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Adaptive Importance Sampling for Probabilistic Validation of Advanced

Driver Assistance Systems

Olaf Gietelink, Bart De Schutter, and Michel Verhaegen

Abstract— We present an approach for validation of ad-
vanced driver assistance systems, based on randomized algo-
rithms. The new method consists of an iterative randomized
simulation using adaptive importance sampling. The random-
ized algorithm is more efficient than conventional simulation
techniques. The importance sampling pdf is estimated by a
kernel density estimate, based on the results from the previous
iteration. The concept is illustrated with a simple adaptive
cruise control problem.

I. INTRODUCTION

A. Advanced Driver Assistance Systems

The increasing demand for safer passenger cars has

stimulated the development of advanced driver assistance

systems (ADASs). An ADAS is a control system that uses

environment sensors to improve comfort and traffic safety by

assisting the driver. An example is adaptive cruise control

(ACC), which tries to maintain a pre-defined velocity set-

point, unless a slower vehicle is detected ahead [14]. The

ACC then controls the vehicle to follow the slower vehicle

at a desired distance xd (Fig. 1). Further defined are the

position x, velocity v, and acceleration a of both vehicles,

the relative velocity vr = v1 − v2, clearance xr = x1 − x2,

and separation error ex = xd − xr.

The demand for safety naturally increases with increasing

automation of the driving task, since the driver must fully

rely on a flawless operation of the ADAS. The ADAS should

therefore be validated for a wide set of operating conditions.

An iterative process of simulations and test drives is often

used for validation. Test drives give realistic results, but can

never cover the entire set of operating conditions. Results

are also difficult to analyze and not reproducible [3]. On the

other hand, simulations have their limitations as well. For

a realistic nonlinear model and multiple traffic disturbances,

the validation problem will become difficult to solve, and

eventually become intractable [15]. To make the simulation

phase more efficient, a controller can be validated with a

grid search over the operating range of all parameters [4].

However, an exhaustive grid search requires an intractably

large number of experiments. Another possibility is a Monte

Carlo strategy, where the system is simulated for a represen-

tative, but still very large, set of operating conditions, based

on the probability that these conditions occur [12].
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Fig. 1. Schematic representation of an ACC system.

In [6] we have introduced the use of importance sampling

(IS) to make Monte Carlo simulation more efficient, i.e.

using a much smaller number of tests. It was shown that IS

considerably speeds up the simulation process, although the

choice of probability density function (pdf) to sample from

was not optimal. The choice of an optimal IS pdf has been

the topic of much research, but has usually been constrained

to simple parametric approaches [1], [5].

B. Objectives of this Paper

The objective of this paper is to present a new validation

approach based on an iterative randomized algorithm (RA)

using adaptive importance sampling (AIS), where the IS pdf

is based on the results of the previous iteration. This provides

an efficient test program in order to cover the entire set of

operating conditions with a minimum number of samples.

Section II presents some background theory on RAs. Sec-

tions III and IV then present an iterative sampling algorithm

and AIS to improve its efficiency, illustrated with the case

study. Section V presents the conclusions.

II. RANDOMIZED ALGORITHMS

An alternative approach for solving a complex problem ex-

actly, is to solve it approximately by using an RA. An RA is

an algorithm that makes random choices during its execution

[10]. The use of an RA can turn an intractable problem into

a tractable one, but at the cost that the algorithm may fail to

give a correct solution. The probability that the RA fails can

be made arbitrarily close to zero, but never exactly equal

to zero. This probability δ mainly depends on the sample

complexity N , i.e. the number of simulations performed, but

also on the specification of the problem to be solved.

A. Problem Specification

The performance of an ACC can be quantified in a

number of measures ρi, e.g. tracking error, control effort,

ride comfort, and string stability. In this paper the controller

validation is restricted to the measure of safety, expressed

as the probability p that an unsafe situation occurs. In [6]

we have used a discrete safety measure ρs ∈ {0, 1}, where



ρs = 1 means ‘collision’ and ρs = 0 means ‘no collision’.

