cases:

1) i ∈ I0 ⇒ H̄ix+ F̄ir + K̄it ≤ hi and H̄i ≥ 0, K̄i ≤ 0;

2) j ∈ I+ ⇒ u ≤ − 1
Ḡj
H̄jx−

1
Ḡj
F̄jr −

1
Ḡj
K̄jt+

h̄j

Ḡj
and 1

Ḡj
H̄j ≥ 0, 1

Ḡj
K̄j ≤ 0;

3) l ∈ I− ⇒ u ≥ − 1
Ḡl
H̄lx−

1
Ḡl
F̄lr −

1
Ḡl
K̄lt+

h̄l

Ḡl
and − 1

Ḡl
H̄l ≥ 0, − 1

Ḡl
K̄l ≤ 0.

It is then easy to combine the above and show that the set X is described by the following

inequalities: H̄ix + F̄ir + K̄it ≤ h̄i ∀i ∈ I0; (− 1
Ḡl
H̄l +

1
Ḡj
H̄j)x + (− 1

Ḡl
F̄l +

1
Ḡj
F̄j)r +

(− 1
Ḡl
K̄l +

1
Ḡj
K̄j)t ≤ −

h̄l

Ḡl
+

h̄j

Ḡj
∀j ∈ I+, l ∈ I−. The result follows, since the rows of H̃ are

composed of the vectors H̄i ≥ 0 and − 1
Ḡl
H̄l+

1
Ḡj
H̄j ≥ 0 for all i ∈ I0, j ∈ I+, l ∈ I−, while

the rows of K̃ are composed of the vectors K̄i ≤ 0 and − 1
Ḡl
K̄l +

1
Ḡj
K̄j ≤ 0 for all i ∈ I0,

j ∈ I+, l ∈ I−.
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Proof of Theorem 1: Using Proposition 1 it follows that Z = {(x, r, u) : H̃x+G̃u+F̃ r ≤

h̃}, with H̃ ≥ 0. The function J(·) can be written as: J(x, r, u) = maxj∈l{α
T
j x + γT

j u +

δTj r + θj}, where αj ≥ 0 for all j. From Proposition 3 and the fact that V 0(·) is proper,

it follows that V 0(·) ∈ Fmps and its domain is X . The epigraph of V 0(·) is given by:

epiV 0 := {(x, r, t) : V 0(x, r) ≤ t, x ∈ X} = {(x, r, t) : ∃u s.t. (x, r, u) ∈ Z, J(x, r, u) ≤ t}.

So epiV 0 = {(x, r, t) : ∃u s.t. H̄x+ F̄ r+K̄t+Ḡu ≤ h̄}, where H̄ = [H̃T αT
1 · · · α

T
l ]

T ≥ 0

and K̄ = [0,−1, . . . ,−1]T ≤ 0. From Lemma 3 we obtain that the epigraph of V 0(·) is a

polyhedron given by epiV 0 = {(x, r, t) : Ĥx+ F̂ r + K̂t ≤ ĥ}, where Ĥ ≥ 0, K̂ ≤ 0. Let l

be the number of inequalities describing epiV 0. We arrange the indices j ∈ l s. t. K̂j < 0

for j = 1, . . . , v but K̂j = 0 for j = v + 1, v + 2, . . . , l (possibly v = 0, i.e. K̂j = 0 for all

j). Here, Dj denotes the j th row of a matrix D. Taking aj = −Ĥj/K̂j, bj = −F̂j/K̂j and

cj = −ĥj/K̂j for j = 1, 2, . . . , v, we obtain

epiV 0 = {(x, r, t) : ajx+ bjr− cj ≤ t, ∀j ∈ v; Ĥjx+ F̂jr ≤ ĥj for j = v + 1, . . . , l}

(14)

But V 0(·) is proper, therefore v > 0. Since V 0(·) ∈ Fmps, (14) gives us a representation of

V 0(·) as V 0(x, r) = maxj∈v{ajx + bjr − cj}, where aj = −Ĥj/K̂j ≥ 0, for all j ∈ v, i.e.

V 0(·, r) ∈ F+
mps for any fixed r ∈ R

p. Moreover, the domain of V 0(·) is {(x, r) : Ĥjx+F̂jr ≤

ĥj for j = v + 1, . . . , l} and coincides with X according to Proposition 3.
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