However, a discrete safety measure cannot distinguish in

severity between different situations for which ρs = 1. There-

fore, a continuous safety measure ρt will be used, defined

by the time-to-collision tttc =
xr

vr

. The time-to-collision has

a lower value for unsafe situations, with a threshold value

γt = 6 s, since a traffic situation is subjectively regarded by

a driver as ‘dangerous’ when ρt < γt [3].

The value of ρt for a particular scenario depends on the

perturbations imposed by that scenario, i.e. the motion of

other vehicles. Apart from the acceleration of the lead vehicle

a1, also the initial conditions xr(0), vr(0) influence ρt. These

scenario parameters, together with driver input, and other

disturbances form the parameter set Q: an n-dimensional

bounded set of all possible parameter combinations.

Since the system performance is defined by the scalar

performance measure ρt, a cost function ρt(q) : Q → R

can be defined. The validation objective is then to identify

the probability p that ρt < γt, by estimating it by p̂ with a

given accuracy ǫ and confidence level 1− δ:

Pr{|Pr{ρt < γt}− p̂| ≤ ǫ} ≥ 1− δ, with δ, ǫ ∈ (0, 1). (1)

B. Monte Carlo Sampling

Consider an arbitrary process with only two possible out-

comes, ‘success’ (ρ = 0) and ‘failure’ (ρ = 1), and suppose

we wish to determine the probability p for a successful

outcome1. A Monte Carlo sampling method can then be used

[9], based on the ‘law of large numbers’, which states that

lim
N→∞

Pr {|p̂N − p| ≥ ǫ} = 0, (2)

where the empirical probability p̂N of a failure of the process

can be estimated as

p̂N =
1

N

N∑

i=1

J(qi), (3)

which is known as the simple sampling estimator. The

indicator function J represents the outcome of every i-th
experiment for a parameter combination qi, given by

J(qi) =

{
0, if ρ = 0
1, if ρ = 1.

(4)

The expected value of p̂N is p, since p̂N is an unbiased

estimator. The variance of p̂N is given by

σ2
ss = var

{
1

N

N∑

i=1

J(qi)

}
=

1

N

[
E
{
J(qi)

2
}
− E {J(qi)}

2
]

=
1

N

(
p− p2

)
=

p (1− p)

N
. (5)

The accuracy of the estimate p̂N can then be expressed in

the relative rms error
√

var {p̂N}

p2
=

√
1− p

pN
. (6)

1Please note the difference in notation between the performance level ρ
for one particular experiment and its probability p for all experiments.

From (6) the sample complexity could be calculated, given

a desired relative error. However, this measure also requires

a priori knowledge of p, which is exactly the parameter

we wish to estimate. Furthermore, (6) does not give any

information on the confidence interval for any particular

estimate p̂N . In that respect, p̂N is unlikely to be exactly

equal to the real probability p, although it is reasonable to

expect that p̂N will approach p, as N → ∞, and as long as

the samples are chosen to be representative of the set Q.

The question thus arises how many samples N are neces-

sary to give a reliable estimate p̂N , such that it differs from

the real (unknown) value p by no more than ǫ > 0, i.e.

p− p̂N ≤ ǫ. (7)

Obviously, it is important to know whether the probability

that the real performance p is worse than the estimated

performance p̂N , i.e. the probability that p − p̂N > ǫ, as

in (7). Vice versa, the probability that the real p is better

than expected by p̂N , i.e. p̂N − p > ǫ, is not as important.

Since p̂N is a random variable, the outcome of the inequal-

ity (7) is a random variable as well with a certain probability

of realization. Therefore, we cannot always guarantee that

p− p̂N ≤ ǫ, even for large N . By introducing a confidence

level 1− δ, the probability that p− p̂Nj
> ǫ for any j-th set

of N simulations (denoted by Nj) is then defined as

Pr{p− p̂N ≤ ǫ} ≥ 1− δ, with δ, ǫ ∈ (0, 1). (8)

It is then of interest to know the required N for (8) to hold.

C. Sample Complexity

Since the process is a binomial process, (8) can be

calculated by

Pr {p− p̂N ≤ ǫ} = 1−
N−∑

i=0

(
N−

i

)
pi (1− p)(

N−

−i) > 1−δ,

(9)

where N− = (p− ǫ)N is the minimum number of samples

for which J(qi) = 1. Unfortunately, (9) cannot be solved

explicitly, such that the necessary sample complexity has to

be approximated. From the central limit theorem follows that

the distribution of p̂N approaches a normal distribution as

N → ∞ [1]. In that case (8) can be approximated by

Pr {p− p̂N < kσ} ≥ 1− δ. (10)

Here the variance σ can be approximated by the binomial

parameter
√

Np(1− p), and k > 0 can be derived from

tables for a standard Gaussian distribution with a desired

confidence 1 − δ. In this way, a fast approximation for N ,

denoted by Nbin, can be calculated. However, this measure

again requires a priori knowledge of p.

To avoid this paradox we can use the Chernoff bound [2],

which states that the probability δ > 0 in (8) is no larger

than e−2Nǫ2 . Therefore, to estimate the unknown quantity p
to an accuracy ǫ and with a confidence 1− δ, N should be

chosen such that 2e−2Nǫ2 ≤ δ. This can be rewritten as

N ≥
1

2ǫ2
ln

1

δ
, (11)



which is known as the one-sided additive Chernoff bound.

In order to compute p̂N we can then use Algorithm 1.

Algorithm 1 (Probabilistic performance verification [13])

Given a desired ǫ, δ ∈ (0, 1), a threshold γ ≥ 0, and the

true pdf fQ, this RA returns with a probability of at least

1− δ an estimate p̂N for p, such that p− p̂N ≤ ǫ.

1) Determine the necessary N with (11).

2) Draw N independent identically distributed (iid)

samples q1, q2, . . . , qN according to its pdf fQ.

3) Return the empirical probability

p̂N =
1

N

∑N

i=1
J (qi) ,

where J (qi) is the indicator function

J(qi) =

{
0, if ρ ≥ γ
1, if ρ < γ.

(12)

Example 1 (Gaussian distributed disturbance)

Consider a scenario where the lead vehicle brakes to a full

stop. The initial conditions are xr, 0 = xd = 40m, and

v1(0) = v2(0) = 30m/s. For simplicity, assume that the

deceleration of the lead vehicle a1 is the only disturbance

(note however that the approach can easily be extended to an

n-dimensional parameter set). When the lead vehicle brakes

hard, the ACC vehicle cannot always brake in time, since

the ACC deceleration is limited to −2.5 m/s2. Now, for fine-

tuning the control parameters, we would like to know the

percentage of situations (p) for which ρt < γt. The safety

obviously decreases with a stronger deceleration a1, such

that the function ρt(a1) is non-decreasing. For verification

of this simple example the ‘true’ outcome can therefore be

calculated numerically and is known exactly: p = 0.03630.

However, in practice it can be impossible to determine p in

a deterministic way, when the dimension of Q increases and

the function ρQ becomes non-convex. So instead of calcu-

lating p in deterministic sense, the function is randomized in

such a way that it takes a random input qi from its pdf f(q).
ACC field tests [3] suggest that the acceleration profile can be

roughly described as a random signal with a Gaussian pdf fN
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Fig. 2. Histogram of 10 000 estimates p̂Nj
, with Nj = 23026 each, where

the acceleration profile is sampled from a Gaussian pdf N (0, 1.5).

with mean µ = 0 and standard deviation σ = 1.5, denoted

as N (0, 1.5), truncated on the interval [−10, 10] m/s2.

In order to verify Algorithm 1, we execute it M = 10 000

times. Suppose it is desired that ǫ = 0.01 and δ = 0.01, then

(11) gives N = 23026. Every j-th simulation set gives an es-

timate p̂Nj
for j = 1, . . . ,M . The distribution of the estimate

is shown in Fig. 2. The empirical mean p̂M is 0.03633, as

could be expected near the true probability p. The variance

of the estimator p̂Nj
is σ̂2

ss = 1
M−1

∑M
j=1 (p̂Nj

− p̂M )2 =
1.5373 ·10−6. The accuracy for a single simulation set (each

consisting of 23026 simulations), can be estimated from the

results as ǫ̂ = 0.0028 when δ̂ = 0.01.

These results suggest that the desired values for δ and ǫ
can be achieved with a much lower N than given by (11).

III. ITERATIVE ESTIMATION USING THE

BINOMIAL BOUND

As a solution to the conservatism of the Chernoff bound,

we can make an initial estimate of p using (11), and

subsequently use the binomial bound (10), after which p can

be estimated with a lower bound on the sample complexity.

In order to obtain a lower N in total, the values for ǫ and δ
must be modified. From (11) follows that N is proportional

to log(1/δ) and inversely proportional to 1/ǫ2. Therefore,

when δ is decreased and ǫ increased by a suitably chosen

factor κ, a lower N can be obtained in a first iteration, that

is δ1 = δ/κ, and ǫ1 = κǫ. To obtain the desired confidence

1− δ for p̂N in a second iteration, δ2 should be chosen such

that (1− δ1)(1− δ2) ≥ 1− δ. This is true when δ2 = δ− δ1,

since (1 − δ/κ)(1 − δ + δ/κ) ≥ 1 − δ, for all κ ≥ 1. The

accuracy in the second iteration is set to its desired value ǫ.
This procedure is formalized in Algorithm 2.

Algorithm 2 (Iterative estimation using binomial bound)

Given a desired ǫ, δ ∈ (0, 1) and a threshold γ ≥ 0,

1) Draw Nss,1 ≥ 1
2ǫ2

1

ln 2
δ1

iid samples, where δ1 = δ/κ,

and ǫ1 = κǫ, and κ is a suitably chosen real number.

2) Return the empirical probability

p̂N,1 =
1

Nss,1

∑Nss,1

i=1
J (qi) .

The real p is at worst pbin = p̂N,1 + ǫ1 with

confidence 1− δ1.

3) Determine Nbin,2 for pbin, δ2 = δ − δ1 and ǫ2 = ǫ
using (10).

4) If Nbin,2 > Nss,1, draw Nss,2 = Nbin,2 − Nss,1

samples.

5) Return the empirical probability

p̂N =
1

Nss,1 +Nss,2

∑Nss,1+Nss,2

i=1
J (qi)

with accuracy ǫ and confidence (1−δ1)(1−δ2) ≥ 1−δ.

In order to choose a suitable value for κ, we investigate

the bounds on Nss,1 and Nbin,2 for different values of κ, p,

δ, and ǫ, see Fig. 3. This figure shows that Algorithm 2 is

optimal when Nbin,2 = Nss,1. It is also clear that κ can better
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be selected too large instead of too small. In the former case,

only a small number of extra samples Nss,2 = Nbin,2−Nss,1

has to be drawn in the second iteration. In the latter case,

the first iteration will draw too many samples Nss,1, which

is a waste of simulation time. The contours are similar for

other values of δ, ǫ and p.

Therefore we choose κ at Nbin,2 = Nss,1, based on a

reasonable value for p, preferably with p as low as possible.

Since p should be greater than ǫ (p < ǫ implies the possibility

of a negative probability), p is lower bounded by ǫ. Therefore

κ should be chosen such that Nbin,2 = Nss,1 and p = ǫ.

Example 2 (Iterative estimation using binomial bound)

The problem in Example 1 is repeated using Algorithm 2,

for the same values δ = 0.01, ǫ = 0.01, and the real p
at 0.03630. However, since ǫ = 0.01, p is assumed to be

lower bounded at 0.01. We therefore choose κ = 3.4, using

the procedure described above and illustrated in Fig. 3. Fig.

4 shows the results for 10 000 simulation sets, each with

Nj ∈ [3326, 4804], where Nss,1,j = 2391 and Nss,2,j ∈
[935, 2413]. The sample complexity Nss,2 in the second

iteration is quite large, caused by the fact that the factor

κ is chosen larger than the optimal value (i.e. κ2 = 3.4
at p = 0.01, instead of κ1 = 2.75 at p = 0.03630, see

Fig. 3). The results are p̂N = 0.03619 and the variance

σ̂2 = 8.8040 · 10−6. When the empirical confidence is set

δ̂ = 0.01 the empirical accuracy is found to be ǫ̂ = 0.0070,

meaning that Nj ∈ [935, 2413] is still slightly conservative,

although better than in Example 1. Compared to the initial

Chernoff bound N = 23026 for ǫ = 0.01 and δ = 0.01, this

means an efficiency improvement of N
max

j
(Nbin,2,j)

= 4.8.

IV. ADAPTIVE IMPORTANCE SAMPLING (AIS)

A. Principle of Importance Sampling (IS)

Example 2 shows that a significant reduction of N can

be achieved, although the samples qi themselves are not

chosen more efficiently. One solution is to reduce the set

Q by neglecting certain subsets that are impossible to occur

[6]. Obviously, a low tttc is more likely with lower values

for xr, 0, vr, 0, and a1, such that the samples for which J = 1
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Fig. 4. Histogram of 10 000 simulation sets, with Nj ∈ [3326, 4804]
each, using Algorithm 2.

are clustered in a specific subset Qbad. This means that there

is structure in the parameter set Q and in the function ρQ
that can be used to reduce the sampling space by disregarding

specific subsets of Q, of which the outcome is a priori known.

It therefore makes sense to give more attention to operating

conditions that are more likely to become dangerous than

others. Another possibility for using a priori knowledge

on interesting samples is importance sampling, which is a

technique to increase the number of occurrences of the event

of which the probability p should be estimated [9].

Suppose that we want to estimate a probability p, given

the parameter set Q. The goal is then to estimate

p =

∫

Q

J(q)fQ(q)dq = E {J(q)} , (13)

where we sample q from its joint pdf fQ, denoted as q ∼ fQ.

In order to highlight the interesting subset Qbad it thus

makes sense not to sample from the original pdf fQ, but

instead use an artificial pdf, reflecting the ‘importance’ of

the events, and then reweighing the observations to get an

unbiased estimate.

We can now define an IS pdf ϕ that is strictly positive on

Q. We can then write

p =

∫

Q

J(q)fQ(q)

ϕ(q)
ϕ(q)dq = E

{
J(Φ)fQ(Φ)

ϕ(Φ)

}
, (14)

where Φ ∼ ϕ. The IS estimator based on ϕ is

p̂N,is =
1

N

∑N

i=1

J(Φi)fQ(Φi)

ϕ(Φi)
, (15)

where Φ1, . . . ,ΦN are iid with pdf ϕ. Every sample drawn

from ϕ can be seen as a realization of ϕ
f original samples,

which must therefore be reweighed with the factor f
ϕ . The

variance of the importance sampling estimator (15) is

σ2
is = var {p̂N,is} = var

{
1
N

N∑
i=1

J (Φi)
f(Φi)
ϕ(Φi)

}
=

1
N

[
E
{
J2 (Φi)

f2(Φi)
ϕ2(Φi)

}
− E

{
J (Φi)

f(Φi)
ϕ(Φi)

}2
]
.

(16)

An RA can then be formulated as follows.



Algorithm 3 (Importance sampling)

Given a desired ǫ, δ ∈ (0, 1) and a threshold γ ≥ 0,

1) Determine a strictly positive IS pdf ϕ.

2) Select an initial number of samples Nis.

3) Draw Nis iid samples Φi according to ϕ.

4) Return the empirical probability

p̂N,is =
1

Nis

∑Nis

i=1

J(Φi)f(Φi)

ϕ(Φi)
.

In order to make this algorithm work, good choices for

Nis and the IS pdf ϕ must be made in advance. We will

discuss these two issues next.

B. Estimation of ϕ using Kernel Density Estimation

The performance of Algorithm 3 heavily depends on the

reliability of the pdf ϕ to generate random variables, and of

the models used in the simulation. An efficient estimator of

p̂N,is is obtained by choosing ϕ proportional to the impor-

tance of the individual samples, with importance defined as

|J(q)fQ(q)|. A rare but dangerous event can thus be equally

important as a frequent but less critical event. Conventional

IS methods consist of shifting the mean or variance of the

original pdf f to form the IS pdf ϕ, a so-called parametric

approach [1], [11]. However, the optimal IS pdf ϕ will most

likely not be a standard type pdf (e.g. normal), but reflect

an erratic multi-dimensional surface in Q. Parametric IS

methods can therefore bias the results if not carefully chosen.

Instead, a nonparametric approach is developed, where the

entire pdf is estimated. Since importance is related to the

samples qi for which J(qi) = 1, we apply a multivariate

kernel density estimate on these samples.

Assume we have Nb independent observations q1, . . . , qNb

of this random variable with J(qi) = 1 for i = 1, . . . , Nb.

The kernel density estimator f̂H(q) for the estimation of the

density value f(q) at point q is defined as

f̂H(q) =
1

Nb

Nb∑

i=1

KH (qi − q) , (17)

where KH(q) = |H|−1/2K(H−1/2q), K(·) is a multivariate

kernel function, and H is a symmetric positive definite n×n
matrix known as the bandwidth matrix. For more information

on the use of suitable kernel density estimates, see [7].

C. Sample Complexity of IS

Instead of using a stopping criterion, we would like to

know in advance the necessary sample complexity to achieve

a specified δ and ǫ. Unfortunately, it is not possible to exactly

calculate the minimum sample complexity beforehand [1].

However, here we will present a method that at least gives

a reliable prediction of N after an initial limited iteration.

In order to provide an estimate of the reduction in sample

complexity that can be achieved with IS, we would like to

know the importance sampling reduction factor

λis =
σ2
is

σ2
ss

, (18)

where σ2
ss and σ2

is are the variances of the simple sampling

estimator and the IS estimator, respectively.

The accuracy of the resulting estimator p̂N,is can then be

expressed in its relative rms error
√

var {p̂N,is}

p2
=

√
λisvar {p̂N}

p2
=

√
λis(1− p)

pN
. (19)

The gain in efficiency can then be calculated by equating

(6) and (19). From this follows that in order to get the same

level of relative error, the reduction in samples for IS is

Nis ≈ λisNch, p ≪ λis. (20)

The simple sampling variance σ2
ss can be approximated

from (5) using the first iteration. The IS variance σ2
is can be

approximated by the empirical estimate of (16)

σ̂2
is =

1
Nis

Nis∑
i=1

J2 (Φi)
f2(Φi)
ϕ2(Φi)

−

(
1

Nis

Nis∑
i=1

J (Φi)
f(Φi)
ϕ(Φi)

)2

Nis
. (21)

Unfortunately, (21) can only be calculated a posteriori,

whereas we would like to know N before we start with

importance sampling. We therefore seek to estimate σ̂2
is a

priori, thereby predicting the IS reduction factor in (18),

which in turn is used to predict Nis ≈ λisNss.

Suppose a limited set of samples has already been evalu-

ated in a first iteration. Then consider the factor
f(qi)
ϕ(qi)

, which

is known for every sampled value qi. We then predict the

number of ‘hits’ (J = 1) that correspond to the IS pdf ϕ
in a second iteration (but before these samples are actually

drawn). We do this by using the assumption that every single

sample obtained with simple sampling (qi ∼ f ), corresponds

to
ϕ(qi)
f(qi)

samples using IS (qi ∼ ϕ), as shown in (15).

The expected IS variance σ̂2
is can then be estimated using

the first simple sampling iteration, where the first term in

the numerator of (21) is multiplied with
ϕ(qi)
f(qi)

. The second

term is equal to p̂N,is and can be approximated by its simple

sampling estimate. Rewriting the samples Φi to qi we get

σ̃2
is =

1
Nss

Nss∑
i=1

J2 (qi)
f(qi)
ϕ(qi)

−

(
1

Nss

Nss∑
i=1

J (qi)

)2

Nss
. (22)

We can then estimate λis from (18). After the first iteration

we can then predict Nis, as well as form the IS pdf ϕ. We

therefore combine importance sampling with the iterative

estimation, as discussed next.

D. Combination of AIS and the Binomial Bound

In the first iteration with sample complexity Nss,1 it is

recommended to use a grid-based sampling strategy or Latin

hypercube [8], in order to get a representative overview of

the parameter set Q. The results of this first iteration can then

be used to form an IS pdf ϕ, and estimate the IS reduction

factor λis. The remaining number of samples to be taken in

the second iteration is then Nis,2 = λis (Nbin,2 −Nss,1). If

desired, these steps can be repeated to obtain a better IS pdf

ϕ. We therefore combine Algorithms 2 and 3 as follows.



Algorithm 4 (Iterative estimation with AIS)

Given a desired ǫ, δ ∈ (0, 1) and a threshold γ ≥ 0,

1) Draw Nss,1 ≥ 1
2ǫ2

1

ln 2
δ1

iid samples, where δ1 = δ/κ,

and ǫ1 = κǫ, and κ is a suitably chosen real number.

2) Return the empirical probability

p̂N,1 =
1

Nss,1

∑Nss,1

i=1
J (qi) .

and the empirical variance σ̂2
ss. The real p is at worst

pbin = p̂N,1 + ǫ1 with confidence 1− δ1.

3) Determine Nbin,2 for pbin, δ2 = δ − δ1 and ǫ2 = ǫ
using (10).

4) Estimate the IS pdf ϕ, based on the kernel density

estimate (17) of samples qb,i, for which ρj(qi) ≥ γj .

5) Estimate the IS reduction factor λ̂is =
σ̃2

is

σ̂2
ss

, with σ̃2
is

from (22) and σ̂2
ss from step 3.

6) If Nbin,2 > Nss,1, then draw Nis,2 =
λ̂is (Nbin,2 −Nss,1) samples.

7) If Nbin,2 > Nss,1, then do the remaining samples.

8) Return the empirical probability

p̂N =
1

Nss,1 +Nis,2



Nss,1∑

i=1

J (qi) +

Nis,2∑

i=1

J(Φi)f(Φi)

ϕ(Φi)




with accuracy ǫ and confidence (1−δ1)(1−δ2) ≥ 1−δ.

Example 3 (Iterative estimation using AIS)

To illustrate the efficiency of Algorithm 4, Example 1 is

again repeated, but now using Algorithm 4. Fig. 5 shows

the results for 10 000 simulation sets, each with Nj ∈
[2519, 2810], where Nss,1,j = 2391 and Nis,2,j ∈ [128, 419].
The sample complexity Nis,2 in the second iteration is

considerably small, since the use of IS reduces Nis,2 in

the second iteration. The results are p̂N = 0.03628 and the

variance σ̂2
is = 1.2140 ·10−5. When the empirical confidence

is set δ̂ = 0.01 the empirical accuracy is found to be

ǫ̂ = 0.0081, meaning that Nj ∈ [2519, 2810] is still slightly

conservative, although much better than in Example 1. The

fact that the bound Nbin,2,j is not strict (such that δ̂ =
0.01) is caused by the fact that the factor κ is not chosen

optimal, as discussed in Section III. Nevertheless, there is an

efficiency improvement of Nss

max
j

(Nbin,2,j)
= 8.2. This means

an improvement with respect to Algorithm 2, where the

improvement was a factor of 4.8. Obviously the resulting

variance is slightly larger than in Example 2, but the accuracy

and confidence are still within the desired values. In other

words, the bound on the sample complexity is more strict.

V. CONCLUSIONS

We have presented an approach for probabilistic per-

formance validation of advanced driver assistance systems

(ADASs), and applied a randomized algorithm, based on

adaptive importance sampling, to a simple adaptive cruise

control problem. For this problem the new approach leads to

roughly a tenfold increase in efficiency.
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Fig. 5. Histogram of 10 000 simulation sets, with Nj ∈ [2519, 2810]
each, using Algorithm 4.
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